Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000C06 ( Pmc/Corpus ); précédent : 000C059; suivant : 000C070 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effector candidates in the secretome of
<italic>Piriformospora indica</italic>
, a ubiquitous plant-associated fungus</title>
<author>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jelonek, Lukas" sort="Jelonek, Lukas" uniqKey="Jelonek L" first="Lukas" last="Jelonek">Lukas Jelonek</name>
<affiliation>
<nlm:aff id="aff2">
<institution>CeBiTec, Bielefeld University</institution>
<country>Bielefeld, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akum, Ndifor F" sort="Akum, Ndifor F" uniqKey="Akum N" first="Ndifor F." last="Akum">Ndifor F. Akum</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Feng" sort="Zhang, Feng" uniqKey="Zhang F" first="Feng" last="Zhang">Feng Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kogel, Karl Heinz" sort="Kogel, Karl Heinz" uniqKey="Kogel K" first="Karl-Heinz" last="Kogel">Karl-Heinz Kogel</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23874344</idno>
<idno type="pmc">3708536</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708536</idno>
<idno type="RBID">PMC:3708536</idno>
<idno type="doi">10.3389/fpls.2013.00228</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000C06</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000C06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Effector candidates in the secretome of
<italic>Piriformospora indica</italic>
, a ubiquitous plant-associated fungus</title>
<author>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jelonek, Lukas" sort="Jelonek, Lukas" uniqKey="Jelonek L" first="Lukas" last="Jelonek">Lukas Jelonek</name>
<affiliation>
<nlm:aff id="aff2">
<institution>CeBiTec, Bielefeld University</institution>
<country>Bielefeld, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akum, Ndifor F" sort="Akum, Ndifor F" uniqKey="Akum N" first="Ndifor F." last="Akum">Ndifor F. Akum</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Feng" sort="Zhang, Feng" uniqKey="Zhang F" first="Feng" last="Zhang">Feng Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kogel, Karl Heinz" sort="Kogel, Karl Heinz" uniqKey="Kogel K" first="Karl-Heinz" last="Kogel">Karl-Heinz Kogel</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>One of the emerging systems in plant–microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of
<italic>Piriformospora indica</italic>
, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe
<italic>in silico</italic>
analyses to predict effectors of
<italic>P. indica</italic>
and we explore effector features considered here to mine a high priority protein list for functional analysis.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Barazani, O" uniqKey="Barazani O">O. Barazani</name>
</author>
<author>
<name sortKey="Benderoth, M" uniqKey="Benderoth M">M. Benderoth</name>
</author>
<author>
<name sortKey="Groten, K" uniqKey="Groten K">K. Groten</name>
</author>
<author>
<name sortKey="Kuhlemeier, C" uniqKey="Kuhlemeier C">C. Kuhlemeier</name>
</author>
<author>
<name sortKey="Baldwin, I T" uniqKey="Baldwin I">I. T. Baldwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catanzariti, A M" uniqKey="Catanzariti A">A. M. Catanzariti</name>
</author>
<author>
<name sortKey="Dodds, P N" uniqKey="Dodds P">P. N. Dodds</name>
</author>
<author>
<name sortKey="Lawrence, G J" uniqKey="Lawrence G">G. J. Lawrence</name>
</author>
<author>
<name sortKey="Ayliffe, M A" uniqKey="Ayliffe M">M. A. Ayliffe</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ceroni, A" uniqKey="Ceroni A">A. Ceroni</name>
</author>
<author>
<name sortKey="Passerini, A" uniqKey="Passerini A">A. Passerini</name>
</author>
<author>
<name sortKey="Vullo, A" uniqKey="Vullo A">A. Vullo</name>
</author>
<author>
<name sortKey="Frasconi, P" uniqKey="Frasconi P">P. Frasconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corradi, N" uniqKey="Corradi N">N. Corradi</name>
</author>
<author>
<name sortKey="Bonfante, P" uniqKey="Bonfante P">P. Bonfante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R. de Jonge</name>
</author>
<author>
<name sortKey="Thomma, B P" uniqKey="Thomma B">B. P. Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R. de Jonge</name>
</author>
<author>
<name sortKey="Van Esse, H P" uniqKey="Van Esse H">H. P. van Esse</name>
</author>
<author>
<name sortKey="Kombrink, A" uniqKey="Kombrink A">A. Kombrink</name>
</author>
<author>
<name sortKey="Shinya, T" uniqKey="Shinya T">T. Shinya</name>
</author>
<author>
<name sortKey="Desaki, Y" uniqKey="Desaki Y">Y. Desaki</name>
</author>
<author>
<name sortKey="Bours, R" uniqKey="Bours R">R. Bours</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshmukh, S" uniqKey="Deshmukh S">S. Deshmukh</name>
</author>
<author>
<name sortKey="Hueckelhoven, R" uniqKey="Hueckelhoven R">R. Hueckelhoven</name>
</author>
<author>
<name sortKey="Schaefer, P" uniqKey="Schaefer P">P. Schaefer</name>
</author>
<author>
<name sortKey="Imani, J" uniqKey="Imani J">J. Imani</name>
</author>
<author>
<name sortKey="Sharma, M" uniqKey="Sharma M">M. Sharma</name>
</author>
<author>
<name sortKey="Weiss, M" uniqKey="Weiss M">M. Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshmukh, S D" uniqKey="Deshmukh S">S. D. Deshmukh</name>
</author>
<author>
<name sortKey="Kogel, K H" uniqKey="Kogel K">K. H. Kogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enright, A J" uniqKey="Enright A">A. J. Enright</name>
</author>
<author>
<name sortKey="Van Dongen, S" uniqKey="Van Dongen S">S. Van Dongen</name>
</author>
<author>
<name sortKey="Ouzounis, C A" uniqKey="Ouzounis C">C. A. Ouzounis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gan, P" uniqKey="Gan P">P. Gan</name>
</author>
<author>
<name sortKey="Ikeda, K" uniqKey="Ikeda K">K. Ikeda</name>
</author>
<author>
<name sortKey="Irieda, H" uniqKey="Irieda H">H. Irieda</name>
</author>
<author>
<name sortKey="Narusaka, M" uniqKey="Narusaka M">M. Narusaka</name>
</author>
<author>
<name sortKey="O Onnell, R J" uniqKey="O Onnell R">R. J. O’Connell</name>
</author>
<author>
<name sortKey="Narusaka, Y" uniqKey="Narusaka Y">Y. Narusaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grunewald, W" uniqKey="Grunewald W">W. Grunewald</name>
</author>
<author>
<name sortKey="Van Noorden, G" uniqKey="Van Noorden G">G. van Noorden</name>
</author>
<author>
<name sortKey="Van Isterdael, G" uniqKey="Van Isterdael G">G. Van Isterdael</name>
</author>
<author>
<name sortKey="Beeckman, T" uniqKey="Beeckman T">T. Beeckman</name>
</author>
<author>
<name sortKey="Gheysen, G" uniqKey="Gheysen G">G. Gheysen</name>
</author>
<author>
