Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.

Identifieur interne : 000072 ( PubMed/Corpus ); précédent : 000071; suivant : 000073

Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.

Auteurs : Athena D. Mckown ; Robert D. Guy ; Linda Quamme ; Jaroslav Klápšt ; Jonathan La Mantia ; C P Constabel ; Yousry A. El-Kassaby ; Richard C. Hamelin ; Michael Zifkin ; M S Azam

Source :

RBID : pubmed:25319679

English descriptors

Abstract

Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.

DOI: 10.1111/mec.12969
PubMed: 25319679

Links to Exploration step

pubmed:25319679

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.</title>
<author>
<name sortKey="Mckown, Athena D" sort="Mckown, Athena D" uniqKey="Mckown A" first="Athena D" last="Mckown">Athena D. Mckown</name>
<affiliation>
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
</author>
<author>
<name sortKey="Quamme, Linda" sort="Quamme, Linda" uniqKey="Quamme L" first="Linda" last="Quamme">Linda Quamme</name>
</author>
<author>
<name sortKey="Klapst, Jaroslav" sort="Klapst, Jaroslav" uniqKey="Klapst J" first="Jaroslav" last="Klápšt">Jaroslav Klápšt</name>
</author>
<author>
<name sortKey="La Mantia, Jonathan" sort="La Mantia, Jonathan" uniqKey="La Mantia J" first="Jonathan" last="La Mantia">Jonathan La Mantia</name>
</author>
<author>
<name sortKey="Constabel, C P" sort="Constabel, C P" uniqKey="Constabel C" first="C P" last="Constabel">C P Constabel</name>
</author>
<author>
<name sortKey="El Kassaby, Yousry A" sort="El Kassaby, Yousry A" uniqKey="El Kassaby Y" first="Yousry A" last="El-Kassaby">Yousry A. El-Kassaby</name>
</author>
<author>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
</author>
<author>
<name sortKey="Zifkin, Michael" sort="Zifkin, Michael" uniqKey="Zifkin M" first="Michael" last="Zifkin">Michael Zifkin</name>
</author>
<author>
<name sortKey="Azam, M S" sort="Azam, M S" uniqKey="Azam M" first="M S" last="Azam">M S Azam</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25319679</idno>
<idno type="pmid">25319679</idno>
<idno type="doi">10.1111/mec.12969</idno>
<idno type="wicri:Area/PubMed/Corpus">000072</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000072</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.</title>
<author>
<name sortKey="Mckown, Athena D" sort="Mckown, Athena D" uniqKey="Mckown A" first="Athena D" last="Mckown">Athena D. Mckown</name>
<affiliation>
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
</author>
<author>
<name sortKey="Quamme, Linda" sort="Quamme, Linda" uniqKey="Quamme L" first="Linda" last="Quamme">Linda Quamme</name>
</author>
<author>
<name sortKey="Klapst, Jaroslav" sort="Klapst, Jaroslav" uniqKey="Klapst J" first="Jaroslav" last="Klápšt">Jaroslav Klápšt</name>
</author>
<author>
<name sortKey="La Mantia, Jonathan" sort="La Mantia, Jonathan" uniqKey="La Mantia J" first="Jonathan" last="La Mantia">Jonathan La Mantia</name>
</author>
<author>
<name sortKey="Constabel, C P" sort="Constabel, C P" uniqKey="Constabel C" first="C P" last="Constabel">C P Constabel</name>
</author>
<author>
<name sortKey="El Kassaby, Yousry A" sort="El Kassaby, Yousry A" uniqKey="El Kassaby Y" first="Yousry A" last="El-Kassaby">Yousry A. El-Kassaby</name>
</author>
<author>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
</author>
<author>
<name sortKey="Zifkin, Michael" sort="Zifkin, Michael" uniqKey="Zifkin M" first="Michael" last="Zifkin">Michael Zifkin</name>
</author>
<author>
<name sortKey="Azam, M S" sort="Azam, M S" uniqKey="Azam M" first="M S" last="Azam">M S Azam</name>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="eISSN">1365-294X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (MeSH)</term>
<term>Disease Resistance (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Geography (MeSH)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Stomata (anatomy & histology)</term>
<term>Plant Stomata (physiology)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>Tannins (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Resistance</term>
<term>Environment</term>
<term>Genes, Plant</term>
<term>Genetic Association Studies</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Geography</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait, Heritable</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25319679</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-294X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.</ArticleTitle>
<Pagination>
<MedlinePgn>5771-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mec.12969</ELocationID>
<Abstract>
<AbstractText>Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.</AbstractText>
<CopyrightInformation>© 2014 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McKown</LastName>
<ForeName>Athena D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guy</LastName>
<ForeName>Robert D</ForeName>
<Initials>RD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Quamme</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Klápště</LastName>
<ForeName>Jaroslav</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>La Mantia</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C P</ForeName>
<Initials>CP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>El-Kassaby</LastName>
<ForeName>Yousry A</ForeName>
<Initials>YA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamelin</LastName>
<ForeName>Richard C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zifkin</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Azam</LastName>
<ForeName>M S</ForeName>
<Initials>MS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="Y">Carbon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="Y">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005843" MajorTopicYN="N">Geography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="N">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Melampsora</Keyword>
<Keyword MajorTopicYN="N">adaxial-abaxial patterning</Keyword>
<Keyword MajorTopicYN="N">amphistomaty</Keyword>
<Keyword MajorTopicYN="N">evolutionary trade-offs</Keyword>
<Keyword MajorTopicYN="N">genome-wide association studies</Keyword>
<Keyword MajorTopicYN="N">stomatal conductance</Keyword>
<Keyword MajorTopicYN="N">stomatal ratio</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25319679</ArticleId>
<ArticleId IdType="doi">10.1111/mec.12969</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000072 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000072 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25319679
   |texte=   Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25319679" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020