Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000B26 ( Pmc/Corpus ); précédent : 000B259; suivant : 000B270 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unravelling species boundaries in the
<italic>Aspergillus viridinutans</italic>
complex (section
<italic>Fumigati</italic>
): opportunistic human and animal pathogens capable of interspecific hybridization</title>
<author>
<name sortKey="Hubka, V" sort="Hubka, V" uniqKey="Hubka V" first="V." last="Hubka">V. Hubka</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrs, V" sort="Barrs, V" uniqKey="Barrs V" first="V." last="Barrs">V. Barrs</name>
<affiliation>
<nlm:aff id="A4">Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dudova, Z" sort="Dudova, Z" uniqKey="Dudova Z" first="Z." last="Dudová">Z. Dudová</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sklena, F" sort="Sklena, F" uniqKey="Sklena F" first="F." last="Sklená">F. Sklená</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kubatova, A" sort="Kubatova, A" uniqKey="Kubatova A" first="A." last="Kubátová">A. Kubátová</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsuzawa, T" sort="Matsuzawa, T" uniqKey="Matsuzawa T" first="T." last="Matsuzawa">T. Matsuzawa</name>
<affiliation>
<nlm:aff id="A5">University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yaguchi, T" sort="Yaguchi, T" uniqKey="Yaguchi T" first="T." last="Yaguchi">T. Yaguchi</name>
<affiliation>
<nlm:aff id="A6">Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Horie, Y" sort="Horie, Y" uniqKey="Horie Y" first="Y." last="Horie">Y. Horie</name>
<affiliation>
<nlm:aff id="A6">Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Novakova, A" sort="Novakova, A" uniqKey="Novakova A" first="A." last="Nováková">A. Nováková</name>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frisvad, J C" sort="Frisvad, J C" uniqKey="Frisvad J" first="J. C." last="Frisvad">J. C. Frisvad</name>
<affiliation>
<nlm:aff id="A7">Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Talbot, J J" sort="Talbot, J J" uniqKey="Talbot J" first="J. J." last="Talbot">J. J. Talbot</name>
<affiliation>
<nlm:aff id="A4">Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kola K, M" sort="Kola K, M" uniqKey="Kola K M" first="M." last="Kola K">M. Kola K</name>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30728603</idno>
<idno type="pmc">6344812</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344812</idno>
<idno type="RBID">PMC:6344812</idno>
<idno type="doi">10.3767/persoonia.2018.41.08</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000B26</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Unravelling species boundaries in the
<italic>Aspergillus viridinutans</italic>
complex (section
<italic>Fumigati</italic>
): opportunistic human and animal pathogens capable of interspecific hybridization</title>
<author>
<name sortKey="Hubka, V" sort="Hubka, V" uniqKey="Hubka V" first="V." last="Hubka">V. Hubka</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrs, V" sort="Barrs, V" uniqKey="Barrs V" first="V." last="Barrs">V. Barrs</name>
<affiliation>
<nlm:aff id="A4">Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dudova, Z" sort="Dudova, Z" uniqKey="Dudova Z" first="Z." last="Dudová">Z. Dudová</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sklena, F" sort="Sklena, F" uniqKey="Sklena F" first="F." last="Sklená">F. Sklená</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kubatova, A" sort="Kubatova, A" uniqKey="Kubatova A" first="A." last="Kubátová">A. Kubátová</name>
<affiliation>
<nlm:aff id="A1">Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsuzawa, T" sort="Matsuzawa, T" uniqKey="Matsuzawa T" first="T." last="Matsuzawa">T. Matsuzawa</name>
<affiliation>
<nlm:aff id="A5">University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yaguchi, T" sort="Yaguchi, T" uniqKey="Yaguchi T" first="T." last="Yaguchi">T. Yaguchi</name>
<affiliation>
<nlm:aff id="A6">Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Horie, Y" sort="Horie, Y" uniqKey="Horie Y" first="Y." last="Horie">Y. Horie</name>
<affiliation>
<nlm:aff id="A6">Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Novakova, A" sort="Novakova, A" uniqKey="Novakova A" first="A." last="Nováková">A. Nováková</name>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frisvad, J C" sort="Frisvad, J C" uniqKey="Frisvad J" first="J. C." last="Frisvad">J. C. Frisvad</name>
<affiliation>
<nlm:aff id="A7">Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Talbot, J J" sort="Talbot, J J" uniqKey="Talbot J" first="J. J." last="Talbot">J. J. Talbot</name>
<affiliation>
<nlm:aff id="A4">Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kola K, M" sort="Kola K, M" uniqKey="Kola K M" first="M." last="Kola K">M. Kola K</name>
<affiliation>
<nlm:aff id="A2">Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Persoonia : Molecular Phylogeny and Evolution of Fungi</title>
<idno type="ISSN">0031-5850</idno>
<idno type="eISSN">1878-9080</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Although
<italic>Aspergillus fumigatus</italic>
is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially
<italic>A. lentulus</italic>
and the
<italic>A. viridinutans</italic>
species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids
<italic>in vitro</italic>
. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens;
<italic>A. udagawae</italic>
followed by
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
are known from opportunistic human infections, while
<italic> A. felis</italic>
followed by
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species
<italic>A. parafelis</italic>
and
<italic>A. pseudofelis</italic>
are synonymized with
<italic>A. felis</italic>
and an epitype is designated for
<italic>A. udagawae</italic>
. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs
<italic>in vitro</italic>
. Interspecific mating assays revealed that five different species combinations were biologically compatible
<italic>.</italic>
Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic species complexes. MSC-based delimitation methods are robust and suitable tools for evaluation of boundaries between these species.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Alanio, A" uniqKey="Alanio A">A Alanio</name>
</author>
<author>
<name sortKey="Beretti, J L" uniqKey="Beretti J">J-L Beretti</name>
</author>
<author>
<name sortKey="Dauphin, B" uniqKey="Dauphin B">B Dauphin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alastruey Izquierdo, A" uniqKey="Alastruey Izquierdo A">A Alastruey-Izquierdo</name>
</author>
<author>
<name sortKey="Mellado, E" uniqKey="Mellado E">E Mellado</name>
</author>
<author>
<name sortKey="Pelaez, T" uniqKey="Pelaez T">T Peláez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alcazar Fuoli, L" uniqKey="Alcazar Fuoli L">L Alcazar-Fuoli</name>
</author>
<author>
<name sortKey="Mellado, E" uniqKey="Mellado E">E Mellado</name>
</author>
<author>
<name sortKey="Alastruey Izquierdo, A" uniqKey="Alastruey Izquierdo A">A Alastruey-Izquierdo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aminnejad, M" uniqKey="Aminnejad M">M Aminnejad</name>
</author>
<author>
<name sortKey="Diaz, M" uniqKey="Diaz M">M Diaz</name>
</author>
<author>
<name sortKey="Arabatzis, M" uniqKey="Arabatzis M">M Arabatzis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anzawa, K" uniqKey="Anzawa K">K Anzawa</name>
</author>
<author>
<name sortKey="Kawasaki, M" uniqKey="Kawasaki M">M Kawasaki</name>
</author>
<author>
<name sortKey="Mochizuki, T" uniqKey="Mochizuki T">T Mochizuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arabatzis, M" uniqKey="Arabatzis M">M Arabatzis</name>
</author>
<author>
<name sortKey="Velegraki, A" uniqKey="Velegraki A">A Velegraki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Araujo, R" uniqKey="Araujo R">R Araujo</name>
</author>
<author>
<name sortKey="Amorim, A" uniqKey="Amorim A">A Amorim</name>
</author>
<author>
<name sortKey="Gusmao, L" uniqKey="Gusmao L">L. Gusmão</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balajee, Sa" uniqKey="Balajee S">SA Balajee</name>
</author>
<author>
<name sortKey="Gribskov, J" uniqKey="Gribskov J">J Gribskov</name>
</author>
<author>
<name sortKey="Brandt, M" uniqKey="Brandt M">M Brandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balajee, Sa" uniqKey="Balajee S">SA Balajee</name>
</author>
<author>
<name sortKey="Gribskov, Jl" uniqKey="Gribskov J">JL Gribskov</name>
</author>
<author>
<name sortKey="Hanley, E" uniqKey="Hanley E">E Hanley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balajee, Sa" uniqKey="Balajee S">SA Balajee</name>
</author>
<author>
<name sortKey="Kano, R" uniqKey="Kano R">R Kano</name>
</author>
<author>
<name sortKey="Baddley, Jw" uniqKey="Baddley J">JW Baddley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balajee, Sa" uniqKey="Balajee S">SA Balajee</name>
</author>
<author>
<name sortKey="Nickle, D" uniqKey="Nickle D">D Nickle</name>
</author>
<author>
<name sortKey="Varga, J" uniqKey="Varga J">J Varga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrs, V" uniqKey="Barrs V">V Barrs</name>
</author>
<author>
<name sortKey="Beatty, J" uniqKey="Beatty J">J Beatty</name>
</author>
<author>
<name sortKey="Dhand, Nk" uniqKey="Dhand N">NK Dhand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrs, Vr" uniqKey="Barrs V">VR Barrs</name>
</author>
<author>
<name sortKey="Halliday, C" uniqKey="Halliday C">C Halliday</name>
</author>
<author>
<name sortKey="Martin, P" uniqKey="Martin P">P Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrs, Vr" uniqKey="Barrs V">VR Barrs</name>
</author>
<author>
<name sortKey="Van Doorn, Tm" uniqKey="Van Doorn T">TM Van Doorn</name>
</author>
<author>
<name sortKey="Houbraken, J" uniqKey="Houbraken J">J Houbraken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouckaert, Rr" uniqKey="Bouckaert R">RR Bouckaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouckaert, R R" uniqKey="Bouckaert R">R[R] Bouckaert</name>
</author>
<author>
<name sortKey="Heled, J" uniqKey="Heled J">J Heled</name>
</author>
<author>
<name sortKey="Kuhnert, D" uniqKey="Kuhnert D">D Kühnert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bovers, M" uniqKey="Bovers M">M Bovers</name>
</author>
<author>
<name sortKey="Hagen, F" uniqKey="Hagen F">F Hagen</name>
</author>
<author>
<name sortKey="Kuramae, Ee" uniqKey="Kuramae E">EE Kuramae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bovers, M" uniqKey="Bovers M">M Bovers</name>
</author>
<author>
<name sortKey="Hagen, F" uniqKey="Hagen F">F Hagen</name>
</author>
<author>
<name sortKey="Kuramae, Ee" uniqKey="Kuramae E">EE Kuramae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowden, Rl" uniqKey="Bowden R">RL Bowden</name>
</author>
<author>