<name sortKey="Mathesius, U" uniqKey="Mathesius U">U. Mathesius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hacquard, S" uniqKey="Hacquard S">S. Hacquard</name>
</author>
<author>
<name sortKey="Joly, D L" uniqKey="Joly D">D. L. Joly</name>
</author>
<author>
<name sortKey="Lin, Y C" uniqKey="Lin Y">Y. C. Lin</name>
</author>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E. Tisserant</name>
</author>
<author>
<name sortKey="Feau, N" uniqKey="Feau N">N. Feau</name>
</author>
<author>
<name sortKey="Delaruelle, C" uniqKey="Delaruelle C">C. Delaruelle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrach, B D" uniqKey="Harrach B">B. D. Harrach</name>
</author>
<author>
<name sortKey="Fodor, J" uniqKey="Fodor J">J. Fodor</name>
</author>
<author>
<name sortKey="Barna, B" uniqKey="Barna B">B. Barna</name>
</author>
<author>
<name sortKey="Skoczowski, A" uniqKey="Skoczowski A">A. Skoczowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilbert, M" uniqKey="Hilbert M">M. Hilbert</name>
</author>
<author>
<name sortKey="Voll, L M" uniqKey="Voll L">L. M. Voll</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Hofmann, J" uniqKey="Hofmann J">J. Hofmann</name>
</author>
<author>
<name sortKey="Sharma, M" uniqKey="Sharma M">M. Sharma</name>
</author>
<author>
<name sortKey="Zuccaro, A" uniqKey="Zuccaro A">A. Zuccaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorda, J" uniqKey="Jorda J">J. Jorda</name>
</author>
<author>
<name sortKey="Kajava, A V" uniqKey="Kajava A">A. V. Kajava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kale, S D" uniqKey="Kale S">S. D. Kale</name>
</author>
<author>
<name sortKey="Gu, B" uniqKey="Gu B">B. Gu</name>
</author>
<author>
<name sortKey="Capelluto, D G" uniqKey="Capelluto D">D. G. Capelluto</name>
</author>
<author>
<name sortKey="Dou, D" uniqKey="Dou D">D. Dou</name>
</author>
<author>
<name sortKey="Feldman, E" uniqKey="Feldman E">E. Feldman</name>
</author>
<author>
<name sortKey="Rumore, A" uniqKey="Rumore A">A. Rumore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kloppholz, S" uniqKey="Kloppholz S">S. Kloppholz</name>
</author>
<author>
<name sortKey="Kuhn, H" uniqKey="Kuhn H">H. Kuhn</name>
</author>
<author>
<name sortKey="Requena, N" uniqKey="Requena N">N. Requena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Song, C" uniqKey="Song C">C. Song</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Han, Z" uniqKey="Han Z">Z. Han</name>
</author>
<author>
<name sortKey="She, J" uniqKey="She J">J. She</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, F" uniqKey="Martin F">F. Martin</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A. Aerts</name>
</author>
<author>
<name sortKey="Ahren, D" uniqKey="Ahren D">D. Ahren</name>
</author>
<author>
<name sortKey="Brun, A" uniqKey="Brun A">A. Brun</name>
</author>
<author>
<name sortKey="Danchin, E G" uniqKey="Danchin E">E. G. Danchin</name>
</author>
<author>
<name sortKey="Duchaussoy, F" uniqKey="Duchaussoy F">F. Duchaussoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mentlak, T A" uniqKey="Mentlak T">T. A. Mentlak</name>
</author>
<author>
<name sortKey="Kombrink, A" uniqKey="Kombrink A">A. Kombrink</name>
</author>
<author>
<name sortKey="Shinya, T" uniqKey="Shinya T">T. Shinya</name>
</author>
<author>
<name sortKey="Ryder, L S" uniqKey="Ryder L">L. S. Ryder</name>
</author>
<author>
<name sortKey="Otomo, I" uniqKey="Otomo I">I. Otomo</name>
</author>
<author>
<name sortKey="Saitoh, H" uniqKey="Saitoh H">H. Saitoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nongbri, P L" uniqKey="Nongbri P">P. L. Nongbri</name>
</author>
<author>
<name sortKey="Johnson, J M" uniqKey="Johnson J">J. M. Johnson</name>
</author>
<author>
<name sortKey="Sherameti, I" uniqKey="Sherameti I">I. Sherameti</name>
</author>
<author>
<name sortKey="Glawischnig, E" uniqKey="Glawischnig E">E. Glawischnig</name>
</author>
<author>
<name sortKey="Halkier, B A" uniqKey="Halkier B">B. A. Halkier</name>
</author>
<author>
<name sortKey="Oelmuler, R" uniqKey="Oelmuler R">R. Oelmuler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Onnell, R J" uniqKey="O Onnell R">R. J. O’Connell</name>
</author>
<author>
<name sortKey="Panstruga, R" uniqKey="Panstruga R">R. Panstruga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peskan Berghofer, T" uniqKey="Peskan Berghofer T">T. Peskan-Berghofer</name>
</author>
<author>
<name sortKey="Shahollari, B" uniqKey="Shahollari B">B. Shahollari</name>
</author>
<author>
<name sortKey="Giong, P H" uniqKey="Giong P">P. H. Giong</name>
</author>
<author>
<name sortKey="Hehl, S" uniqKey="Hehl S">S. Hehl</name>
</author>
<author>
<name sortKey="Markert, C" uniqKey="Markert C">C. Markert</name>
</author>
<author>
<name sortKey="Blanke, V" uniqKey="Blanke V">V. Blanke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, T N" uniqKey="Petersen T">T. N. Petersen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S. Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plett, J M" uniqKey="Plett J">J. M. Plett</name>
</author>
<author>
<name sortKey="Kemppainen, M" uniqKey="Kemppainen M">M. Kemppainen</name>
</author>
<author>
<name sortKey="Kale, S D" uniqKey="Kale S">S. D. Kale</name>
</author>
<author>
<name sortKey="Kohler, A" uniqKey="Kohler A">A. Kohler</name>
</author>
<author>
<name sortKey="Legue, V" uniqKey="Legue V">V. Legue</name>
</author>
<author>
<name sortKey="Brun, A" uniqKey="Brun A">A. Brun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiang, X" uniqKey="Qiang X">X. Qiang</name>
</author>
<author>
<name sortKey="Zechmann, B" uniqKey="Zechmann B">B. Zechmann</name>
</author>
<author>
<name sortKey="Reitz, M U" uniqKey="Reitz M">M. U. Reitz</name>
</author>
<author>
<name sortKey="Kogel, K H" uniqKey="Kogel K">K. H. Kogel</name>
</author>
<author>
<name sortKey="Schafer, P" uniqKey="Schafer P">P. Schafer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
<author>
<name sortKey="Ludowici, V A" uniqKey="Ludowici V">V. A. Ludowici</name>
</author>
<author>
<name sortKey="Hardham, A R" uniqKey="Hardham A">A. R. Hardham</name>
</author>
<author>
<name sortKey="Dodds, P N" uniqKey="Dodds P">P. N. Dodds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Gan, P H" uniqKey="Gan P">P. H. Gan</name>
</author>
<author>
<name sortKey="Ravensdale, M" uniqKey="Ravensdale M">M. Ravensdale</name>
</author>
<author>
<name sortKey="Lawrence, G J" uniqKey="Lawrence G">G. J. Lawrence</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
<author>
<name sortKey="Jones, D A" uniqKey="Jones D">D. A. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rai, M" uniqKey="Rai M">M. Rai</name>
</author>
<author>
<name sortKey="Acharya, D" uniqKey="Acharya D">D. Acharya</name>
</author>
<author>
