Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation.

Identifieur interne : 000098 ( PubMed/Corpus ); précédent : 000097; suivant : 000099

Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation.

Auteurs : Peter H. Thrall ; Anna-Liisa Laine ; Michael Ravensdale ; Adnane Nemri ; Peter N. Dodds ; Luke G. Barrett ; Jeremy J. Burdon

Source :

RBID : pubmed:22372578

English descriptors

Abstract

Antagonistic coevolution is a critical force driving the evolution of diversity, yet the selective processes underpinning reciprocal adaptive changes in nature are not well understood. Local adaptation studies demonstrate partner impacts on fitness and adaptive change, but do not directly expose genetic processes predicted by theory. Specifically, we have little knowledge of the relative importance of fluctuating selection vs. arms-race dynamics in maintaining polymorphism in natural systems where metapopulation processes predominate. We conducted cross-year epidemiological, infection and genetic studies of multiple wild host and pathogen populations in the Linum-Melampsora association. We observed asynchronous phenotypic fluctuations in resistance and infectivity among demes. Importantly, changes in allelic frequencies at pathogen infectivity loci, and in host recognition of these genetic variants, correlated with disease prevalence during natural epidemics. These data strongly support reciprocal coevolution maintaining balanced resistance and infectivity polymorphisms, and highlight the importance of characterising spatial and temporal dynamics in antagonistic interactions.

DOI: 10.1111/j.1461-0248.2012.01749.x
PubMed: 22372578
PubMed Central: PMC3319837

Links to Exploration step

pubmed:22372578

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation.</title>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation>
<nlm:affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia. peter.thrall@csiro.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
</author>
<author>
<name sortKey="Ravensdale, Michael" sort="Ravensdale, Michael" uniqKey="Ravensdale M" first="Michael" last="Ravensdale">Michael Ravensdale</name>
</author>
<author>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22372578</idno>
<idno type="pmid">22372578</idno>
<idno type="doi">10.1111/j.1461-0248.2012.01749.x</idno>
<idno type="pmc">PMC3319837</idno>
<idno type="wicri:Area/PubMed/Corpus">000098</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation.</title>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation>
<nlm:affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia. peter.thrall@csiro.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
</author>
<author>
<name sortKey="Ravensdale, Michael" sort="Ravensdale, Michael" uniqKey="Ravensdale M" first="Michael" last="Ravensdale">Michael Ravensdale</name>
</author>
<author>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
</analytic>
<series>
<title level="j">Ecology letters</title>
<idno type="eISSN">1461-0248</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Basidiomycota (physiology)</term>
<term>Biological Evolution (MeSH)</term>
<term>Disease Resistance (genetics)</term>
<term>Flax (genetics)</term>
<term>Flax (microbiology)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Disease Resistance</term>
<term>Flax</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Host-Parasite Interactions</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Antagonistic coevolution is a critical force driving the evolution of diversity, yet the selective processes underpinning reciprocal adaptive changes in nature are not well understood. Local adaptation studies demonstrate partner impacts on fitness and adaptive change, but do not directly expose genetic processes predicted by theory. Specifically, we have little knowledge of the relative importance of fluctuating selection vs. arms-race dynamics in maintaining polymorphism in natural systems where metapopulation processes predominate. We conducted cross-year epidemiological, infection and genetic studies of multiple wild host and pathogen populations in the Linum-Melampsora association. We observed asynchronous phenotypic fluctuations in resistance and infectivity among demes. Importantly, changes in allelic frequencies at pathogen infectivity loci, and in host recognition of these genetic variants, correlated with disease prevalence during natural epidemics. These data strongly support reciprocal coevolution maintaining balanced resistance and infectivity polymorphisms, and highlight the importance of characterising spatial and temporal dynamics in antagonistic interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22372578</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1461-0248</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Ecology letters</Title>
<ISOAbbreviation>Ecol Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation.</ArticleTitle>
<Pagination>
<MedlinePgn>425-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1461-0248.2012.01749.x</ELocationID>
<Abstract>
<AbstractText>Antagonistic coevolution is a critical force driving the evolution of diversity, yet the selective processes underpinning reciprocal adaptive changes in nature are not well understood. Local adaptation studies demonstrate partner impacts on fitness and adaptive change, but do not directly expose genetic processes predicted by theory. Specifically, we have little knowledge of the relative importance of fluctuating selection vs. arms-race dynamics in maintaining polymorphism in natural systems where metapopulation processes predominate. We conducted cross-year epidemiological, infection and genetic studies of multiple wild host and pathogen populations in the Linum-Melampsora association. We observed asynchronous phenotypic fluctuations in resistance and infectivity among demes. Importantly, changes in allelic frequencies at pathogen infectivity loci, and in host recognition of these genetic variants, correlated with disease prevalence during natural epidemics. These data strongly support reciprocal coevolution maintaining balanced resistance and infectivity polymorphisms, and highlight the importance of characterising spatial and temporal dynamics in antagonistic interactions.</AbstractText>
<CopyrightInformation>© 2012 Blackwell Publishing Ltd/CNRS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia. peter.thrall@csiro.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laine</LastName>
<ForeName>Anna-Liisa</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ravensdale</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nemri</LastName>
<ForeName>Adnane</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barrett</LastName>
<ForeName>Luke G</ForeName>
<Initials>LG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burdon</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM074265</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5R01 GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016422">Letter</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Lett</MedlineTA>
<NlmUniqueID>101121949</NlmUniqueID>
<ISSNLinking>1461-023X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="Y">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22372578</ArticleId>
<ArticleId IdType="doi">10.1111/j.1461-0248.2012.01749.x</ArticleId>
<ArticleId IdType="pmc">PMC3319837</ArticleId>
<ArticleId IdType="mid">NIHMS355625</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Aug 12;400(6745):667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10458161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2000 Aug;156(2):156-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2000 Nov 7;267(1458):2183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 22;292(5525):2281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acquir Immune Defic Syndr. 2001 Jul 1;27(3):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11464148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 1;423(6935):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2004 Nov;164 Suppl 5:S6-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15540142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Feb 7;273(1584):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2007 Jul;7(4):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 6;450(7171):870-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Jan;62(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Sep;11(9):918-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Jun;11(3):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jul;17(14):3401-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2008 Nov;21(6):1861-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18717749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Apr;24(4):226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):371-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2009 Sep;63(9):2213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Sep;174(3):308-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 11;464(7286):275-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20182425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Jun;175(6):E149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Feb;28(2):1043-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 1;332(6025):106-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:345-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Jul;14(7):635-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21521436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2009;36(5):395-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21760756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Aug;52(4):1057-1066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Jun;53(3):704-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1564-1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3714-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22372578
   |texte=   Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22372578" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020