<name sortKey="Leslie, Jf" uniqKey="Leslie J">JF Leslie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brasier, Cm" uniqKey="Brasier C">CM Brasier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brasier, Cm" uniqKey="Brasier C">CM Brasier</name>
</author>
<author>
<name sortKey="Kirk, Sa" uniqKey="Kirk S">SA Kirk</name>
</author>
<author>
<name sortKey="Pipe, Nd" uniqKey="Pipe N">ND Pipe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbone, I" uniqKey="Carbone I">I Carbone</name>
</author>
<author>
<name sortKey="Kohn, Lm" uniqKey="Kohn L">LM Kohn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carstens, Bc" uniqKey="Carstens B">BC Carstens</name>
</author>
<author>
<name sortKey="Pelletier, Ta" uniqKey="Pelletier T">TA Pelletier</name>
</author>
<author>
<name sortKey="Reid, Nm" uniqKey="Reid N">NM Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlton, Nd" uniqKey="Charlton N">ND Charlton</name>
</author>
<author>
<name sortKey="Craven, Kd" uniqKey="Craven K">KD Craven</name>
</author>
<author>
<name sortKey="Afkhami, Me" uniqKey="Afkhami M">ME Afkhami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, A" uniqKey="Chen A">A Chen</name>
</author>
<author>
<name sortKey="Frisvad, J" uniqKey="Frisvad J">J Frisvad</name>
</author>
<author>
<name sortKey="Sun, B" uniqKey="Sun B">B Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, A" uniqKey="Chen A">A Chen</name>
</author>
<author>
<name sortKey="Varga, J" uniqKey="Varga J">J Varga</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Aj" uniqKey="Chen A">AJ Chen</name>
</author>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chong, Gm" uniqKey="Chong G">GM Chong</name>
</author>
<author>
<name sortKey="Vonk, Ag" uniqKey="Vonk A">AG Vonk</name>
</author>
<author>
<name sortKey="Meis, Jf" uniqKey="Meis J">JF Meis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coelho, D" uniqKey="Coelho D">D Coelho</name>
</author>
<author>
<name sortKey="Silva, S" uniqKey="Silva S">S Silva</name>
</author>
<author>
<name sortKey="Vale Silva, L" uniqKey="Vale Silva L">L Vale-Silva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cox, Mp" uniqKey="Cox M">MP Cox</name>
</author>
<author>
<name sortKey="Dong, T" uniqKey="Dong T">T Dong</name>
</author>
<author>
<name sortKey="Shen, G" uniqKey="Shen G">G Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Damann, K" uniqKey="Damann K">K Damann</name>
</author>
<author>
<name sortKey="Derobertis, C" uniqKey="Derobertis C">C DeRobertis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degnan, Jh" uniqKey="Degnan J">JH Degnan</name>
</author>
<author>
<name sortKey="Rosenberg, Na" uniqKey="Rosenberg N">NA Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Depotter, Jr" uniqKey="Depotter J">JR Depotter</name>
</author>
<author>
<name sortKey="Seidl, Mf" uniqKey="Seidl M">MF Seidl</name>
</author>
<author>
<name sortKey="Wood, Ta" uniqKey="Wood T">TA Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dettman, Jr" uniqKey="Dettman J">JR Dettman</name>
</author>
<author>
<name sortKey="Jacobson, Dj" uniqKey="Jacobson D">DJ Jacobson</name>
</author>
<author>
<name sortKey="Taylor, Jw" uniqKey="Taylor J">JW. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dettman, Jr" uniqKey="Dettman J">JR Dettman</name>
</author>
<author>
<name sortKey="Jacobson, Dj" uniqKey="Jacobson D">DJ Jacobson</name>
</author>
<author>
<name sortKey="Turner, E" uniqKey="Turner E">E Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickie, Ia" uniqKey="Dickie I">IA Dickie</name>
</author>
<author>
<name sortKey="Bufford, Jl" uniqKey="Bufford J">JL Bufford</name>
</author>
<author>
<name sortKey="Cobb, Rc" uniqKey="Cobb R">RC Cobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Domsch, Kh" uniqKey="Domsch K">KH Domsch</name>
</author>
<author>
<name sortKey="Gams, W" uniqKey="Gams W">W Gams</name>
</author>
<author>
<name sortKey="Anderson, T H" uniqKey="Anderson T">T-H. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyer, Ps" uniqKey="Dyer P">PS Dyer</name>
</author>
<author>
<name sortKey="O Orman, Cm" uniqKey="O Orman C">CM O’Gorman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eamvijarn, A" uniqKey="Eamvijarn A">A Eamvijarn</name>
</author>
<author>
<name sortKey="Manoch, L" uniqKey="Manoch L">L Manoch</name>
</author>
<author>
<name sortKey="Chamswarng, C" uniqKey="Chamswarng C">C Chamswarng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Molina, Jv" uniqKey="Fernandez Molina J">JV Fernandez-Molina</name>
</author>
<author>
<name sortKey="Abad Diaz De Cerio, A" uniqKey="Abad Diaz De Cerio A">A Abad-Diaz-de-Cerio</name>
</author>
<author>
<name sortKey="Sueiro Olivares, M" uniqKey="Sueiro Olivares M">M Sueiro-Olivares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flot, J F" uniqKey="Flot J">J-F Flot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontaneto, D" uniqKey="Fontaneto D">D Fontaneto</name>
</author>
<author>
<name sortKey="Flot, J F" uniqKey="Flot J">J-F Flot</name>
</author>
<author>
<name sortKey="Tang, Cq" uniqKey="Tang C">CQ. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
<author>
<name sortKey="Larsen, To" uniqKey="Larsen T">TO Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
<author>
<name sortKey="Larsen, To" uniqKey="Larsen T">TO Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
<author>
<name sortKey="Thrane, U" uniqKey="Thrane U">U Thrane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
<author>
<name sortKey="Thrane, U" uniqKey="Thrane U">U Thrane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujisawa, T" uniqKey="Fujisawa T">T Fujisawa</name>
</author>
<author>
<name sortKey="Barraclough, Tg" uniqKey="Barraclough T">TG Barraclough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gale, Lr" uniqKey="Gale L">LR Gale</name>
</author>
<author>
<name sortKey="Bryant, J" uniqKey="Bryant J">J Bryant</name>
</author>
<author>
<name sortKey="Calvo, S" uniqKey="Calvo S">S Calvo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gautier, M" uniqKey="Gautier M">M Gautier</name>
</author>
<author>
<name sortKey="Normand, A C" uniqKey="Normand A">A-C Normand</name>
</author>
<author>
<name sortKey="Ranque, S" uniqKey="Ranque S">S. Ranque</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gladieux, P" uniqKey="Gladieux P">P Gladieux</name>
</author>
<author>
<name sortKey="Vercken, E" uniqKey="Vercken E">E Vercken</name>
</author>
<author>
<name sortKey="Fontaine, Mc" uniqKey="Fontaine M">MC Fontaine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glass, Nl" uniqKey="Glass N">NL Glass</name>
</author>
<author>
<name sortKey="Donaldson, Gc" uniqKey="Donaldson G">GC Donaldson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonthier, P" uniqKey="Gonthier P">P Gonthier</name>
</author>
<author>
<name sortKey="Nicolotti, G" uniqKey="Nicolotti G">G Nicolotti</name>
</author>
<author>
<name sortKey="Linzer, R" uniqKey="Linzer R">R Linzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez, Ss" uniqKey="Gonzalez S">SS González</name>
</author>
<author>
<name sortKey="Barrio, E" uniqKey="Barrio E">E Barrio</name>
</author>
<author>
<name sortKey="Querol, A" uniqKey="Querol A">A Querol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heled, J" uniqKey="Heled J">J Heled</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horie, Y" uniqKey="Horie Y">Y Horie</name>
</author>
<author>
<name sortKey="Miyaji, M" uniqKey="Miyaji M">M Miyaji</name>
</author>
<author>
<name sortKey="Nishimura, K" uniqKey="Nishimura K">K Nishimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horn, Bw" uniqKey="Horn B">BW Horn</name>
</author>
<author>
<name sortKey="Moore, Gg" uniqKey="Moore G">GG Moore</name>
</author>
<author>
<name sortKey="Carbone, I" uniqKey="Carbone I">I. Carbone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horn, Bw" uniqKey="Horn B">BW Horn</name>
</author>
<author>
<name sortKey="Moore, Gg" uniqKey="Moore G">GG Moore</name>
</author>
<author>
<name sortKey="Carbone, I" uniqKey="Carbone I">I. Carbone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horn, Bw" uniqKey="Horn B">BW Horn</name>
</author>
<author>
<name sortKey="Olarte, Ra" uniqKey="Olarte R">RA Olarte</name>
</author>
<author>
<name sortKey="Peterson, Sw" uniqKey="Peterson S">SW Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horn, Bw" uniqKey="Horn B">BW Horn</name>
</author>
<author>
<name sortKey="Ramirez Prado, Jh" uniqKey="Ramirez Prado J">JH Ramirez-Prado</name>
</author>
<author>
<name sortKey="Carbone, I" uniqKey="Carbone I">I. Carbone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hothorn, T" uniqKey="Hothorn T">T Hothorn</name>
</author>
<author>
<name sortKey="Bretz, F" uniqKey="Bretz F">F Bretz</name>
</author>
<author>
<name sortKey="Westfall, P" uniqKey="Westfall P">P. Westfall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houbraken, J" uniqKey="Houbraken J">J Houbraken</name>
</author>
<author>
<name sortKey="Spierenburg, H" uniqKey="Spierenburg H">H Spierenburg</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC. Frisvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Dudova, Z" uniqKey="Dudova Z">Z Dudová</name>
</author>
<author>
<name sortKey="Kubatova, A" uniqKey="Kubatova A">A Kubátová</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Kola K, M" uniqKey="Kola K M">M Kolařík</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Kola K, M" uniqKey="Kola K M">M Kolařík</name>
</author>
<author>
<name sortKey="Kubatova, A" uniqKey="Kubatova A">A Kubátová</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Kubatova, A" uniqKey="Kubatova A">A Kubatova</name>
</author>
<author>
<name sortKey="Mallatova, N" uniqKey="Mallatova N">N Mallatova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Nissen, C" uniqKey="Nissen C">C Nissen</name>
</author>
<author>
<name sortKey="Jensen, R" uniqKey="Jensen R">R Jensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Novakova, A" uniqKey="Novakova A">A Nováková</name>
</author>
<author>
<name sortKey="Jurjevi, Z" uniqKey="Jurjevi Z">Ž Jurjević</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Novakova, A" uniqKey="Novakova A">A Nováková</name>
</author>
<author>
<name sortKey="Kola K, M" uniqKey="Kola K M">M Kolařík</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Novakova, A" uniqKey="Novakova A">A Nováková</name>
</author>
<author>
<name sortKey="Peterson, Sw" uniqKey="Peterson S">SW Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Novakova, A" uniqKey="Novakova A">A Nováková</name>
</author>
<author>
<name sortKey="Samson, R" uniqKey="Samson R">R Samson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Peterson, Sw" uniqKey="Peterson S">SW Peterson</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inderbitzin, P" uniqKey="Inderbitzin P">P Inderbitzin</name>
</author>
<author>
<name sortKey="Davis, Rm" uniqKey="Davis R">RM Davis</name>
</author>
<author>