<name sortKey="Singh, A" uniqKey="Singh A">A. Singh</name>
</author>
<author>
<name sortKey="Varma, A" uniqKey="Varma A">A. Varma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richardson, A" uniqKey="Richardson A">A. Richardson</name>
</author>
<author>
<name sortKey="Barea, J M" uniqKey="Barea J">J.-M. Barea</name>
</author>
<author>
<name sortKey="Mcneill, A" uniqKey="Mcneill A">A. McNeill</name>
</author>
<author>
<name sortKey="Prigent Combaret, C" uniqKey="Prigent Combaret C">C. Prigent-Combaret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, D G" uniqKey="Saunders D">D. G. Saunders</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Cano, L M" uniqKey="Cano L">L. M. Cano</name>
</author>
<author>
<name sortKey="Szabo, L J" uniqKey="Szabo L">L. J. Szabo</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S. Raffaele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serfling, A" uniqKey="Serfling A">A. Serfling</name>
</author>
<author>
<name sortKey="Wirsel, S G R" uniqKey="Wirsel S">S. G. R. Wirsel</name>
</author>
<author>
<name sortKey="Lind, V" uniqKey="Lind V">V. Lind</name>
</author>
<author>
<name sortKey="Deising, H B" uniqKey="Deising H">H. B. Deising</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takemoto, D" uniqKey="Takemoto D">D. Takemoto</name>
</author>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Hurley, U" uniqKey="Hurley U">U. Hurley</name>
</author>
<author>
<name sortKey="Lawrence, G J" uniqKey="Lawrence G">G. J. Lawrence</name>
</author>
<author>
<name sortKey="Bernoux, M" uniqKey="Bernoux M">M. Bernoux</name>
</author>
<author>
<name sortKey="Hardham, A R" uniqKey="Hardham A">A. R. Hardham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vadassery, J" uniqKey="Vadassery J">J. Vadassery</name>
</author>
<author>
<name sortKey="Ritter, C" uniqKey="Ritter C">C. Ritter</name>
</author>
<author>
<name sortKey="Venus, Y" uniqKey="Venus Y">Y. Venus</name>
</author>
<author>
<name sortKey="Camehl, I" uniqKey="Camehl I">I. Camehl</name>
</author>
<author>
<name sortKey="Varma, A" uniqKey="Varma A">A. Varma</name>
</author>
<author>
<name sortKey="Shahollari, B" uniqKey="Shahollari B">B. Shahollari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Damme, M" uniqKey="Van Damme M">M. van Damme</name>
</author>
<author>
<name sortKey="Bozkurt, T O" uniqKey="Bozkurt T">T. O. Bozkurt</name>
</author>
<author>
<name sortKey="Cakir, C" uniqKey="Cakir C">C. Cakir</name>
</author>
<author>
<name sortKey="Schornack, S" uniqKey="Schornack S">S. Schornack</name>
</author>
<author>
<name sortKey="Sklenar, J" uniqKey="Sklenar J">J. Sklenar</name>
</author>
<author>
<name sortKey="Jones, A M" uniqKey="Jones A">A. M. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varma, A" uniqKey="Varma A">A. Varma</name>
</author>
<author>
<name sortKey="Savita, V" uniqKey="Savita V">V. Savita</name>
</author>
<author>
<name sortKey="Sudha Sahay, N" uniqKey="Sudha Sahay N">N. Sudha Sahay</name>
</author>
<author>
<name sortKey="Butehorn, B" uniqKey="Butehorn B">B. Butehorn</name>
</author>
<author>
<name sortKey="Franken, P" uniqKey="Franken P">P. Franken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verma, S" uniqKey="Verma S">S. Verma</name>
</author>
<author>
<name sortKey="Varma, A" uniqKey="Varma A">A. Varma</name>
</author>
<author>
<name sortKey="Rexer, K H" uniqKey="Rexer K">K. H. Rexer</name>
</author>
<author>
<name sortKey="Hassel, A" uniqKey="Hassel A">A. Hassel</name>
</author>
<author>
<name sortKey="Kost, G" uniqKey="Kost G">G. Kost</name>
</author>
<author>
<name sortKey="Sarbhoy, A" uniqKey="Sarbhoy A">A. Sarbhoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voegele, R T" uniqKey="Voegele R">R. T. Voegele</name>
</author>
<author>
<name sortKey="Mendgen, K" uniqKey="Mendgen K">K. Mendgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waller, F" uniqKey="Waller F">F. Waller</name>
</author>
<author>
<name sortKey="Achatz, B" uniqKey="Achatz B">B. Achatz</name>
</author>
<author>
<name sortKey="Baltruschat, H" uniqKey="Baltruschat H">H. Baltruschat</name>
</author>
<author>
<name sortKey="Fodor, J" uniqKey="Fodor J">J. Fodor</name>
</author>
<author>
<name sortKey="Becker, K" uniqKey="Becker K">K. Becker</name>
</author>
<author>
<name sortKey="Fischer, M" uniqKey="Fischer M">M. Fischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, N" uniqKey="Wei N">N. Wei</name>
</author>
<author>
<name sortKey="Serino, G" uniqKey="Serino G">G. Serino</name>
</author>
<author>
<name sortKey="Deng, X W" uniqKey="Deng X">X. W. Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zamioudis, C" uniqKey="Zamioudis C">C. Zamioudis</name>
</author>
<author>
<name sortKey="Pieterse, C M" uniqKey="Pieterse C">C. M. Pieterse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuccaro, A" uniqKey="Zuccaro A">A. Zuccaro</name>
</author>
<author>
<name sortKey="Lahrmann, U" uniqKey="Lahrmann U">U. Lahrmann</name>
</author>
<author>
<name sortKey="Guldener, U" uniqKey="Guldener U">U. Guldener</name>
</author>
<author>
<name sortKey="Langen, G" uniqKey="Langen G">G. Langen</name>
</author>
<author>
<name sortKey="Pfiffi, S" uniqKey="Pfiffi S">S. Pfiffi</name>
</author>
<author>
<name sortKey="Biedenkopf, D" uniqKey="Biedenkopf D">D. Biedenkopf</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23874344</article-id>
<article-id pub-id-type="pmc">3708536</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2013.00228</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Mini Review Article</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Effector candidates in the secretome of
<italic>Piriformospora indica</italic>
, a ubiquitous plant-associated fungus</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Rafiqi</surname>
<given-names>Maryam</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jelonek</surname>
<given-names>Lukas</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Akum</surname>
<given-names>Ndifor F.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Feng</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kogel</surname>
<given-names>Karl-Heinz</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University</institution>
<country>Giessen, Germany</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>CeBiTec, Bielefeld University</institution>
<country>Bielefeld, Germany</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by:
<italic>Corné M. J. Pieterse, Utrecht University, Netherlands</italic>
</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by:
<italic>Weixing Shan, Northwest A&F University, China; Corné M. J. Pieterse, Utrecht University, Netherlands</italic>
</p>
</fn>
<corresp id="fn001">*Correspondence:
<italic>Maryam Rafiqi and Karl-Heinz Kogel, Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, Germany e-mail:
<email xlink:type="simple">maryam.rafiqi@agrar.uni-giessen.de</email>
;
<email xlink:type="simple">karl-Heinz.Kogel@agrar.uni-giessen.de</email>
</italic>
</corresp>
<corresp id="fn002">This article was submitted to Frontiers in Plant-Microbe Interaction, a specialty of Frontiers in Plant Science.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>11</day>
<month>7</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<volume>4</volume>
<elocation-id>228</elocation-id>
<history>
<date date-type="received">
<day>01</day>
<month>3</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>6</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © Rafiqi, Jelonek, Akum, Zhang and Kogel.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p> This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.</license-p>
</license>
</permissions>
<abstract>
<p>One of the emerging systems in plant–microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of
<italic>Piriformospora indica</italic>
, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe
<italic>in silico</italic>
analyses to predict effectors of
<italic>P. indica</italic>
and we explore effector features considered here to mine a high priority protein list for functional analysis.</p>
</abstract>
<kwd-group>
<kwd>fungal effector biology</kwd>
<kwd>small secreted proteins</kwd>
<kwd>biotrophy</kwd>
<kwd>symbiosis</kwd>
<kwd>endophyte</kwd>
</kwd-group>
<counts>
<fig-count count="2"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="42"></ref-count>
<page-count count="5"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>INTRODUCTION</title>
<p>Plant roots interact constantly with rhizosphere-resident microorganisms. These interactions, which can be either pathogenic or mutualistic, influence plant growth, immunity, and tolerance to abiotic stress (
<xref ref-type="bibr" rid="B30">Richardson et al., 2009</xref>
;
<xref ref-type="bibr" rid="B41">Zamioudis and Pieterse, 2012</xref>
). Beneficial symbioses that supply plants with growth limiting nutrients, such as nitrogen and phosphorus, are of a particular interest to agriculture because they minimize crops requirement for fertilizers.
<italic>Piriformospora indica</italic>
is a ubiquitous soil borne fungus that associates with roots of a wide range of plant species, including important crops, such as barley and wheat, medicinal plants as well as the model plants
<italic>Arabidopsis</italic>
and tobacco (
<xref ref-type="bibr" rid="B37">Verma et al., 1998</xref>
;
<xref ref-type="bibr" rid="B36">Varma et al., 1999</xref>
;
<xref ref-type="bibr" rid="B29">Rai et al., 2001</xref>
;
<xref ref-type="bibr" rid="B23">Peskan-Berghofer et al., 2004</xref>
).
<italic>P. indica</italic>
was initially investigated for its beneficial effects on plant’s growth and resistance to pathogenic infections. Earlier reports have shown that fungal culture filtrates as well as infestation by
<italic>P. indica</italic>
spores promote shoots growth and increase root branching of plants grown on sterile nutrient-rich media (
<xref ref-type="bibr" rid="B1">Barazani et al., 2005</xref>
;
<xref ref-type="bibr" rid="B39">Waller et al., 2005</xref>
;
<xref ref-type="bibr" rid="B8">Deshmukh and Kogel, 2007</xref>
;
<xref ref-type="bibr" rid="B13">Harrach et al., 2007</xref>
;
<xref ref-type="bibr" rid="B32">Serfling et al., 2007</xref>
), suggesting possible induction of long distance hormonal signals rather than nutrient supply by the fungus. Indeed many microorganisms produce phytohormones or their analogs that induce plants growth and modify root structures (
<xref ref-type="bibr" rid="B11">Grunewald et al., 2009</xref>
). However, recent studies report that while
<italic>P. indica</italic>
indeed produces auxin during association with
<italic>Arabidopsis</italic>
and barley roots, fungal auxin production was not found to be required for triggering plant’s growth (
<xref ref-type="bibr" rid="B34">Vadassery et al., 2008</xref>
;
<xref ref-type="bibr" rid="B14">Hilbert et al., 2012</xref>
;
<xref ref-type="bibr" rid="B21">Nongbri et al., 2012</xref>
). More studies are needed to specify the role of hormonal signals mediating the interaction between
<italic>P. indica</italic>
and plants. While accumulated evidence supports a mutualistic association between plants and
<italic>P. indica</italic>
, and suggests the use of this fungus as a biocontrol agent, the exact molecular process underlying the antagonistic effect of
<italic>P. indica </italic>
on pathogenic infections is unknown.</p>
<p>
<italic>Piriformospora indica </italic>
is a facultative saprophyte that grows on dead plant material and colonizes living root cells, mostly biotrophically, though a switch to a late cell death-associated stage has been described (
<xref ref-type="bibr" rid="B7">Deshmukh et al., 2006</xref>
;
<xref ref-type="bibr" rid="B26">Qiang et al., 2012</xref>
). This late growth stage is symptomless and poorly characterized. Whether this transition in the lifestyle affects mutualistic interactions with plants is as yet unknown. In general, biotrophic fungi have a narrow host range.
<italic>P. indica</italic>
forms associations with roots of a large range of plant species. Although it is still unclear if these interactions are mutualistic or more parasitic, an intriguing question is what are the cellular and molecular mechanisms developed by this fungus to ensure biotrophic growth and to undermine host defense strategies in different plant species? One scenario is that
<italic>P. indica</italic>
deploys an effector repertoire targeting conserved cellular processes in many plant species.</p>
<p>Key feature of the virulence of many biotrophic and hemibiotrophic fungal pathogens is the ability to deliver virulence proteins called effectors into their host cells. These effector proteins manipulate the host immunity, physiology, and metabolism, in favor of fungal growth and disease development. Some secreted fungal effectors exert their action extracellularly, in the plant apoplastic space. Many others have their molecular targets inside the plant cell, in the cytoplasm, the nucleus or other host subcellular compartments (
<xref ref-type="bibr" rid="B27">Rafiqi et al., 2012</xref>
). During biotrophic growth on barley root cells,
<italic>P. indica</italic>
intercellular hyphae extend differentiated branched hyphal structures into infected cells of root tissue (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
). These structures are morphologically analogous and may share similar functions to the haustoria and arbuscules formed by pathogenic and mycorrhizal fungi, respectively.
