Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000B680 ( Pmc/Corpus ); précédent : 000B679; suivant : 000B681 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peroxiredoxins in Plants and Cyanobacteria</title>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21194355</idno>
<idno type="pmc">3135184</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135184</idno>
<idno type="RBID">PMC:3135184</idno>
<idno type="doi">10.1089/ars.2010.3657</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000B68</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Peroxiredoxins in Plants and Cyanobacteria</title>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & Redox Signaling</title>
<idno type="ISSN">1523-0864</idno>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H
<sub>2</sub>
O
<sub>2</sub>
, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
<italic>Antioxid. Redox Signal.</italic>
15, 1129–1159.</p>
</div>
</front>
</TEI>
<pmc article-type="review-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Antioxid Redox Signal</journal-id>
<journal-id journal-id-type="publisher-id">ars</journal-id>
<journal-title-group>
<journal-title>Antioxidants & Redox Signaling</journal-title>
</journal-title-group>
<issn pub-type="ppub">1523-0864</issn>
<issn pub-type="epub">1557-7716</issn>
<publisher>
<publisher-name>Mary Ann Liebert, Inc.</publisher-name>
<publisher-loc>140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21194355</article-id>
<article-id pub-id-type="pmc">3135184</article-id>
<article-id pub-id-type="publisher-id">10.1089/ars.2010.3657</article-id>
<article-id pub-id-type="doi">10.1089/ars.2010.3657</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Comprehensive Invited Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Peroxiredoxins in Plants and Cyanobacteria</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Dietz</surname>
<given-names>Karl-Josef</given-names>
</name>
</contrib>
<aff id="aff1">Department of Biochemistry and Physiology of Plants,
<institution>Bielefeld University</institution>
, Bielefeld,
<country>Germany</country>
.</aff>
</contrib-group>
<author-notes>
<corresp>Address correspondence to:
<italic>Prof. Karl-Josef Dietz, Department of Biochemistry and Physiology of Plants, Bielefeld University, University St. 25, Bielefeld 33501, Germany. E-mail:</italic>
<email xlink:href="mailto:karl-josef.dietz@uni-bielefeld.de">karl-josef.dietz@uni-bielefeld.de</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>15</day>
<month>8</month>
<year>2011</year>
<pmc-comment>string-date: August 15, 2011</pmc-comment>
</pub-date>
<pub-date pub-type="pmc-release">
<day>15</day>
<month>8</month>
<year>2011</year>
<pmc-comment>string-date: August 15, 2011</pmc-comment>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>15</volume>
<issue>4</issue>
<fpage>1129</fpage>
<lpage>1159</lpage>
<history>
<date date-type="received">
<day>25</day>
<month>9</month>
<year>2010</year>
<pmc-comment>string-date: Date of first submission to ARS Central, September 25, 2010</pmc-comment>
</date>
<date date-type="rev-recd">
<day>15</day>
<month>12</month>
<year>2010</year>
<pmc-comment>string-date: date of final revised submission, December 15, 2010</pmc-comment>
</date>
<date date-type="accepted">
<day>01</day>
<month>1</month>
<year>2011</year>
<pmc-comment>string-date: date of acceptance, January 1, 2011</pmc-comment>
</date>
</history>
<permissions>
<copyright-statement>Copyright 2011, Mary Ann Liebert, Inc.</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<self-uri xlink:type="simple" xlink:href="ars.2010.3657.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H
<sub>2</sub>
O
<sub>2</sub>
, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
<italic>Antioxid. Redox Signal.</italic>
15, 1129–1159.</p>
</abstract>
<abstract abstract-type="article-toc">
<list list-type="simple">
<list-item>
<p>
<xref rid="s001" ref-type="sec">I. Introduction</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s002" ref-type="sec">II. Classification of Plant Prxs and Their Distribution in Plants and Cyanobacteria</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s003" ref-type="sec">III. Peroxidase Activity of Peroxiredoxins</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s004" ref-type="sec">IV. Conformational Dynamics and Interacting Partners of Prx
<italic>In Vitro</italic>
and
<italic>In Vivo</italic>
</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s005" ref-type="sec">V. Typical 2-Cys Peroxiredoxins</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref rid="s006" ref-type="sec">A. Characteristics of 2-CysPrxs</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s007" ref-type="sec">B. Reduction of oxidized 2-CysPrx</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s008" ref-type="sec">C. Consequences of 2-CysPrx deficiency</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref rid="s009" ref-type="sec">VI. Peroxiredoxin Q, an Atypical 2-CysPrx of Chloroplasts and Cyanobacteria</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s010" ref-type="sec">VII. 1-Cysteine Peroxiredoxin</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s011" ref-type="sec">VIII. Type II Peroxiredoxins, the Most Widely Distributed Atypical 2-CysPrxs in Plants</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref rid="s012" ref-type="sec">A. Principle features of type II Prx</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s013" ref-type="sec">B. Cytosolic PrxII</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s014" ref-type="sec">C. Plastid PrxIIE</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s015" ref-type="sec">D. Mitochondrial PrxIIF</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s016" ref-type="sec">E. Cyanobacterial type II Prx</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref rid="s017" ref-type="sec">IX. Plant Glutathione Peroxidases</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s018" ref-type="sec">X. Posttranslational Regulation of Peroxiredoxin Activities</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref rid="s019" ref-type="sec">A. Hyperoxidation and sulfiredoxin</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s020" ref-type="sec">B. Nitrosylation</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s021" ref-type="sec">C. Other posttranslational Prx modifications</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref rid="s022" ref-type="sec">XI. Role of Peroxiredoxins in Plant Metabolism</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref rid="s023" ref-type="sec">A. Plastids and photosynthesis</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s024" ref-type="sec">B. Mitochondria and respiration</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref rid="s025" ref-type="sec">XII. Peroxiredoxins as Chaperone and in Plant Redox Signaling</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref rid="s026" ref-type="sec">A. Prx as chaperone</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s027" ref-type="sec">B. Prx in ROS-dependent signaling</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s028" ref-type="sec">C. Prx in RNS-dependent signaling</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref rid="s029" ref-type="sec">XIII. Regulation of Peroxiredoxin Gene Expression</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref rid="s030" ref-type="sec">A. Basal pattern of Prx expression and developmental control</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s031" ref-type="sec">B. Regulation of plastid Prx expression by retrograde signaling</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s032" ref-type="sec">C. Stress-dependent regulation</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref rid="s033" ref-type="sec">XIV. Additional Functions of Peroxiredoxins in Plants</xref>
</p>
</list-item>
<list-item>
<p>
<xref rid="s034" ref-type="sec">XV. Outlook</xref>
</p>
</list-item>
</list>
</abstract>
<counts>
<fig-count count="16"></fig-count>
<table-count count="2"></table-count>
<ref-count count="187"></ref-count>
<page-count count="31"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B680 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B680 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020