<name sortKey="Bostock, Rm" uniqKey="Bostock R">RM Bostock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Sm" uniqKey="Johnson S">SM Johnson</name>
</author>
<author>
<name sortKey="Carlson, El" uniqKey="Carlson E">EL Carlson</name>
</author>
<author>
<name sortKey="Pappagianis, D" uniqKey="Pappagianis D">D. Pappagianis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, G" uniqKey="Jones G">G Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurgenson, J" uniqKey="Jurgenson J">J Jurgenson</name>
</author>
<author>
<name sortKey="Bowden, R" uniqKey="Bowden R">R Bowden</name>
</author>
<author>
<name sortKey="Zeller, K" uniqKey="Zeller K">K Zeller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurjevi, Z" uniqKey="Jurjevi Z">Ž Jurjević</name>
</author>
<author>
<name sortKey="Kubatova, A" uniqKey="Kubatova A">A Kubátová</name>
</author>
<author>
<name sortKey="Kola K, M" uniqKey="Kola K M">M Kolařík</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapli, P" uniqKey="Kapli P">P Kapli</name>
</author>
<author>
<name sortKey="Lutteropp, S" uniqKey="Lutteropp S">S Lutteropp</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K Katoh</name>
</author>
<author>
<name sortKey="Standley, Dm" uniqKey="Standley D">DM Standley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katz, Me" uniqKey="Katz M">ME Katz</name>
</author>
<author>
<name sortKey="Dougall, Am" uniqKey="Dougall A">AM Dougall</name>
</author>
<author>
<name sortKey="Weeks, K" uniqKey="Weeks K">K Weeks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawasaki, M" uniqKey="Kawasaki M">M Kawasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawasaki, M" uniqKey="Kawasaki M">M Kawasaki</name>
</author>
<author>
<name sortKey="Anzawa, K" uniqKey="Anzawa K">K Anzawa</name>
</author>
<author>
<name sortKey="Mochizuki, T" uniqKey="Mochizuki T">T Mochizuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawasaki, M" uniqKey="Kawasaki M">M Kawasaki</name>
</author>
<author>
<name sortKey="Anzawa, K" uniqKey="Anzawa K">K Anzawa</name>
</author>
<author>
<name sortKey="Wakasa, A" uniqKey="Wakasa A">A Wakasa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly, Kl" uniqKey="Kelly K">KL Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klich, Ma" uniqKey="Klich M">MA Klich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kocsube, S" uniqKey="Kocsube S">S Kocsubé</name>
</author>
<author>
<name sortKey="Perrone, G" uniqKey="Perrone G">G Perrone</name>
</author>
<author>
<name sortKey="Magista, D" uniqKey="Magista D">D Magistà</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kretzer, A" uniqKey="Kretzer A">A Kretzer</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Szaro, T" uniqKey="Szaro T">T Szaro</name>
</author>
<author>
<name sortKey="Bruns, Td" uniqKey="Bruns T">TD Bruns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kubatko, Ls" uniqKey="Kubatko L">LS Kubatko</name>
</author>
<author>
<name sortKey="Degnan, Jh" uniqKey="Degnan J">JH Degnan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon Chung, Kj" uniqKey="Kwon Chung K">KJ Kwon-Chung</name>
</author>
<author>
<name sortKey="Bennett, Je" uniqKey="Bennett J">JE Bennett</name>
</author>
<author>
<name sortKey="Wickes, Bl" uniqKey="Wickes B">BL Wickes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon Chung, Kj" uniqKey="Kwon Chung K">KJ Kwon-Chung</name>
</author>
<author>
<name sortKey="Sugui, Ja" uniqKey="Sugui J">JA Sugui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon Chung, Kj" uniqKey="Kwon Chung K">KJ Kwon-Chung</name>
</author>
<author>
<name sortKey="Varma, A" uniqKey="Varma A">A Varma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lanfear, R" uniqKey="Lanfear R">R Lanfear</name>
</author>
<author>
<name sortKey="Frandsen, Pb" uniqKey="Frandsen P">PB Frandsen</name>
</author>
<author>
<name sortKey="Wright, Am" uniqKey="Wright A">AM Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leache, Ad" uniqKey="Leache A">AD Leaché</name>
</author>
<author>
<name sortKey="Fujita, Mk" uniqKey="Fujita M">MK Fujita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Sc" uniqKey="Lee S">SC Lee</name>
</author>
<author>
<name sortKey="Ni, M" uniqKey="Ni M">M Ni</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
<author>
<name sortKey="Damm, U" uniqKey="Damm U">U Damm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Yj" uniqKey="Liu Y">YJ Liu</name>
</author>
<author>
<name sortKey="Whelen, S" uniqKey="Whelen S">S Whelen</name>
</author>
<author>
<name sortKey="Hall, Bd" uniqKey="Hall B">BD. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lockman, B" uniqKey="Lockman B">B Lockman</name>
</author>
<author>
<name sortKey="Mascheretti, S" uniqKey="Mascheretti S">S Mascheretti</name>
</author>
<author>
<name sortKey="Schechter, S" uniqKey="Schechter S">S Schechter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Louis, Vl" uniqKey="Louis V">VL Louis</name>
</author>
<author>
<name sortKey="Despons, L" uniqKey="Despons L">L Despons</name>
</author>
<author>
<name sortKey="Friedrich, A" uniqKey="Friedrich A">A Friedrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lyskova, P" uniqKey="Lyskova P">P Lyskova</name>
</author>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Svobodova, L" uniqKey="Svobodova L">L Svobodova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinelli, L" uniqKey="Martinelli L">L Martinelli</name>
</author>
<author>
<name sortKey="Zalar, P" uniqKey="Zalar P">P Zalar</name>
</author>
<author>
<name sortKey="Gunde Cimerman, N" uniqKey="Gunde Cimerman N">N Gunde-Cimerman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuzawa, T" uniqKey="Matsuzawa T">T Matsuzawa</name>
</author>
<author>
<name sortKey="Takaki, Gmc" uniqKey="Takaki G">GMC Takaki</name>
</author>
<author>
<name sortKey="Yaguchi, T" uniqKey="Yaguchi T">T Yaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayr, A" uniqKey="Mayr A">A Mayr</name>
</author>
<author>
<name sortKey="Lass Florl, C" uniqKey="Lass Florl C">C Lass-Flörl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mclennan, Ei" uniqKey="Mclennan E">EI McLennan</name>
</author>
<author>
<name sortKey="Tucker, S" uniqKey="Tucker S">S Tucker</name>
</author>
<author>
<name sortKey="Thrower, L" uniqKey="Thrower L">L. Thrower</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehrabi, R" uniqKey="Mehrabi R">R Mehrabi</name>
</author>
<author>
<name sortKey="Bahkali, Ah" uniqKey="Bahkali A">AH Bahkali</name>
</author>
<author>
<name sortKey="Abd Elsalam, Ka" uniqKey="Abd Elsalam K">KA Abd-Elsalam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, V" uniqKey="Meyer V">V Meyer</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B Wu</name>
</author>
<author>
<name sortKey="Ram, Af" uniqKey="Ram A">AF. Ram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mixao, V" uniqKey="Mixao V">V Mixão</name>
</author>
<author>
<name sortKey="Gabald N, T" uniqKey="Gabald N T">T Gabaldón</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S Nakamura</name>
</author>
<author>
<name sortKey="Sato, H" uniqKey="Sato H">H Sato</name>
</author>
<author>
<name sortKey="Tanaka, R" uniqKey="Tanaka R">R Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakao, Y" uniqKey="Nakao Y">Y Nakao</name>
</author>
<author>
<name sortKey="Kanamori, T" uniqKey="Kanamori T">T Kanamori</name>
</author>
<author>
<name sortKey="Itoh, T" uniqKey="Itoh T">T Itoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nauta, M" uniqKey="Nauta M">M Nauta</name>
</author>
<author>
<name sortKey="Hoekstra, R" uniqKey="Hoekstra R">R Hoekstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Negri, C" uniqKey="Negri C">C Negri</name>
</author>
<author>
<name sortKey="Goncalves, S" uniqKey="Goncalves S">S Gonçalves</name>
</author>
<author>
<name sortKey="Xafranski, H" uniqKey="Xafranski H">H Xafranski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newcombe, G" uniqKey="Newcombe G">G Newcombe</name>
</author>
<author>
<name sortKey="Stirling, B" uniqKey="Stirling B">B Stirling</name>
</author>
<author>
<name sortKey="Mcdonald, S" uniqKey="Mcdonald S">S McDonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, L T" uniqKey="Nguyen L">L-T Nguyen</name>
</author>
<author>
<name sortKey="Schmidt, Ha" uniqKey="Schmidt H">HA Schmidt</name>
</author>
<author>
<name sortKey="Von Haeseler, A" uniqKey="Von Haeseler A">A Von Haeseler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nielsen, Kf" uniqKey="Nielsen K">KF Nielsen</name>
</author>
<author>
<name sortKey="M Nsson, M" uniqKey="M Nsson M">M Månsson</name>
</author>
<author>
<name sortKey="Rank, C" uniqKey="Rank C">C Rank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novakova, A" uniqKey="Novakova A">A Nováková</name>
</author>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Dudova, Z" uniqKey="Dudova Z">Z Dudová</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Onnell, K" uniqKey="O Onnell K">K O’Donnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Onnell, K" uniqKey="O Onnell K">K O’Donnell</name>
</author>
<author>
<name sortKey="Ward, Tj" uniqKey="Ward T">TJ Ward</name>
</author>
<author>
<name sortKey="Geiser, Dm" uniqKey="Geiser D">DM Geiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Orman, Cm" uniqKey="O Orman C">CM O’Gorman</name>
</author>
<author>
<name sortKey="Fuller, Ht" uniqKey="Fuller H">HT Fuller</name>
</author>
<author>
<name sortKey="Dyer, Ps" uniqKey="Dyer P">PS Dyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olarte, Ra" uniqKey="Olarte R">RA Olarte</name>
</author>
<author>
<name sortKey="Worthington, Cj" uniqKey="Worthington C">CJ Worthington</name>
</author>
<author>
<name sortKey="Horn, Bw" uniqKey="Horn B">BW Horn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Sw" uniqKey="Peterson S">SW Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Sw" uniqKey="Peterson S">SW Peterson</name>
</author>
<author>
<name sortKey="Jurjevi, Z" uniqKey="Jurjevi Z">Ž Jurjević</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitt, Ji" uniqKey="Pitt J">JI Pitt</name>
</author>
<author>
<name sortKey="Hocking, Ad" uniqKey="Hocking A">AD Hocking</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pujol, C" uniqKey="Pujol C">C Pujol</name>
</author>
<author>
<name sortKey="Daniels, Kj" uniqKey="Daniels K">KJ Daniels</name>
</author>
<author>
<name sortKey="Lockhart, Sr" uniqKey="Lockhart S">SR Lockhart</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reblova, M" uniqKey="Reblova M">M Réblová</name>
</author>
<author>
<name sortKey="Hubka, V" uniqKey="Hubka V">V Hubka</name>
</author>
<author>
<name sortKey="Thureborn, O" uniqKey="Thureborn O">O Thureborn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reid, Nm" uniqKey="Reid N">NM Reid</name>
</author>
<author>
<name sortKey="Carstens, Bc" uniqKey="Carstens B">BC Carstens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Teslenko, M" uniqKey="Teslenko M">M Teslenko</name>
</author>
<author>