<italic>P. indica </italic>
biotrophic hyphal structures penetrate the cell wall and invaginate the plasma membrane of infected barley root cells, suggesting possible roles in acquisition of nutrients and secretion of effectors in host tissue, similar to haustoria and arbuscules (
<xref ref-type="bibr" rid="B38">Voegele and Mendgen, 2003</xref>
;
<xref ref-type="bibr" rid="B2">Catanzariti et al., 2006</xref>
;
<xref ref-type="bibr" rid="B22">O’Connell and Panstruga, 2006</xref>
;
<xref ref-type="bibr" rid="B4">Corradi and Bonfante, 2012</xref>
). In this review, we use the whole genome sequence of
<italic>P. indica </italic>
(
<xref ref-type="bibr" rid="B42">Zuccaro et al., 2011</xref>
) to generate a refined list of effector candidates in the secretome of this endophytic fungus.</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>
<bold>
<italic>Piriformospora indica </italic>
biotrophic hyphal structures.</bold>
During biotrophic growth on barley root cells,
<italic>P. indica</italic>
spores attach to the root surface, as seen
<bold>(A)</bold>
germinate and extend intercellular hyphae (arrows) on root tissue within 10 h
<bold>(B,C)</bold>
Differentiated swollen hyphal structures (arrowheads) are extended into colonized living cells of root tissue
<bold>(D)</bold>
These structures are morphologically analogous and may share similar functions to haustoria and arbuscules formed by pathogenic and mycorrhizal fungi, respectively, suggesting possible roles in acquisition of nutrients and secretion of effectors into host tissue. Image
<bold>(A)</bold>
was taken using scanning electron microscope (SEM), Images
<bold>(B–D)</bold>
were taken using a light microscope. Bars =20 μm.</p>
</caption>
<graphic xlink:href="fpls-04-00228-g001"></graphic>
</fig>
</sec>
<sec>
<title>IDENTIFYING EFFECTOR CANDIDATES OF
<italic>P. indica</italic>
</title>
<p>Recent work on predicting effector candidates from fungal genomes has relied on selecting fungal genes up-regulated during
<italic>in planta</italic>
growth and coding for predicted small secreted proteins (SSPs) with a size cut-off of 300 amino acids (aa) that do not code for known functions (
<xref ref-type="bibr" rid="B19">Martin et al., 2008</xref>
;
<xref ref-type="bibr" rid="B12">Hacquard et al., 2012</xref>
;
<xref ref-type="bibr" rid="B42">Zuccaro et al., 2011</xref>
). However, more recent research has shown that fungal and oomycete effectors can exceed the size of 300 aa (
<xref ref-type="bibr" rid="B28">Rafiqi et al., 2010</xref>
;
<xref ref-type="bibr" rid="B35">van Damme et al., 2012</xref>
), and that despite being under high selective pressure, some effectors can still carry recognizable Pfam domains, which would help predict their biological function. Examples of these effectors are CRN8 of
<italic>Phytophthora infestans</italic>
and AvrM of
<italic>Melampsora lini</italic>
. CRN8 is 600 aa in size and carries a serine/threonine RD kinase domain that has been shown to function in the plant nucleus. AvrM is a 343 aa avirulence protein that is intercepted by the tonoplast-resident flax resistance protein M (
<xref ref-type="bibr" rid="B2">Catanzariti et al., 2006</xref>
;
<xref ref-type="bibr" rid="B33">Takemoto et al., 2012</xref>
;
<xref ref-type="bibr" rid="B35">van Damme et al., 2012</xref>
). Similarly, Ecp6 of
<italic>Cladosporium fulvum</italic>
and Slp1 of
<italic>Magnaporthe oryzae</italic>
carry LysM domains, (
<xref ref-type="bibr" rid="B6">de Jonge et al., 2010</xref>
;
<xref ref-type="bibr" rid="B20">Mentlak et al., 2012</xref>
). Thus, for identification of
<italic>P. indica</italic>
effector protein candidates, we established an
<italic>in silico</italic>
pipeline that does not take in account protein size and that includes Pfam domain-containing proteins (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
).</p>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>
<bold> Overview of the computational pipeline used to mine the list of effector candidates in the secretome of
<italic>P. indica</italic>
.</bold>
<bold>(A)</bold>
<italic>P. indica </italic>
secretome, consisting of 972 proteins, was predicted using SignalP. Proteins containing transmembrane domains and proteins with mitochondrial signals were removed usingTMHMM and TargetP, respectively. Apoplastic hydrolysis enzymes, such as chitinases and glucanases, were removed based on their function and not on their size, using Pfam and Blast2Go. The remaining total number of 543 proteins are considered effector candidates. Notably, 72% of effector candidates are novel sequences of unknown function
<bold>(B)</bold>
MCL analysis
<bold>(C)</bold>
has resulted in a high number of singletons and has shown no evidence for gene clustering.</p>
</caption>
<graphic xlink:href="fpls-04-00228-g002"></graphic>
</fig>
<p>Using SignalP (
<xref ref-type="bibr" rid="B24">Petersen et al., 2011</xref>
), 976 genes were predicted to code for proteins with signal peptide. Sequence similarity search was run using BlastP. Secreted proteins with predicted apoplastic functions, such as cell wall hydrolysis, were excluded from this set based on their function and not on their size, and proteins with Pfam domains suggesting possible intracellular functions were retained. This resulted in a reduced set of 543 secreted proteins that are considered effector candidates (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
). The majority, 389 proteins, are with unknown functions, a feature that characterize many predicted fungal effectors. 154 proteins carry predicted Pfam domains, of which 64 are predicted to have protease activity and 23 carry the carbohydrate-binding protein domain LysM. Effector protein families with LysM domains are expanded in many fungal species and are predicted to contribute to fungal virulence through binding to chitin oligosaccharides, and subsequently preventing their hydrolysis by plant chitinases (
<xref ref-type="bibr" rid="B5">de Jonge and Thomma, 2009</xref>
;
<xref ref-type="bibr" rid="B10">Gan et al., 2012</xref>
;
<xref ref-type="bibr" rid="B20">Mentlak et al., 2012</xref>
) and/or their recognition by membrane-anchored pattern recognition receptors (PRRs) such as
<italic>Arabidopsis</italic>
chitin elicitor receptor kinase (AtCERK1) that binds chitin directly through its extracellular LysM-containing domain (
<xref ref-type="bibr" rid="B18">Liu et al., 2012</xref>
).</p>
</sec>
<sec>
<title>
<italic>Piriformospora indica</italic>
EFFECTOR CANDIDATES WITH NO Pfam DOMAIN ARE ENRICHED FOR CYSTEINE RESIDUES AND INTERNAL REPEAT-RICH SEQUENCES BUT SHOW NO EVIDENCE FOR CLUSTERING</title>
<p>132 of the 389 SSPs lacking Pfam domains are enriched for cysteine residues, of which 65 are predicted by Disulfind algorithm (
<xref ref-type="bibr" rid="B3">Ceroni et al., 2006</xref>
) to have three or more disulphide bonds. 14 SSPs showed similarity to predicted proteins in the secretome of
<italic>Laccaria bicolor</italic>
. Using T-REKS program (
<xref ref-type="bibr" rid="B15">Jorda and Kajava, 2009</xref>
), 110 SSPs lacking Pfam domains were found to contain internal repeat-rich sequences. Search for conserved motifs (RxLR, [L/I]xAR, [R/K]CxxCx12H, [Y/F/W]xC, YxSL[R/K], and G[I/F/Y][A/L/S/T]R) showed no evidence for the presence of conserved motifs identified in SSPs of other fungal and oomycete species. Some of these motifs were present in one or a few sequences. However, because of their low frequency and their short sequences when compared to the more complex SSPs sequences, we consider their presence to occur by random chance. Using the Markov-Cluster-Algorithm (MCL;
<ext-link ext-link-type="uri" xlink:href="http://micans.org/mcl/"></ext-link>
) and MCL-Tribe (
<xref ref-type="bibr" rid="B9">Enright et al., 2002</xref>
), 215 SSPs could be clustered into tribes with five or more proteins (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
). The remaining 328 sequences were split into 212 smaller clusters, including 138 singletons, and showed no evidence for gene clustering. Among SSPs rich in small repeats, 25 effector candidates carry the conserved C-terminal motif RSIDELD (
<xref ref-type="bibr" rid="B42">Zuccaro et al., 2011</xref>
). The function of this motif is as yet unknown. One new DELD gene (deposited to NCBI GenBank under the accession number KC342232.1) that was missing in the
<italic>P. indica</italic>
genome database, likely due to the presence of repetitive sequences, was amplified by PCR, indicating that DELD protein family might be more expanded than
<italic>ab initio</italic>
deduced from the assembled genome. Homologs of DELD proteins are also conserved in the closely related sebacinalean fungus
<italic>Piriformospora williamsii</italic>
(Rafiqi, unpublished). Proteins of this family have related sequences enriched for alanine and histidine residues and may have expanded from a single ancestral sequence. With the exception of DELD proteins and 14 other SSPs showing similarity to predicted secreted proteins of
<italic>L. bicolor</italic>
, the majority of
<italic>P. indica </italic>
