Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?

Identifieur interne : 000108 ( PubMed/Checkpoint ); précédent : 000107; suivant : 000109

Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?

Auteurs : Janis Antonovics [États-Unis] ; Peter H. Thrall ; Jeremy J. Burdon ; Anna-Liisa Laine

Source :

RBID : pubmed:21029078

Descripteurs français

English descriptors

Abstract

Five levels of disease expression were scored in a cross-inoculation study of 120 host and 60 pathogen lines of wild flax Linum marginale and its rust fungus Melampsora lini sampled from six natural populations. Patterns of partial resistance showed clear evidence of gene-for-gene interactions, with particular levels of partial resistance occurring in specific host-pathogen combinations. Sympatric and putatively more highly coevolved host-pathogen combinations had a lower frequency of partial resistance types relative to allopatric combinations. Sympatric host-pathogen combinations also showed a lower diversity of resistance responses, but there was a trend toward a greater fraction of this variance being determined by pathogen-genotype × host-genotype interactions. In this system, there was no evidence that partial resistances slow host-pathogen coevolution. The analyses show that if variation is generated by among population host or pathogen dispersal, then coevolution occurs largely by pathogens overcoming the partial resistances that are generated.

DOI: 10.1111/j.1558-5646.2010.01146.x
PubMed: 21029078
PubMed Central: PMC3155823


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21029078

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?</title>
<author>
<name sortKey="Antonovics, Janis" sort="Antonovics, Janis" uniqKey="Antonovics J" first="Janis" last="Antonovics">Janis Antonovics</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA. ja8n@virginia.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Virginia, Charlottesville, Virginia 22904</wicri:regionArea>
<wicri:noRegion>Virginia 22904</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21029078</idno>
<idno type="pmid">21029078</idno>
<idno type="doi">10.1111/j.1558-5646.2010.01146.x</idno>
<idno type="pmc">PMC3155823</idno>
<idno type="wicri:Area/PubMed/Corpus">000113</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000113</idno>
<idno type="wicri:Area/PubMed/Curation">000113</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000113</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000108</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?</title>
<author>
<name sortKey="Antonovics, Janis" sort="Antonovics, Janis" uniqKey="Antonovics J" first="Janis" last="Antonovics">Janis Antonovics</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA. ja8n@virginia.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Virginia, Charlottesville, Virginia 22904</wicri:regionArea>
<wicri:noRegion>Virginia 22904</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
</author>
</analytic>
<series>
<title level="j">Evolution; international journal of organic evolution</title>
<idno type="eISSN">1558-5646</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Australia (MeSH)</term>
<term>Basidiomycota (physiology)</term>
<term>Biological Evolution (MeSH)</term>
<term>Flax (microbiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Australie (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Lin (microbiologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Australia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lin</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Australie</term>
<term>Interactions hôte-pathogène</term>
<term>Évolution biologique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Australie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Five levels of disease expression were scored in a cross-inoculation study of 120 host and 60 pathogen lines of wild flax Linum marginale and its rust fungus Melampsora lini sampled from six natural populations. Patterns of partial resistance showed clear evidence of gene-for-gene interactions, with particular levels of partial resistance occurring in specific host-pathogen combinations. Sympatric and putatively more highly coevolved host-pathogen combinations had a lower frequency of partial resistance types relative to allopatric combinations. Sympatric host-pathogen combinations also showed a lower diversity of resistance responses, but there was a trend toward a greater fraction of this variance being determined by pathogen-genotype × host-genotype interactions. In this system, there was no evidence that partial resistances slow host-pathogen coevolution. The analyses show that if variation is generated by among population host or pathogen dispersal, then coevolution occurs largely by pathogens overcoming the partial resistances that are generated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21029078</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-5646</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Evolution; international journal of organic evolution</Title>
<ISOAbbreviation>Evolution</ISOAbbreviation>
</Journal>
<ArticleTitle>Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?</ArticleTitle>
<Pagination>
<MedlinePgn>512-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1558-5646.2010.01146.x</ELocationID>
<Abstract>
<AbstractText>Five levels of disease expression were scored in a cross-inoculation study of 120 host and 60 pathogen lines of wild flax Linum marginale and its rust fungus Melampsora lini sampled from six natural populations. Patterns of partial resistance showed clear evidence of gene-for-gene interactions, with particular levels of partial resistance occurring in specific host-pathogen combinations. Sympatric and putatively more highly coevolved host-pathogen combinations had a lower frequency of partial resistance types relative to allopatric combinations. Sympatric host-pathogen combinations also showed a lower diversity of resistance responses, but there was a trend toward a greater fraction of this variance being determined by pathogen-genotype × host-genotype interactions. In this system, there was no evidence that partial resistances slow host-pathogen coevolution. The analyses show that if variation is generated by among population host or pathogen dispersal, then coevolution occurs largely by pathogens overcoming the partial resistances that are generated.</AbstractText>
<CopyrightInformation>© 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Antonovics</LastName>
<ForeName>Janis</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA. ja8n@virginia.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burdon</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laine</LastName>
<ForeName>Anna-Liisa</ForeName>
<Initials>AL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM074265</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5R01 GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>11</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Evolution</MedlineTA>
<NlmUniqueID>0373224</NlmUniqueID>
<ISSNLinking>0014-3820</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N" Type="Geographic">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21029078</ArticleId>
<ArticleId IdType="doi">10.1111/j.1558-5646.2010.01146.x</ArticleId>
<ArticleId IdType="pmc">PMC3155823</ArticleId>
<ArticleId IdType="mid">NIHMS307076</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Jun 8;405(6787):679-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2000 Nov 7;267(1458):2183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jun;55(6):1136-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11475049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2002 May 7;269(1494):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 14;431(7010):841-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2007 Aug 22;274(1621):2027-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 6;450(7171):870-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Jun;173(6):779-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2010 Mar-Apr;101 Suppl 1:S13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Jul;176(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20465424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1985 Mar;69(5-6):463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24254000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Sep;73(2):257-267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Feb;45(1):205-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Jun;53(3):704-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1564-1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1196):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2905491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc R Soc Lond B Biol Sci. 1983 Oct 22;219(1216):281-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6139816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Antonovics, Janis" sort="Antonovics, Janis" uniqKey="Antonovics J" first="Janis" last="Antonovics">Janis Antonovics</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000108 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000108 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21029078
   |texte=   Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21029078" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020