<name sortKey="Van Der Mark, P" uniqKey="Van Der Mark P">P Van der Mark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenberg, Na" uniqKey="Rosenberg N">NA Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rydholm, C" uniqKey="Rydholm C">C Rydholm</name>
</author>
<author>
<name sortKey="Dyer, P" uniqKey="Dyer P">P Dyer</name>
</author>
<author>
<name sortKey="Lutzoni, F" uniqKey="Lutzoni F">F. Lutzoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabino, R" uniqKey="Sabino R">R Sabino</name>
</author>
<author>
<name sortKey="Verissimo, C" uniqKey="Verissimo C">C Veríssimo</name>
</author>
<author>
<name sortKey="Parada, H" uniqKey="Parada H">H Parada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samson, Ra" uniqKey="Samson R">RA Samson</name>
</author>
<author>
<name sortKey="Visagie, Cm" uniqKey="Visagie C">CM Visagie</name>
</author>
<author>
<name sortKey="Houbraken, J" uniqKey="Houbraken J">J Houbraken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schardl, C" uniqKey="Schardl C">C Schardl</name>
</author>
<author>
<name sortKey="Craven, K" uniqKey="Craven K">K Craven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmitt, I" uniqKey="Schmitt I">I Schmitt</name>
</author>
<author>
<name sortKey="Crespo, A" uniqKey="Crespo A">A Crespo</name>
</author>
<author>
<name sortKey="Divakar, Pk" uniqKey="Divakar P">PK Divakar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schroder, Ms" uniqKey="Schroder M">MS Schröder</name>
</author>
<author>
<name sortKey="De San Vicente, Km" uniqKey="De San Vicente K">KM De San Vicente</name>
</author>
<author>
<name sortKey="Prandini, Th" uniqKey="Prandini T">TH Prandini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwarzfeld, Md" uniqKey="Schwarzfeld M">MD Schwarzfeld</name>
</author>
<author>
<name sortKey="Sperling, Fa" uniqKey="Sperling F">FA Sperling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shigeyasu, C" uniqKey="Shigeyasu C">C Shigeyasu</name>
</author>
<author>
<name sortKey="Yamada, M" uniqKey="Yamada M">M Yamada</name>
</author>
<author>
<name sortKey="Nakamura, N" uniqKey="Nakamura N">N Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Short, Dp" uniqKey="Short D">DP Short</name>
</author>
<author>
<name sortKey="O Onnell, K" uniqKey="O Onnell K">K O’Donnell</name>
</author>
<author>
<name sortKey="Geiser, Dm" uniqKey="Geiser D">DM Geiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Short, Dp" uniqKey="Short D">DP Short</name>
</author>
<author>
<name sortKey="O Onnell, K" uniqKey="O Onnell K">K O’Donnell</name>
</author>
<author>
<name sortKey="Thrane, U" uniqKey="Thrane U">U Thrane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shymanovich, T" uniqKey="Shymanovich T">T Shymanovich</name>
</author>
<author>
<name sortKey="Charlton, Nd" uniqKey="Charlton N">ND Charlton</name>
</author>
<author>
<name sortKey="Musso, Am" uniqKey="Musso A">AM Musso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, G" uniqKey="Singh G">G Singh</name>
</author>
<author>
<name sortKey="Dal Grande, F" uniqKey="Dal Grande F">F Dal Grande</name>
</author>
<author>
<name sortKey="Divakar, Pk" uniqKey="Divakar P">PK Divakar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sipiczki, M" uniqKey="Sipiczki M">M Sipiczki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sklena, F" uniqKey="Sklena F">F Sklenář</name>
</author>
<author>
<name sortKey="Jurjevi, Z" uniqKey="Jurjevi Z">Ž Jurjević</name>
</author>
<author>
<name sortKey="Zalar, P" uniqKey="Zalar P">P Zalar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solla, A" uniqKey="Solla A">A Solla</name>
</author>
<author>
<name sortKey="Dacasa, M" uniqKey="Dacasa M">M Dacasa</name>
</author>
<author>
<name sortKey="Nasmith, C" uniqKey="Nasmith C">C Nasmith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spiers, A" uniqKey="Spiers A">A Spiers</name>
</author>
<author>
<name sortKey="Hopcroft, D" uniqKey="Hopcroft D">D Hopcroft</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staats, M" uniqKey="Staats M">M Staats</name>
</author>
<author>
<name sortKey="Van Baarlen, P" uniqKey="Van Baarlen P">P Van Baarlen</name>
</author>
<author>
<name sortKey="Van Kan, Ja" uniqKey="Van Kan J">JA. Van Kan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
<author>
<name sortKey="Hoover, P" uniqKey="Hoover P">P Hoover</name>
</author>
<author>
<name sortKey="Rougemont, J" uniqKey="Rougemont J">J. Rougemont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Starkey, De" uniqKey="Starkey D">DE Starkey</name>
</author>
<author>
<name sortKey="Ward, Tj" uniqKey="Ward T">TJ Ward</name>
</author>
<author>
<name sortKey="Aoki, T" uniqKey="Aoki T">T Aoki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stewart, Je" uniqKey="Stewart J">JE Stewart</name>
</author>
<author>
<name sortKey="Timmer, Lw" uniqKey="Timmer L">LW Timmer</name>
</author>
<author>
<name sortKey="Lawrence, Cb" uniqKey="Lawrence C">CB Lawrence</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugui, Ja" uniqKey="Sugui J">JA Sugui</name>
</author>
<author>
<name sortKey="Kwon Chung, Kj" uniqKey="Kwon Chung K">KJ Kwon-Chung</name>
</author>
<author>
<name sortKey="Juvvadi, Pr" uniqKey="Juvvadi P">PR Juvvadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugui, Ja" uniqKey="Sugui J">JA Sugui</name>
</author>
<author>
<name sortKey="Peterson, Sw" uniqKey="Peterson S">SW Peterson</name>
</author>
<author>
<name sortKey="Figat, A" uniqKey="Figat A">A Figat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugui, Ja" uniqKey="Sugui J">JA Sugui</name>
</author>
<author>
<name sortKey="Vinh, Dc" uniqKey="Vinh D">DC Vinh</name>
</author>
<author>
<name sortKey="Nardone, G" uniqKey="Nardone G">G Nardone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swilaiman, Ss" uniqKey="Swilaiman S">SS Swilaiman</name>
</author>
<author>
<name sortKey="O Orman, Cm" uniqKey="O Orman C">CM O’Gorman</name>
</author>
<author>
<name sortKey="Balajee, Sa" uniqKey="Balajee S">SA Balajee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szewczyk, E" uniqKey="Szewczyk E">E Szewczyk</name>
</author>
<author>
<name sortKey="Krappmann, S" uniqKey="Krappmann S">S Krappmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talbot, Jj" uniqKey="Talbot J">JJ Talbot</name>
</author>
<author>
<name sortKey="Barrs, Vr" uniqKey="Barrs V">VR Barrs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talbot, Jj" uniqKey="Talbot J">JJ Talbot</name>
</author>
<author>
<name sortKey="Houbraken, J" uniqKey="Houbraken J">J Houbraken</name>
</author>
<author>
<name sortKey="Frisvad, Jc" uniqKey="Frisvad J">JC Frisvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanney, Jb" uniqKey="Tanney J">JB Tanney</name>
</author>
<author>
<name sortKey="Visagie, Cm" uniqKey="Visagie C">CM Visagie</name>
</author>
<author>
<name sortKey="Yilmaz, N" uniqKey="Yilmaz N">N Yilmaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, E" uniqKey="Turner E">E Turner</name>
</author>
<author>
<name sortKey="Jacobson, D" uniqKey="Jacobson D">D Jacobson</name>
</author>
<author>
<name sortKey="Taylor, Jw" uniqKey="Taylor J">JW. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinh, Dc" uniqKey="Vinh D">DC Vinh</name>
</author>
<author>
<name sortKey="Shea, Yr" uniqKey="Shea Y">YR Shea</name>
</author>
<author>
<name sortKey="Jones, Pa" uniqKey="Jones P">PA Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Visagie, Cm" uniqKey="Visagie C">CM Visagie</name>
</author>
<author>
<name sortKey="Yilmaz, N" uniqKey="Yilmaz N">N Yilmaz</name>
</author>
<author>
<name sortKey="Renaud, Jb" uniqKey="Renaud J">JB Renaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Tj" uniqKey="White T">TJ White</name>
</author>
<author>
<name sortKey="Bruns, T" uniqKey="Bruns T">T Bruns</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wickham, H" uniqKey="Wickham H">H Wickham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, X" uniqKey="Xia X">X Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yaguchi, T" uniqKey="Yaguchi T">T Yaguchi</name>
</author>
<author>
<name sortKey="Horie, Y" uniqKey="Horie Y">Y Horie</name>
</author>
<author>
<name sortKey="Tanaka, R" uniqKey="Tanaka R">R Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Rannala, B" uniqKey="Rannala B">B Rannala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, G" uniqKey="Yu G">G Yu</name>
</author>
<author>
<name sortKey="Smith, Dk" uniqKey="Smith D">DK Smith</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Kapli, P" uniqKey="Kapli P">P Kapli</name>
</author>
<author>
<name sortKey="Pavlidis, P" uniqKey="Pavlidis P">P Pavlidis</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Persoonia</journal-id>
<journal-id journal-id-type="iso-abbrev">Persoonia</journal-id>
<journal-id journal-id-type="publisher-id">Persoonia</journal-id>
<journal-title-group>
<journal-title>Persoonia : Molecular Phylogeny and Evolution of Fungi</journal-title>
</journal-title-group>
<issn pub-type="ppub">0031-5850</issn>
<issn pub-type="epub">1878-9080</issn>
<publisher>
<publisher-name>Nationaal Herbarium Nederland & Centraallbureau voor Schimmelcultures</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30728603</article-id>
<article-id pub-id-type="pmc">6344812</article-id>
<article-id pub-id-type="doi">10.3767/persoonia.2018.41.08</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Unravelling species boundaries in the
<italic>Aspergillus viridinutans</italic>
complex (section
<italic>Fumigati</italic>
): opportunistic human and animal pathogens capable of interspecific hybridization</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hubka</surname>
<given-names>V.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="A3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barrs</surname>
<given-names>V.</given-names>
</name>
<xref ref-type="aff" rid="A4">
<sup>4</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>#</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dudová</surname>
<given-names>Z.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="A3">
<sup>3</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>#</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sklenář</surname>
<given-names>F.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>#</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kubátová</surname>
<given-names>A.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matsuzawa</surname>
<given-names>T.</given-names>
</name>
<xref ref-type="aff" rid="A5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yaguchi</surname>
<given-names>T.</given-names>
</name>
<xref ref-type="aff" rid="A6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Horie</surname>
<given-names>Y.</given-names>
</name>
<xref ref-type="aff" rid="A6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nováková</surname>
<given-names>A.</given-names>
</name>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frisvad</surname>