SSPs are novel sequences showing no significant homology to known sequences in other organisms, which is in accord with previous studies highlighting the evolutionary diverse nature of fungal effectors (
<xref ref-type="bibr" rid="B31">Saunders et al., 2012</xref>
).</p>
</sec>
<sec>
<title>FAMILIES OF EFFECTOR CANDIDATES WITH PREDICTED INTRACELLULAR FUNCTIONS</title>
<p>Among Pfam-containing effector candidates, 35 indicate intracellular regulatory functions, suggesting that they perform these functions after translocation into plant root cells. Examples of these predicted intracellular effectors are translation activators, RNA-binding proteins, RING fingers and F-box-containing proteins that are involved in protein ubiquitination. In addition, 14 SSPs with no Pfam domains carry predicted nuclear localization signals (NLSs).
<italic>In planta</italic>
expression of three green fluorescent protein (GFP)-tagged NLS-harboring proteins lacking the signal peptide resulted in nuclear localization of GFP fusion proteins, confirming the functionality of the NLS in plant cells and presenting indirect evidence for the intracellular function of these effector candidates (Rafiqi, Unpublished). Effectors with predicted intracellular functions constitute a high priority list for further analysis of the biological role as well as the translocation mechanism of fungal effectors in plant cells. Preliminary yeast two hybrid screen results indicate interaction of one of
<italic>P. indica </italic>
effector candidates with CSN5a and CSN5b components of the COP9 signalosome in
<italic>Arabidopsis</italic>
and tobacco, and with a member of
<italic>Arabidopsis</italic>
stress-associated protein family (AtSAP) that act as E3 ligase (Boernke and Rafiqi, unpublished). CSN5 is an evolutionary conserved protein complex comprised of eight subunits, named CSN1-8, where CSN5 is the only catalytic subunit described so far. CSN5 is an isopeptidase that interferes with the ubiquitin-proteasome pathway and plays critical developmental roles in plants (
<xref ref-type="bibr" rid="B40">Wei et al., 2008</xref>
). Targeting both CSN5 and AtSAP gives molecular insights into how
<italic>P. indica</italic>
could manipulate protein ubiquitination in different plant species by targeting conserved molecular processes in plants.</p>
<p>Unlike pathogenic cytoplasmic effectors, which can be revealed through a screen for avirulence functions in resistant plants, mutualistic cytoplasmic effectors are more challenging to identify. In a recent study,
<xref ref-type="bibr" rid="B17">Kloppholz et al. (2011)</xref>
have used yeast secreted protein trap system to identify a cytoplasmic effector, SP7, of the arbuscular mycorrhiza,
<italic>Glomus intraradices</italic>
. SP7 that target the plant nucleus is thought to promote symbiotic biotrophy through interaction with the plant transcription factor ERF19 that inhibit host defenses during mycorrhization. Similarly, another cytoplasmic effector, MiSSP7, that enters the plant nucleus and alters host gene expression was identified in the genome sequence of the ectomycorrhiza
<italic>L. bicolor </italic>
(
<xref ref-type="bibr" rid="B25">Plett et al., 2011</xref>
). Cell death suppression is likely to be a redundant function in the effector repertoire of mutualistic fungi.</p>
<p>Besides their biological function, how
<italic>P. indica</italic>
cytoplasmic effectors enter host cells is an important question to address. Translocation of fungal effectors is a topic of great debate. Evidence has been presented that translocation of some oomycete and fungal effectors, including two mutualistic effectors MiSSP7 of
<italic>L. bicolor</italic>
and SP7 of
<italic>G. intraradices</italic>
, can be pathogen-independent (
<xref ref-type="bibr" rid="B16">Kale et al., 2010</xref>
;
<xref ref-type="bibr" rid="B28">Rafiqi et al., 2010</xref>
;
<xref ref-type="bibr" rid="B17">Kloppholz et al., 2011</xref>
;
<xref ref-type="bibr" rid="B25">Plett et al., 2011</xref>
). However, the question of how fungal effector proteins reach the cytoplasm of plant cells is still widely debated.</p>
</sec>
<sec>
<title>PERSPECTIVES</title>
<p>As more and more evidence comes in to support the biological role of fungal effectors in manipulating plant immunity in favor of fungal virulence, selecting biologically significant proteins among hundreds of predicted effector candidates revealed by genome sequencing, and establishing a priority list for functional analysis remain critical. Isolation of
<italic>P. indica </italic>
biotrophic hyphal structures and construction of complementary DNA (cDNA) library of genes that are differentially expressed in these structures are necessary to identify effectors deployed at different stages of fungal morphogenesis. Available transcriptome sampled from colonized roots masks the expression pattern of
<italic>in planta</italic>
induced genes due to abundant extracellular and saprophytic mycelia, and to the low ratio of fungal to plant biomass in the early stages of root colonization. An important question is how
<italic>P. indica</italic>
evades recognition by the plant surveillance system, and whether it switches from restricted mutualistic to proliferative parasitic or pathogenic growth. Investigating the biological activity of effector proteins may provide mechanistic insights into how
<italic>P. indica</italic>
colonizes plants, at the molecular level.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>This work was supported by the German research funding organization “Deutsche Forschungsgemeinschaft” (DFG, Research unit 666). We thank Alexander Goesmann of CeBiTec, University of Bielefeld for provision of valuable bioinformatics support.</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barazani</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Benderoth</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Groten</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kuhlemeier</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Baldwin</surname>
<given-names>I. T.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>
<italic>Piriformospora indica</italic>
and
<italic>Sebacina</italic>
<italic>vermifera </italic>
increase growth performance at the expense of herbivore resistance in
<italic> Nicotiana attenuata</italic>
.</article-title>
<source>
<italic>Oecologia</italic>
</source>
<volume>146</volume>
<fpage>234</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="doi">10.1007/s00442-005-0193-2</pub-id>
<pub-id pub-id-type="pmid">16032437</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Catanzariti</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>P. N.</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Ayliffe</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>18</volume>
<fpage>243</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.105.035980</pub-id>
<pub-id pub-id-type="pmid">16326930</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ceroni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Passerini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vullo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Frasconi</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>DISULFIND: a disulfide bonding state and cysteine connectivity prediction server.</article-title>
<source>
<italic>Nucleic Acids Res.</italic>
</source>
<volume>34</volume>
<fpage>W177</fpage>
<lpage>W181</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkl266</pub-id>
<pub-id pub-id-type="pmid">16844986</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corradi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bonfante</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection.</article-title>
<source>
<italic>PLoS Pathog.</italic>
</source>
<volume>8</volume>
:
<issue>e1002600</issue>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002600</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Jonge</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>B. P.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Fungal LysM effectors: extinguishers of host immunity?</article-title>
<source>
<italic>Trends Microbiol.</italic>
</source>
<volume>17</volume>
<fpage>151</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="doi">10.1016/j.tim.2009.01.002</pub-id>
<pub-id pub-id-type="pmid">19299132</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Jonge</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van Esse</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Kombrink</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shinya</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Desaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bours</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>329</volume>
<fpage>953</fpage>
<lpage>955</lpage>
<pub-id pub-id-type="doi">10.1126/science.1190859</pub-id>
<pub-id pub-id-type="pmid">20724636</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deshmukh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hueckelhoven</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Imani</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2006</year>
).