<given-names>J.C.</given-names>
</name>
<xref ref-type="aff" rid="A7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Talbot</surname>
<given-names>J.J.</given-names>
</name>
<xref ref-type="aff" rid="A4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kolařík</surname>
<given-names>M.</given-names>
</name>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic.</aff>
<aff id="A2">
<label>2</label>
Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic.</aff>
<aff id="A3">
<label>3</label>
First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.</aff>
<aff id="A4">
<label>4</label>
Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia.</aff>
<aff id="A5">
<label>5</label>
University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan.</aff>
<aff id="A6">
<label>6</label>
Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan.</aff>
<aff id="A7">
<label>7</label>
Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.</aff>
<author-notes>
<corresp id="COR1">
<bold>*</bold>
corresponding author e-mail:
<email>hubka@biomed.cas.cz</email>
.</corresp>
<fn id="fn1">
<p>
<sup>#</sup>
These co-authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>21</day>
<month>6</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2018</year>
</pub-date>
<volume>41</volume>
<fpage>142</fpage>
<lpage>174</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>9</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>14</day>
<month>3</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute</copyright-statement>
<copyright-year>2018</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode">
<license-p>You are free to share - to copy, distribute and transmit the work, under the following conditions:</license-p>
<license-p>
<bold>Attribution:</bold>
You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).</license-p>
<license-p>
<bold>Non-commercial:</bold>
You may not use this work for commercial purposes.</license-p>
<license-p>
<bold>No derivative works:</bold>
You may not alter, transform, or build upon this work.</license-p>
<license-p>For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode">http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode</ext-link>
. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.</license-p>
</license>
</permissions>
<abstract abstract-type="executive-summary">
<p>Although
<italic>Aspergillus fumigatus</italic>
is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially
<italic>A. lentulus</italic>
and the
<italic>A. viridinutans</italic>
species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids
<italic>in vitro</italic>
. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens;
<italic>A. udagawae</italic>
followed by
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
are known from opportunistic human infections, while
<italic> A. felis</italic>
followed by
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species
<italic>A. parafelis</italic>
and
<italic>A. pseudofelis</italic>
are synonymized with
<italic>A. felis</italic>
and an epitype is designated for
<italic>A. udagawae</italic>
. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs
<italic>in vitro</italic>
. Interspecific mating assays revealed that five different species combinations were biologically compatible
<italic>.</italic>
Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic species complexes. MSC-based delimitation methods are robust and suitable tools for evaluation of boundaries between these species.</p>
</abstract>
<kwd-group>
<kwd>
<italic>Aspergillus felis</italic>
</kwd>
<kwd>
<italic>Aspergillus fumigatus</italic>
</kwd>
<kwd>invasive aspergillosis</kwd>
<kwd>mating-type genes</kwd>
<kwd>multispecies coalescence model</kwd>
<kwd>
<italic>Neosartorya udagawae</italic>
</kwd>
<kwd>scanning electron microscopy</kwd>
<kwd>soil fungi</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s1">
<title>INTRODUCTION</title>
<p>
<italic>Aspergillus</italic>
is a speciose genus with almost 400 species classified into six subgenera and approximately 25 sections (
<xref rid="R130" ref-type="bibr">Samson et al. 2014</xref>
,
<xref rid="R76" ref-type="bibr">Jurjević et al. 2015</xref>
,
<xref rid="R69" ref-type="bibr">Hubka et al. 2016a</xref>
,
<xref rid="R62" ref-type="bibr">2017</xref>
,
<xref rid="R25" ref-type="bibr">Chen et al. 2016a</xref>
,
<xref rid="R26" ref-type="bibr">b</xref>
,
<xref rid="R27" ref-type="bibr">2017</xref>
,
<xref rid="R85" ref-type="bibr">Kocsubé et al. 2016</xref>
,
<xref rid="R141" ref-type="bibr">Sklenář et al. 2017</xref>
,
<xref rid="R155" ref-type="bibr">Tanney et al. 2017</xref>
). The species are widely distributed in nature and have a significant economic impact in human and animal health (causative agents of aspergillosis; allergies and respiratory problems associated with presence of fungi in the indoor environment), the food industry (source of enzymes and organic acids for fermentation, food and feed spoilage, production of hazardous mycotoxins), biotechnology and pharmacology (production of bioactive substances, heterologous proteins) (
<xref rid="R120" ref-type="bibr">Pitt & Hocking 2009</xref>
,
<xref rid="R104" ref-type="bibr">Meyer et al. 2011</xref>
,
<xref rid="R44" ref-type="bibr">Frisvad & Larsen 2015b</xref>
,
<xref rid="R148" ref-type="bibr">Sugui et al. 2015</xref>
,
<xref rid="R49" ref-type="bibr">Gautier et al. 2016</xref>
).</p>
<p>
<italic>Aspergillus</italic>
sect.
<italic>Fumigati</italic>
includes approximately 60 species occurring predominantly in soil (
<xref rid="R62" ref-type="bibr">Hubka et al. 2017</xref>
). Many are of considerable medical importance as they cause human and animal infections (
<xref rid="R9" ref-type="bibr">Balajee et al. 2005b</xref>
,
<xref rid="R10" ref-type="bibr">2009</xref>
,
<xref rid="R79" ref-type="bibr">Katz et al. 2005</xref>
,
<xref rid="R163" ref-type="bibr">Yaguchi et al. 2007</xref>
,
<xref rid="R63" ref-type="bibr">Hubka et al. 2012</xref>
,
<xref rid="R153" ref-type="bibr">Talbot & Barrs 2018</xref>
).
<italic>Aspergillus fumigatus</italic>
is usually reported as both the most common member of the section in soil worldwide and the most common cause of aspergillosis (
<xref rid="R84" ref-type="bibr">Klich 2002</xref>
,
<xref rid="R37" ref-type="bibr">Domsch et al. 2007</xref>
,
<xref rid="R101" ref-type="bibr">Mayr & Lass-Flörl 2011</xref>
). A series of recent studies highlighted the high prevalence (11–19 %) of so-called cryptic
<italic>Aspergillus</italic>
species in clinical samples (
<xref rid="R10" ref-type="bibr">Balajee et al. 2009</xref>
,
<xref rid="R2" ref-type="bibr">Alastruey-Izquierdo et al. 2013</xref>
,
<xref rid="R109" ref-type="bibr">Negri et al. 2014</xref>
,
<xref rid="R129" ref-type="bibr">Sabino et al. 2014</xref>
). Their identification is clinically relevant since many demonstrate drug resistance to commonly used antifungals, thus their recognition influences therapeutic management. Reliable identification of clinical isolates to the species level and susceptibility testing by reference methods is thus warranted (
<xref rid="R98" ref-type="bibr">Lyskova et al. 2018</xref>
). Many of these less common pathogens belong to sect.
<italic>Fumigati</italic>
and the highest numbers of infections are attributed to
<italic>A. lentulus</italic>
,
<italic>A. thermomutatus</italic>
(syn.
<italic>Neosartorya</italic>
<italic>pseudofischeri</italic>
) and species from
<italic>A. viridinutans</italic>
species complex (AVSC) (
<xref rid="R8" ref-type="bibr">Balajee et al. 2005a</xref>
,
<xref rid="R11" ref-type="bibr">2006</xref>
,
<xref rid="R150" ref-type="bibr">Sugui et al. 2010</xref>
,
<xref rid="R149" ref-type="bibr">2014</xref>
,
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R153" ref-type="bibr">Talbot & Barrs 2018</xref>
).</p>
<p>Homothallism is a predominant reproductive mode in sect.
<italic>Fumigati</italic>
and many species readily produce ascomata (neosartorya-morph) in culture, while others are heterothallic or have an unknown sexual morph (
<xref rid="R62" ref-type="bibr">Hubka et al. 2017</xref>
). Homothallic species are infrequently pathogenic, although
<italic>A. thermomutatus</italic>
is a notable exception. The majority of clinically relevant species belong to the
<italic>A. fumigatus</italic>
clade (
<xref rid="R9" ref-type="bibr">Balajee et al. 2005b</xref>
,
<xref rid="R10" ref-type="bibr">2009</xref>
,
<xref rid="R163" ref-type="bibr">Yaguchi et al. 2007</xref>
,
<xref rid="R3" ref-type="bibr">Alcazar-Fuoli et al. 2008</xref>
) or the AVSC (
<xref rid="R150" ref-type="bibr">Sugui et al. 2010</xref>
,
<xref rid="R149" ref-type="bibr">2014</xref>
,
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
) and are heterothallic. A cryptic sexual cycle of several of these opportunistic pathogens, including
<italic>A. fumigatus</italic>
(
<xref rid="R116" ref-type="bibr">O’Gorman et al. 2009</xref>
),
<italic>A. lentulus</italic>
(
<xref rid="R151" ref-type="bibr">Swilaiman et al. 2013</xref>
) and
<italic>A. felis</italic>
(
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
), was discovered recently by crossing opposite mating type isolates
<italic>in vitro</italic>
.</p>
<p>Molecular methods are routinely used for identification of species from sect.
<italic>Fumigati</italic>
due to overlapping morphological features of their asexual morph. In contrast, the morphology of the sexual morph, especially of ascospores, is amongst the most informative of phenotypic characteristics in sect.
<italic>Fumigati</italic>
. The taxonomy of AVSC has developed rapidly since eight of the currently 11 recognized species were described in the last four years (
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R39" ref-type="bibr">Eamvijarn et al. 2013</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
,
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
,
<xref rid="R100" ref-type="bibr">Matsuzawa et al. 2015</xref>
,
<xref rid="R154" ref-type="bibr">Talbot et al. 2017</xref>
). The species boundaries delimitation was usually based on comparison of single-gene phylogenies and principles of genealogical concordance. In addition, some studies supported the species concept by results of
<italic>in vitro</italic>
mating experiments between opposite mating type strains. With the increasing number of species, available isolates and new mating experiment data, the species boundaries in AVSC became unclear as pointed out by
<xref rid="R154" ref-type="bibr">Talbot et al. (2017)</xref>
who used the designation ‘
<italic>A. felis</italic>
clade’ for
<italic>A. felis</italic>
and related species. Importantly,
<xref rid="R149" ref-type="bibr">Sugui et al. (2014)</xref>
and
<xref rid="R154" ref-type="bibr">Talbot et al. (2017)</xref>
identified that interpretation of
<italic>in vitro</italic>
mating assays in sect.