<article-title>The root endophytic fungus
<italic>Piriformospora indica</italic>
requires host cell death for proliferation during mutualistic symbiosis with barley.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>103</volume>
<fpage>18450</fpage>
<lpage>18457</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0605697103</pub-id>
<pub-id pub-id-type="pmid">17116870</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deshmukh</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Kogel</surname>
<given-names>K. H.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>
<italic>Piriformospora indica</italic>
protects barley from root rot caused by
<italic>Fusarium graminearum</italic>
.</article-title>
<source>
<italic>J. Plant Dis. Prot.</italic>
</source>
<volume>114</volume>
<fpage>263</fpage>
<lpage>268</lpage>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enright</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Van Dongen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ouzounis</surname>
<given-names>C. A.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>An efficient algorithm for large-scale detection of protein families.</article-title>
<source>
<italic>Nucleic Acids Res.</italic>
</source>
<volume>30</volume>
<fpage>1575</fpage>
<lpage>1584</lpage>
<pub-id pub-id-type="doi">10.1093/nar/30.7.1575</pub-id>
<pub-id pub-id-type="pmid">11917018</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Irieda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Narusaka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>O’Connell</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Narusaka</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of
<italic>Colletotrichum</italic>
fungi.</article-title>
<source>
<italic>New phytol</italic>
.</source>
<volume>197</volume>
<fpage>1236</fpage>
<lpage>1249</lpage>
<pub-id pub-id-type="doi">10.1111/nph.12085</pub-id>
<pub-id pub-id-type="pmid">23252678</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grunewald</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>van Noorden</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Van Isterdael</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Beeckman</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gheysen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mathesius</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Manipulation of auxin transport in plant roots during
<italic>Rhizobium</italic>
symbiosis and nematode parasitism.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>21</volume>
<fpage>2553</fpage>
<lpage>2562</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.109.069617</pub-id>
<pub-id pub-id-type="pmid">19789282</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hacquard</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Joly</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Tisserant</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feau</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Delaruelle</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust).</article-title>
<source>
<italic>Mol. Plant Microbe. Interact.</italic>
</source>
<volume>25</volume>
<fpage>279</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-09-11-0238</pub-id>
<pub-id pub-id-type="pmid">22046958</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harrach</surname>
<given-names>B. D.</given-names>
</name>
<name>
<surname>Fodor</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Barna</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Skoczowski</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Salt tolerance induced in barley by
<italic> Piriformospora indica</italic>
.</article-title>
<source>
<italic>Acta Physiol. Plant.</italic>
</source>
<volume>29</volume>
<fpage>S18</fpage>
<lpage>S19</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2008.02583.x</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilbert</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Voll</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hofmann</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zuccaro</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Indole derivative production by the root endophyte
<italic>Piriformospora</italic>
<italic>indica</italic>
is not required for growth promotion but for biotrophic colonization of barley roots.</article-title>
<source>
<italic>New Phytol.</italic>
</source>
<volume>196</volume>
<fpage>520</fpage>
<lpage>534</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2012.04275.x</pub-id>
<pub-id pub-id-type="pmid">22924530</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jorda</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kajava</surname>
<given-names>A. V.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm.</article-title>
<source>
<italic>Bioinformatics</italic>
</source>
<volume>25</volume>
<fpage>2632</fpage>
<lpage>2638</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp482</pub-id>
<pub-id pub-id-type="pmid">19671691</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kale</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Capelluto</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Dou</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Rumore</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>142</volume>
<fpage>284</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2010.06.008</pub-id>
<pub-id pub-id-type="pmid">20655469</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kloppholz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Requena</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>A secreted fungal effector of
<italic>Glomus intraradices</italic>
promotes symbiotic biotrophy.</article-title>
<source>
<italic>Curr. Biol.</italic>
</source>
<volume>21</volume>
<fpage>1204</fpage>
<lpage>1209</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2011.06.044</pub-id>
<pub-id pub-id-type="pmid">21757354</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>She</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Chitin-induced dimerization activates a plant immune receptor.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>336</volume>
<fpage>1160</fpage>
<lpage>1164</lpage>
<pub-id pub-id-type="doi">10.1126/science.1218867</pub-id>
<pub-id pub-id-type="pmid">22654057</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Aerts</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ahren</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Danchin</surname>
<given-names>E. G.</given-names>
</name>
<name>
<surname>Duchaussoy</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>452</volume>
<fpage>88</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1038/nature06556</pub-id>
<pub-id pub-id-type="pmid">18322534</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mentlak</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Kombrink</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shinya</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ryder</surname>
<given-names>L. S.</given-names>
</name>
<name>
<surname>Otomo</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Effector-mediated suppression of chitin-triggered immunity by
<italic>Magnaporthe oryzae</italic>
is necessary for rice blast disease.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>24</volume>
<fpage>322</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.111.092957</pub-id>
<pub-id pub-id-type="pmid">22267486</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nongbri</surname>
<given-names>P. L.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Sherameti</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Glawischnig</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Halkier</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Oelmuler</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between
<italic>Arabidopsis</italic>
roots and the endophyte
<italic>Piriformospora indica</italic>
.</article-title>
<source>
<italic>Mol. Plant Microbe Interact</italic>
.</source>
<volume>25</volume>
<fpage>1186</fpage>
<lpage>1197</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-03-12-0071-R</pub-id>
<pub-id pub-id-type="pmid">22852809</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Connell</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Panstruga</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes.</article-title>
<source>
<italic>New phytol.</italic>
</source>
<volume>171</volume>
<fpage>699</fpage>
<lpage>718</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2006.01829.x</pub-id>
<pub-id pub-id-type="pmid">16918543</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peskan-Berghofer</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shahollari</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Giong</surname>
<given-names>P. H.</given-names>
</name>
<name>
<surname>Hehl</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Markert</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Blanke</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Association of
<italic>Piriformospora</italic>
<italic>indica</italic>
with
<italic>Arabidopsis thaliana</italic>
roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane.</article-title>
<source>
<italic>Physiol. Plant.</italic>
</source>
<volume>122</volume>
<fpage>465</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2004.00424.x</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>T. N.</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>SignalP 4.0: discriminating signal peptides from transmembrane regions.</article-title>
<source>
<italic>Nat. Methods</italic>
</source>
<volume>8</volume>
<fpage>785</fpage>
<lpage>786</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1701</pub-id>
<pub-id pub-id-type="pmid">21959131</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plett</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Kemppainen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kale</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Legue</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>A secreted effector protein of
<italic>Laccaria bicolor</italic>
is required for symbiosis development.</article-title>
<source>
<italic>Curr. Biol.</italic>
</source>
<volume>21</volume>
<fpage>1197</fpage>
<lpage>1203</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2011.05.033</pub-id>
<pub-id pub-id-type="pmid">21757352</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zechmann</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Reitz</surname>
<given-names>M. U.</given-names>
</name>
<name>
<surname>Kogel</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Schafer</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The mutualistic fungus
<italic>Piriformospora indica</italic>
colonizes
<italic>Arabidopsis</italic>
roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>24</volume>
<fpage>794</fpage>
<lpage>809</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.111.093260</pub-id>
<pub-id pub-id-type="pmid">22337916</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Ludowici</surname>
<given-names>V. A.</given-names>
</name>
<name>
<surname>Hardham</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>P. N.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Challenges and progress towards understanding the role of effectors in plant-fungal interactions.</article-title>
<source>
<italic>Curr. Opin. Plant Biol.</italic>
</source>
<volume>15</volume>
<fpage>477</fpage>
<lpage>482</lpage>
<pub-id pub-id-type="doi">10.1016/j.pbi.2012.05.003</pub-id>
<pub-id pub-id-type="pmid">22658704</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>P. H.</given-names>
</name>
<name>
<surname>Ravensdale</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D. A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>22</volume>
<fpage>2017</fpage>
<lpage>2032</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.109.072983</pub-id>
<pub-id pub-id-type="pmid">20525849</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rai</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Acharya</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Varma</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Positive growth responses of the medicinal plants
<italic>Spilanthes calva</italic>
and
<italic>Withania somnifera</italic>
to inoculation by
<italic>Piriformospora indica</italic>
in a field trial.</article-title>
<source>
<italic>Mycorrhiza</italic>
</source>
<volume>11</volume>
<fpage>123</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.1007/s005720100115</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richardson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barea</surname>
<given-names>J.-M.</given-names>
</name>
<name>
<surname>McNeill</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Prigent-Combaret</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms.</article-title>
<source>
<italic>Plant Soil</italic>
</source>
<volume>321</volume>
<fpage>305</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="doi">10.1007/s11104-009-9895-2</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Raffaele</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<volume>7</volume>
:
<issue>e29847</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0029847</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serfling</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wirsel</surname>
<given-names>S. G. R.</given-names>
</name>
<name>
<surname>Lind</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Deising</surname>
<given-names>H. B.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Performance of the biocontrol fungus
<italic>Piriformospora indica</italic>
on wheat under greenhouse and field conditions.</article-title>
<source>
<italic>Phytopathology</italic>
</source>
<volume>97</volume>
<fpage>523</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-97-4-0523</pub-id>
<pub-id pub-id-type="pmid">18943293</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takemoto</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hurley</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Bernoux</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hardham</surname>
<given-names>A. R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance.</article-title>
<source>
<italic>Mol. Plant Microbe. Interact.</italic>
</source>
<volume>25</volume>
<fpage>379</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="pmid">22046960</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vadassery</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ritter</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Venus</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Camehl</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Varma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shahollari</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>The role of auxins and cytokinins in the mutualistic interaction between
<italic>Arabidopsis </italic>
and
<italic>Piriformospora indica</italic>
.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>21</volume>
<fpage>1371</fpage>
<lpage>1383</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-21-10-1371</pub-id>
<pub-id pub-id-type="pmid">18785832</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Damme</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bozkurt</surname>
<given-names>T. O.</given-names>
</name>
<name>
<surname>Cakir</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Schornack</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sklenar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>A. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>The irish potato famine pathogen phytophthora infestans translocates the CRN8 kinase into host plant cells.</article-title>
<source>
<italic>PLoS Pathog</italic>
</source>
<volume>8</volume>
:
<issue>e1002875</issue>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002875</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Savita</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sudha Sahay</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Butehorn</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Franken</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>
<italic>Piriformospora indica</italic>
, a cultivable plant-growth-promoting root endophyte.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>65</volume>
<fpage>2741</fpage>
<lpage>2744</lpage>
<pub-id pub-id-type="pmid">10347070</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Varma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rexer</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Hassel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kost</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sarbhoy</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1998</year>
).
<article-title>
<italic>Piriformospora indica</italic>
, gen. et sp. nov., a new root-colonizing fungus.</article-title>
<source>
<italic>Mycologia</italic>
</source>
<volume>90</volume>
<fpage>896</fpage>
<lpage>903</lpage>
<pub-id pub-id-type="doi">10.2307/3761331</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voegele</surname>
<given-names>R. T.</given-names>
</name>
<name>
<surname>Mendgen</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Rust haustoria: nutrient uptake and beyond.</article-title>
<source>
<italic>New Phytol.</italic>
</source>
<volume>159</volume>
<fpage>93</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1046/j.1469-8137.2003.00761.x</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waller</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Achatz</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Baltruschat</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fodor</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>The endophytic fungus
<italic>Piriformospora indica</italic>
reprograms barley to salt-stress tolerance, disease resistance, and higher yield.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>102</volume>
<fpage>13386</fpage>
<lpage>13391</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0504423102</pub-id>
<pub-id pub-id-type="pmid">16174735</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Serino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>X. W.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>The COP9 signalosome: more than a protease.</article-title>
<source>
<italic>Trends Biochem. Sci.</italic>
</source>
<volume>33</volume>
<fpage>592</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibs.2008.09.004</pub-id>
<pub-id pub-id-type="pmid">18926707</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zamioudis</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pieterse</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Modulation of host immunity by beneficial microbes.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>25</volume>
<fpage>139</fpage>
<lpage>150</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-06-11-0179</pub-id>
<pub-id pub-id-type="pmid">21995763</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zuccaro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lahrmann</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Guldener</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Langen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pfiffi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Biedenkopf</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont
<italic>Piriformospora indica</italic>
.</article-title>
<source>
<italic>PLoS Pathog.</italic>
</source>
<volume>7</volume>
:
<issue>e1002290</issue>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002290</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C06  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000C06  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020