<italic>Fumigati</italic>
may be problematic because different phylogenetic species in the AVSC were able to produce fertile ascomata when crossed between themselves. Some even mated successfully with
<italic>A. fumigatus</italic>
s.str.</p>
<p>Here we present a critical re-evaluation of species boundaries in the AVSC. We examined a large set of clinical and environmental strains collected worldwide. We did not use classical phylogenetic methods or genealogical concordance phylogenetic species recognition rules (GCPSR) for species delimitation due to their unsatisfactory results in previous AVSC studies. Such methods, based predominantly on analysis of concatenated DNA sequence data or comparison of single-gene phylogenies are frequently prone to species over-delimitation or are affected by subjective judgements of species boundaries. Instead, we used recently introduced delimitation techniques based on coalescent theory and the multispecies coalescent model (MSC) (
<xref rid="R41" ref-type="bibr">Flot 2015</xref>
). We followed the approach recommended by
<xref rid="R23" ref-type="bibr">Carstens et al. (2013)</xref>
that combines species delimitation, species tree estimation and species validation steps. Although these methods have already been applied to other groups of organisms such as animals and plants their use in fungi is scarce (
<xref rid="R147" ref-type="bibr">Stewart et al. 2014</xref>
,
<xref rid="R139" ref-type="bibr">Singh et al. 2015</xref>
,
<xref rid="R94" ref-type="bibr">Liu et al. 2016</xref>
,
<xref rid="R141" ref-type="bibr">Sklenář et al. 2017</xref>
,
<xref rid="R67" ref-type="bibr">Hubka et al. 2018</xref>
). Here, the results of MSC methods were taken as a basic hypothesis for species delimitation and then further verified by analysis of intra- and interspecific biological compatibilities, as well as ascospore dimensions and ornamentation.</p>
</sec>
<sec id="s2">
<title>MATERIAL AND METHODS</title>
<sec id="s2a">
<title>Fungal strains</title>
<p>A total of 110 isolates were examined including new isolates and isolates obtained from previously published studies (
<xref rid="R79" ref-type="bibr">Katz et al. 2005</xref>
,
<xref rid="R157" ref-type="bibr">Vinh et al. 2009</xref>
,
<xref rid="R29" ref-type="bibr">Coelho et al. 2011</xref>
,
<xref rid="R135" ref-type="bibr">Shigeyasu et al. 2012</xref>
,
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R12" ref-type="bibr">2014</xref>
,
<xref rid="R39" ref-type="bibr">Eamvijarn et al. 2013</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
,
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
,
<xref rid="R100" ref-type="bibr">Matsuzawa et al. 2015</xref>
,
<xref rid="R154" ref-type="bibr">Talbot et al. 2017</xref>
) and culture collections. The set comprised 38 clinical strains and 72 environmental isolates, including 67 from soil, four from cave environments and one from plant material. The provenance of isolates is detailed in
<xref rid="T1" ref-type="table">Table 1</xref>
. Newly isolated strains were deposited into the Culture Collection of Fungi at the Department of Botany, Charles University, Prague, Czech Republic (CCF). Dried herbarium specimens were deposited into the herbaria of the Medical Mycology Research Center, Chiba University, Japan (IFM) and Mycological Department of the National Museum, Prague, Czech Republic (PRM).</p>
</sec>
<sec id="s2b">
<title>Phenotypic studies</title>
<p>The strains were grown on malt extract agar (MEA), Czapek Yeast Autolysate Agar (CYA), Czapek-Dox agar (CZA), yeast extract sucrose agar (YES), CYA supplemented with 20 % sucrose (CY20S), and creatine sucrose agar (CREA), and incubated at 25 °C. Agar media composition was based on that described by
<xref rid="R130" ref-type="bibr">Samson et al. (2014)</xref>
. Malt extract and yeast extract were obtained from Oxoid (Basingstoke, UK) and Fluka Chemie GmbH (Switzerland), respectively. Growth at 42, 45 and 47 °C was tested on MEA plates sealed with Parafilm. Colour determination was performed according to the ISCC-NBS (Inter-Society Color Council – National Bureau of Standards) Centroid Colour Charts (
<xref rid="R83" ref-type="bibr">Kelly 1964</xref>
).</p>
<p>Micromorphology was observed on MEA. Lactic acid with cotton blue was used as a mounting medium. Photographs were taken on an Olympus BX-51 microscope (Olympus DP72 camera) using Nomarski contrast. Macromorphology of the colonies was documented using a stereomicroscope Olympus SZ61 (with Olympus Camedia C-5050 Zoom camera) or Canon EOS 500D.</p>
<p>Scanning electron microscopy (SEM) was performed using a JEOL-6380 LV scanning electron microscope (JEOL Ltd. Tokyo, Japan) as described by
<xref rid="R71" ref-type="bibr">Hubka et al. (2013b)</xref>
. Briefly, pieces of colony or mature ascomata were fixed in osmium tetroxide vapours for one wk at 5–10 °C and gold coated using a Bal-Tec SCD 050 sputter coater. The specimens were observed using 40 μm spot size and 15–25 kV accelerating voltage.</p>
</sec>
<sec id="s2c">
<title>Molecular studies</title>
<p>ArchivePure DNA yeast and Gram2+ kit (5 PRIME Inc., Gaithersburg, MD) was used for DNA isolation from 7-d-old cultures according to the manufacturer's instructions as updated by
<xref rid="R68" ref-type="bibr">Hubka et al. (2015b)</xref>
. The purity and concentration of extracted DNA was evaluated by NanoDrop 1000 Spectrophotometer. ITS rDNA region was amplified using forward primers ITS1 or ITS5 (
<xref rid="R159" ref-type="bibr">White et al. 1990</xref>
) and reverse primers ITS4S (
<xref rid="R86" ref-type="bibr">Kretzer et al. 1996</xref>
) or NL4 (
<xref rid="R114" ref-type="bibr">O’Donnell 1993</xref>
); partial β-tubulin gene (
<italic>benA</italic>
) using forward primers Bt2a (
<xref rid="R51" ref-type="bibr">Glass & Donaldson 1995</xref>
) or Ben2f (
<xref rid="R63" ref-type="bibr">Hubka & Kolařík 2012</xref>
) and reverse primer Bt2b (
<xref rid="R51" ref-type="bibr">Glass & Donaldson 1995</xref>
); partial calmodulin gene (
<italic>CaM</italic>
) using forward primers CF1M or CF1L and reverse primer CF4 (
<xref rid="R118" ref-type="bibr">Peterson 2008</xref>
); partial actin gene (
<italic>act</italic>
) using primers ACT-512F and ACT-783R (
<xref rid="R22" ref-type="bibr">Carbone & Kohn 1999</xref>
); partial RNA polymerase II second largest subunit (
<italic>RPB2</italic>
) using forward primers fRPB2-5F (
<xref rid="R95" ref-type="bibr">Liu et al. 1999</xref>
) or RPB2-F50-CanAre (
<xref rid="R76" ref-type="bibr">Jurjević et al. 2015</xref>
) and reverse primer fRPB2-7cR (
<xref rid="R95" ref-type="bibr">Liu et al. 1999</xref>
); partial
<italic>mcm7</italic>
gene encoding minichromosome maintenance factor 7 with primers Mcm7-709for and Mcm7-1348rev (
<xref rid="R132" ref-type="bibr">Schmitt et al. 2009</xref>
); and partial
<italic>tsr1</italic>
gene encoding ribosome biogenesis protein with primers Tsr1-1453for and Tsr1-2308rev (
<xref rid="R132" ref-type="bibr">Schmitt et al. 2009</xref>
). Terminal primers were used for sequencing.</p>
<p>The PCR reaction volume of 20 μL contained 1 μL (50 ng) of DNA, 0.3 μL of both primers (25 pM/mL), 0.2 μL of MyTaq
<sup>TM</sup>
DNA Polymerase (Bioline, GmbH, Germany) and 4 μL of 5× MyTaq PCR buffer. The ITS rDNA,
<italic>benA</italic>
and
<italic>CaM</italic>
fragments were amplified using the following thermal cycle profile: 93 °C/2 min; 30 cycles of 93 °C/30 s; 55 °C/30 s; 72 °C/60 s; 72 °C/10 min. The annealing temperature for amplification of
<italic>act</italic>
gene was 60 °C (30 cycles); and that for
<italic>tsr1</italic>
gene 50 °C (37 cycles). Partial
<italic>RPB2</italic>
gene fragments were amplified using the above-mentioned cycle or touchdown thermal-cycling: 93 °C/2 min; 5 cycles of 93 °C/30 s, 65–60 °C/30 s, 72 °C/60 s; 38 cycles of 93 °C/30 s, 55 °C/30 s, 72 °C/60 s; 72 °C/10 min. The partial
<italic>mcm7</italic>
gene was amplified using modified touchdown thermal-cycling: 93 °C/2 min; 5 cycles of 93 °C/30 s, 65–60 °C/30 s, 72 °C/60 s; 38 cycles of 93 °C/30 s, 60 °C/30 s, 72 °C/60 s; 72 °C/10 min. PCR product purification followed the protocol of
<xref rid="R124" ref-type="bibr">Réblová et al. (2016)</xref>
. Automated sequencing was performed at Macrogen Sequencing Service (Amsterdam, The Netherlands) using both terminal primers. Sequences were deposited into the ENA (European Nucleotide Archive) database under the accession numbers listed in
<xref rid="T2" ref-type="table">Table 2</xref>
.</p>
</sec>
<sec id="s2d">
<title>Phylogenetic analysis</title>
<p>Sequences were inspected and assembled using Bioedit v. 7.2.5 (
<ext-link ext-link-type="uri" xlink:href="www.mbio.ncsu.edu/BioEdit/bioedit.html">www.mbio.ncsu.edu/BioEdit/bioedit.html</ext-link>
). Alignments of the
<italic>benA</italic>
,
<italic>CaM</italic>
,
<italic>act</italic>
and
<italic>RPB2</italic>
regions were performed using the G-INS-i option implemented in MAFFT v. 7 (
<xref rid="R78" ref-type="bibr">Katoh & Standley 2013</xref>
). Alignments were trimmed, concatenated and then analysed using Maximum likelihood (ML) and Bayesian inference (BI) analyses. Suitable partitioning scheme and substitution models (Bayesian information criterion) for analyses were selected using the greedy algorithm implemented in PartitionFinder v. 1.1.1 (
<xref rid="R91" ref-type="bibr">Lanfear et al. 2017</xref>
) with settings allowing introns, exons and codon positions to be independent partitions. Proposed partitioning schemes and substitution models for each dataset are listed in
<xref rid="T3" ref-type="table">Table 3</xref>
. The alignment characteristics are listed in
<xref rid="T4" ref-type="table">Table 4</xref>
.</p>
<p>The ML tree was constructed with IQ-TREE v. 1.4.4 (
<xref rid="R111" ref-type="bibr">Nguyen et al. 2015</xref>
) with nodal support determined by non-parametric bootstrapping (BS) with 1 000 replicates. Bayesian posterior probabilities (PP) were calculated using MrBayes v. 3.2.6 (
<xref rid="R126" ref-type="bibr">Ronquist et al. 2012</xref>
). The analyses ran for 10
<sup>7</sup>
generations, two parallel runs with four chains each were used, every 1 000th tree was retained, and the first 25 % of trees were discarded as burn-in. The trees were rooted with
<italic>Aspergillus clavatus</italic>
NRRL 1 and
<italic>A. lentulus</italic>
NRRL 35552, respectively. All alignments are available from the Dryad Digital Repository (
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.5061/dryad.38889">https://doi.org/10.5061/dryad.38889</ext-link>
).</p>
</sec>
<sec id="s2e">
<title>Species delimitation and species tree inference</title>
<p>Several species delimitation methods were applied to elucidate the species boundaries within the AVSC. We followed the recommendation of
<xref rid="R23" ref-type="bibr">Carstens et al. (2013)</xref>
and compared the results of several different methods. The analysis was divided into two parts. Four genetic loci were examined in the first analysis which comprised all species from the AVSC while six genetic loci were examined in the second analysis focused on the clade comprising
<italic>Aspergillus felis</italic>
,
<italic>A. pseudofelis</italic>
,
<italic>A. parafelis</italic>
and
<italic>A. pseudoviridinutans</italic>
(
<italic>A. aureolus</italic>
was used as an outgroup). The alignment characteristics are listed in
<xref rid="T4" ref-type="table">Table 4</xref>
.</p>
<p>Only unique nucleotide sequences, selected with DAMBE v. 6.4.11 (
<xref rid="R162" ref-type="bibr">Xia 2017</xref>
) were used in the analyses. Nucleotide substitution models for particular loci were determined using jModeltest v. 2.1.7 (
<xref rid="R121" ref-type="bibr">Posada 2008</xref>
) based on Bayesian information criterion (BIC) and were as follows: 1st analysis - K80+G (
<italic>benA</italic>
), K80+I (
<italic>CaM</italic>
), K80+G (
<italic>act</italic>
), K80+G (
<italic>RPB2</italic>
); 2nd analysis - K80+I (
<italic>benA</italic>
), K80+G (
<italic>CaM</italic>
), K80 (
<italic>act</italic>
), K80 (
<italic>RPB2</italic>
), HKY+I+G (
<italic>tsr1</italic>
), K80 (
<italic>mcm7</italic>
).</p>
<p>In the first analysis, only unique sequences of four loci were used, i.e.,
<italic>benA</italic>
,
<italic>CaM</italic>
,
<italic>act</italic>
and
<italic>RPB2</italic>
. The number of isolates of
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
was reduced to two, because this clade was examined in detail in the second analysis based on six loci. Three single-locus species delimitation methods, i.e., bGMYC (
<xref rid="R125" ref-type="bibr">Reid & Carstens 2012</xref>
), GMYC (
<xref rid="R47" ref-type="bibr">Fujisawa & Barraclough 2013</xref>
) and PTP (
<xref rid="R166" ref-type="bibr">Zhang et al. 2013</xref>
), and one multilocus species delimitation method STACEY (
<xref rid="R74" ref-type="bibr">Jones 2017</xref>
) were used to find putative species boundaries. The bGMYC and GMYC methods require ultrametric trees as an input, while PTP does not. Therefore, single locus ultrametric trees were constructed using a Bayesian approach in BEAST v. 2.4.5 (
<xref rid="R16" ref-type="bibr">Bouckaert et al. 2014</xref>
) with both Yule and coalescent tree models. We also looked at possible differences between strict and relaxed clock models, but since these parameters had no effect on the number of delimited species, only the results with strict clock model are presented here. Chain length for each tree was 1 × 10
<sup>7</sup>
generations with 25 % burn-in. The highest credibility tree was used for the GMYC method and 100 trees randomly sampled throughout the analysis were used for the bGMYC method. Both methods were performed in R v. 3.3.4 (
<xref rid="R123" ref-type="bibr">R Core Team 2015</xref>
) using
<italic>bgmyc</italic>
(
<xref rid="R125" ref-type="bibr">Reid & Carstens 2012</xref>
) and
<italic>splits</italic>
(SPecies’ LImits by Threshold Statistics) (
<xref rid="R47" ref-type="bibr">Fujisawa & Barraclough 2013</xref>
) packages. The non-ultrametric trees for the PTP method were constructed using the ML approach in RAxML v. 7.7.1 (
<xref rid="R145" ref-type="bibr">Stamatakis et al. 2008</xref>
) and IQ-TREE v. 1.5.3 (
<xref rid="R111" ref-type="bibr">Nguyen et al. 2015</xref>
) with 1 000 bootstrap replicates. The PTP method was performed on the web server
<ext-link ext-link-type="uri" xlink:href="http://mptp.h-its.org/">http://mptp.h-its.org/</ext-link>
(
<xref rid="R77" ref-type="bibr">Kapli et al. 2017</xref>
) with p-value set to 0.001. The multilocus species delimitation was performed in BEAST v. 2.4.5 with add-on STACEY v. 1.2.2 (
<xref rid="R74" ref-type="bibr">Jones 2017</xref>
). The chain length was set to 5 × 10
<sup>8</sup>
generations, priors were set as follows: the species tree prior was set to the Yule model, growth rate prior was set to lognormal distribution (M = 5, S = 2), clock rate priors for all loci were set to lognormal distribution (M = 0, S = 1), PopPriorScale prior was set to lognormal distribution (M = -7, S = 2) and relativeDeathRate prior was set to beta distribution (α = 1, β = 1 000). The output was processed with SpeciesDelimitationAnalyzer (
<xref rid="R74" ref-type="bibr">Jones 2017</xref>
).</p>
<p>The species tree was inferred using *BEAST (Heled & Drummond 2010) implemented in BEAST v. 2.4.5. The isolates were assigned to a putative species according to the results of the above-mentioned species delimitation methods. The MCMC analysis ran for 1 × 10
<sup>8</sup>
generations, 25 % of trees were discarded as a burn-in. The strict molecular clock was chosen for all loci and population function was set as constant. Convergence was assessed by examining the likelihood plots in Tracer v. 1.6 (
<ext-link ext-link-type="uri" xlink:href="http://tree.bio.ed.ac.uk/software/tracer">http://tree.bio.ed.ac.uk/software/tracer</ext-link>
). We also constructed the phylogenetic tree based on concatenated alignment of all four loci in IQ-TREE v. 1.5.3 with 1 000 bootstrap replicates and the optimal partitioning scheme determined by PartitionFinder v. 2.1.1 (
<xref rid="R91" ref-type="bibr">Lanfear et al. 2017</xref>
).</p>
<p>The validation of the species hypotheses was performed in BP&P v. 3.3 (Bayesian phylogenetics and phylogeography) (
<xref rid="R164" ref-type="bibr">Yang & Rannala 2010</xref>
). The isolates were assigned to the species based on the results of species delimitation methods and the species tree inferred with *BEAST was used as a guide tree. Three different combinations of the prior distributions of the parameters θ (ancestral population size) and τ
<sub>0</sub>
(root age) were tested as proposed by
<xref rid="R92" ref-type="bibr">Leaché & Fujita (2010)</xref>
, i.e., large ancestral population sizes and deep divergence: θ ~ G (1, 10) and τ
<sub>0</sub>
~ G (1, 10); small ancestral population sizes and shallow divergences among species: θ ~ G (2, 2000) and τ
<sub>0</sub>
~ G (2, 2000); large ancestral populations sizes and shallow divergences among species: θ ~ G (1, 10) and τ
<sub>0</sub>
~ G (2, 2000).</p>
<p>The second analysis with six protein-coding loci, i.e.,
<italic>benA</italic>
,
<italic>CaM</italic>
,
<italic>act</italic>
,
<italic>RPB2</italic>
,
<italic>mcm7</italic>
and
<italic> tsr1</italic>
, consisted of the same steps as described above. Instead of PTP, we used the programme mPTP (
<xref rid="R77" ref-type="bibr">Kapli et al. 2017</xref>
) with IQ-TREE and RAxML trees as an input. Within the mPTP programme we used the following settings: Maximum likelihood species delimitation inference (option ML) and a different coalescent rate for each delimited species (option multi). R package
<italic>ggtree</italic>
(
<xref rid="R165" ref-type="bibr">Yu et al. 2017</xref>
) and the programme densitree (
<xref rid="R15" ref-type="bibr">Bouckaert 2010</xref>
) were used for visualization of the phylogenetic trees.</p>
</sec>
<sec id="s2f">
<title>Mating experiments</title>
<p>The MAT idiomorph was determined using the primer pairs alpha1 and alpha2 located in MAT1-1-1 locus (alpha box domain), and HMG1 and HMG2 primers located in MAT1-2-1 locus (high-mobility-group domain) as described by
<xref rid="R150" ref-type="bibr">Sugui et al. (2010)</xref>
. The MAT idiomorphs were differentiated based on the different lengths of PCR products visualized by gel electrophoresis; absence of opposite MAT idiomorph was also verified in all isolates. The identity of PCR products was proved by DNA sequencing in several isolates (accession numbers in
<xref rid="T1" ref-type="table">Table 1</xref>
); product purification and sequencing were performed at Macrogen Europe (Amsterdam, The Netherlands) using terminal primers. Selected opposite mating type strains were paired within and between major phylogenetic clades on MEA and oatmeal agar (OA; Difco, La Ponte de Claix, France) plates and incubated at 25, 30 and 37 °C in the dark. The plates were sealed with Parafilm and examined weekly from the third wk of cultivation for two months under a stereomicroscope for the production of ascomata. The presence of ascospores was determined using light microscopy. Width and height of ascospores were recorded at least 35 times for each successful mating pair.</p>
</sec>
<sec id="s2g">
<title>Statistical analysis</title>
<p>Statistical differences in the width and height of the ascospores of particular species and interspecific hybrids were tested with one-way ANOVA followed by Tukey's HSD (honest significant difference) post hoc test in R v. 3.3.4 (
<xref rid="R123" ref-type="bibr">R Core Team 2015</xref>
). R package
<italic>multcomp</italic>
(
<xref rid="R60" ref-type="bibr">Hothorn et al. 2008</xref>
) was used for the calculation and package
<italic>ggplot2</italic>
(
<xref rid="R160" ref-type="bibr">Wickham 2009</xref>
) for visualization of the results.</p>
</sec>
<sec id="s2h">
<title>Exometabolite analysis</title>
<p>The extracts were prepared according to
<xref rid="R61" ref-type="bibr">Houbraken et al. (2012)</xref>
. High-performance liquid chromatography with diode-array detection was performed according to
<xref rid="R45" ref-type="bibr">Frisvad & Thrane (1987</xref>
,
<xref rid="R46" ref-type="bibr">1993)</xref>
as updated by
<xref rid="R112" ref-type="bibr">Nielsen et al. (Nielsen et al. 2011</xref>
). Fungi were incubated for 1 wk at 25 °C in darkness on CYA and yeast extract sucrose (YES) agars for exometabolite analysis.</p>
</sec>
</sec>
<sec id="s3">
<title>RESULTS</title>
<sec id="s3a">
<title>Phylogenetic definition of AVSC</title>
<p>In the phylogenetic analysis, 76 combined
<italic>benA</italic>
,
<italic>CaM</italic>
,
<italic>act</italic>
and
<italic>RPB2</italic>
sequences were assessed for members of sect.
<italic>Fumigati</italic>
. The analysis was based on the modified alignment previously used by
<xref rid="R62" ref-type="bibr">Hubka et al. (2017)</xref>
and enriched by taxa from AVSC. In the Bayesian tree shown in
<xref ref-type="fig" rid="F1">Fig. 1</xref>
, members of sect.
<italic>Fumigati</italic>
are resolved in several monophyletic clades. The analysis showed that AVSC is a phylogenetically well-defined group and the clade gained full support. Similarly, some other clades are well-supported by both BI and ML analyses including
<italic>A. spinosus</italic>
clade,
<italic>A. brevipes</italic>
clade,
<italic>A. tatenoi</italic>
clade,
<italic>A.</italic>
<italic>thermomutatus</italic>
clade and
<italic>A. fennelliae</italic>
clade;
<italic>A. spathulatus</italic>
forms a single-species lineage distantly related to other clades. Other clades have moderate or low support and the species represented therein may differ based on genetic loci used for phylogenetic reconstruction and taxa included in the analysis. Heterothallic species are dispersed across sect.
<italic>Fumigati</italic>
(
<xref ref-type="fig" rid="F1">Fig. 1</xref>
)
<italic></italic>
but the majority of them cluster in AVSC and
<italic>A. fumigatus</italic>
clades. These two clades also encompass the highest number of human and animal pathogens in sect.
<italic>Fumigati</italic>
not only in terms of their number but also their clinical relevance.</p>
</sec>
<sec id="s3b">
<title>Species delimitation and validation in AVSC</title>
<p>In the first analysis, four genetic loci were examined across species of AVSC, isolates of
<italic>A. felis</italic>
and its close relatives were reduced to two individuals, because a separate analysis based on six loci was performed for this clade. Eleven tentative species were delimited in AVSC using STACEY. The results are summarised in
<xref ref-type="fig" rid="F2">Fig. 2</xref>
, the differences in the colour of the tree branches reflect species delimited by the analysis. The analysis supported recognition of three putative species in
<italic>A. udagawae</italic>
lineage, delimitation of
<italic>A. acrensis</italic>
(described below) from
<italic>A. aureolus</italic>
was not supported, other AVSC species were supported by STACEY without differences from their current concept.</p>
<p>The results derived from STACEY were compared to those from three single-locus species delimitation methods. The consensual results from single-locus species delimitation methods are generally in agreement with the results of STACEY for the majority of species but vary greatly for
<italic>A. udagawae</italic>
,
<italic>A. aureolus</italic>
and
<italic>A. acrensis</italic>
lineages (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). Recognition of three putative species in
<italic>A. udagawae</italic>
lineage was supported only based on the
<italic>CaM</italic>
locus, while based on
<italic>benA</italic>
locus, none of these three sublineages gained support. Various delimitation schemes were proposed by different single-locus species delimitation methods in the
<italic>A. udagawae</italic>
lineage based on the
<italic>RPB2</italic>
gene (results even varied between the analyses based on different input trees for the PTP and GMYC methods), while five putative species were identically delimited based on the
<italic>act</italic>
locus. The methods relatively consistently supported delimitation of the
<italic>A. acrensis</italic>
lineage based on the
<italic>RPB2</italic>
locus and similarly, bGMYC and GMYC methods supported this species based on the
<italic>act</italic>
locus. In contrast, lineages of
<italic>A. acrensis</italic>
and
<italic>A. aureolus</italic>
were not split by any method when analyzing
<italic>benA</italic>
and
<italic>CaM</italic>
loci.</p>
<p>The species validation analysis results are appended to nodes of the tree in
<xref ref-type="fig" rid="F2">Fig. 2</xref>
. A reasonable support is defined by posterior probabilities ≥ 0.95 under all three scenarios simulated by different prior distributions of parameters θ (ancestral population size) and τ
<sub>0</sub>
(root age). Delimitation of all putative species (those delimited by STACEY,
<italic>A. acrensis</italic>
and
<italic>A. aureolus</italic>
) were supported by the posterior probability 0.98 or higher based on the analysis in BP&P v. 3.1 (
<xref rid="R164" ref-type="bibr">Yang & Rannala 2010</xref>
) under all three scenarios. The only exception was lower support for splitting of
<italic>A. acrensis</italic>
and
<italic>A. aureolus</italic>
; this scenario was supported by the posterior probabilities 0.84, 0.88, 1.00, respectively.</p>
</sec>
<sec id="s3c">
<title>Species delimitation and validation in A. felis clade and its relatives</title>
<p>In the second analysis, six genetic loci were examined across isolates of
<italic>A. felis</italic>
,
<italic>A. parafelis</italic>
,
<italic> A. pseudofelis</italic>
and
<italic>A. pseudoviridinutans.</italic>
Only two tentative species,
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
, were delimited in this clade using STACEY. The results are shown as branches designated by different colours in
<xref ref-type="fig" rid="F3">Fig. 3</xref>
. The analysis did not support separation of
<italic>A. pseudofelis</italic>
and
<italic>A. parafelis</italic>
from
<italic>A. felis</italic>
;
<italic>A. fumigatus</italic>
var.
<italic>sclerotiorum</italic>
is included in the lineage of
<italic>A. pseudoviridinutans</italic>
.</p>
<p>The results of three single-locus species delimitation methods were compared to those from STACEY, and the consensual results showed a general agreement (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
). Delimitation of
<italic>A. pseudofelis</italic>
from
<italic>A. felis</italic>
was not supported by any of the used methods. Only a negligible number of analyses supported delimitation of basal clades in
<italic>A. felis</italic>
as tentative species (designated as clade 2 and 3 in
<xref ref-type="fig" rid="F3">Fig. 3</xref>
). But even in these minority scenarios, there were no clear consensual delimitation patterns that would support delimitation of
<italic>A. parafelis</italic>
. Interestingly, mPTP analysis based on
<italic>act</italic>
,
<italic>benA</italic>
,
<italic>CaM</italic>
(with RAxML trees as an input only),
<italic>mcm7</italic>
and
<italic>tsr1</italic>
loci together with GMYC analysis based on
<italic>benA</italic>
(only input tree based on coalescent tree model) and
<italic>act</italic>
(only input tree based on Yule tree model) loci did not support delimitation of
<italic>A. pseudoviridinutans</italic>
from a robust clade of
<italic>A. felis</italic>
. An incomplete lineage sorting was observed between
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
(
<xref ref-type="fig" rid="F3">Fig. 3</xref>
) evidencing that there was probably an ancestral gene flow between these lineages. Two isolates from
<italic>A. felis</italic>
lineage (IFM 59564 and CCF 5610) have
<italic>benA</italic>
sequences that cluster with
<italic>A. pseudoviridinutans</italic>
while sequences of the remaining 5 loci placed them in the
<italic>A.</italic>
<italic>felis</italic>
lineage (single-gene trees not shown).</p>
<p>The species validation analysis results are appended to nodes of the tree in
<xref ref-type="fig" rid="F3">Fig. 3</xref>
. Delimitation of
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
gained absolute support in BP&P analysis (
<xref rid="R164" ref-type="bibr">Yang & Rannala 2010</xref>
) under all three scenarios simulated by different prior distributions of parameters θ (ancestral population size) and τ
<sub>0</sub>
(root age). Delimitation of three putative species within
<italic>A. felis</italic>
lineage gained no support (posterior probability 0.51) under the scenario with small ancestral population sizes and shallow divergences among species: θ ~ G (2, 2000) and τ
<sub>0</sub>
~ G (2, 2000).</p>
</sec>
<sec id="s3d">
<title>Species tree</title>
<p>The species tree topology was inferred with *BEAST (
<xref rid="R54" ref-type="bibr">Heled & Drummond 2010</xref>
) and is shown in
<xref ref-type="fig" rid="F4">Fig. 4</xref>
. It was used as a guide tree during species validation using BP&P but it also represents the most probable evolutionary relationships between species in the AVSC. The analysis confirmed recombination between three subclades of
<italic>A. felis</italic>
(
<xref ref-type="fig" rid="F4">Fig. 4</xref>
) which include also recently proposed species
<italic>A. parafelis</italic>
and
<italic>A. pseudofelis</italic>
thus representing the synonyms of
<italic>A. felis</italic>
. Similarly, the recombination between three subclades of
<italic>A. udagawae</italic>
rejected the hypothesis that they could be considered separate species (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
). The remaining species delimited in previous steps (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
), including
<italic>A. pseudoviridinutans</italic>
and
<italic>A. acrensis</italic>
(introduced in this study), were supported by *BEAST analysis. The species tree had identical topology with the trees inferred by ML and BI analyses of the concatenated and partitioned dataset (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
), and all species supported by *BEAST had 100 % ML bootstrap support (ML BS) and 1.00 BI posterior probabilities (BI PP). Several deep nodes in the species tree had only limited support similarly to ML and BI analyses. Thus clear positions of
<italic>A. wyomingensis</italic>
and
<italic>A. siamensis</italic>
within the clade also containing
<italic>A. udagawae</italic>
,
<italic>A. acrensis</italic>
and
<italic>A. aureolus</italic>
remains unresolved, while
<italic>A. acrensis</italic>
with
<italic>A. aureolus</italic>
form a sister clade to
<italic>A. udagawae</italic>
(this topology gained absolute support in all further analyses – see below). Another robust clade contained sister species
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
. The remaining species, i.e.,
<italic>A. viridinutans</italic>
,
<italic>A. frankstonensis</italic>
and
<italic>A. arcoverdensis</italic>
, formed a basal clade in the AVSC and their positions within the clade are fully resolved (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
).</p>
</sec>
<sec id="s3e">
<title>Clustering of isolates by origin and mating-type idiomorph</title>
<p>In the phylogenetic analysis, 111 combined
<italic>benA</italic>
,
<italic>CaM</italic>
,
<italic>act</italic>
and
<italic>RPB2</italic>
sequences were assessed for members of AVSC. All species delimited by methods based on the coalescent model were fully supported by BI and ML analyses (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
).</p>
<p>The
<italic>A. udagawae</italic>
lineage included 25 isolates that clustered in three main clades. Mating type gene idiomorph MAT1-1-1 was detected in 10 isolates while 14 strains had MAT1-2-1 idiomorph (MAT idiomorph was not determined in one strain). The majority of North American isolates (10/14) clustered in clade 1 together with one strain from Australia; clade 2 comprised only three strains originating from Asia; isolates from four different continents were present in clade 3. There was no apparent clustering based on clinical or environmental origin of strains, or their MAT idiomorph. All three clinical isolates from Asia had an identical haplotype based on four studied protein-coding loci (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
) but one strain had MAT1-2-1 idiomorph in contrast to MAT1-1-1 idiomorph detected in the remaining two strains.</p>
<p>The
<italic>A. acrensis</italic>
lineage included five strains isolated from soil (Brazil) or cave sediment (Romania), two of which had MAT1-1-1 idiomorph and three had MAT1-2-1 idiomorph. This lineage is very closely related to a homothallic species
<italic>A. aureolus</italic>
represented by four strains in our analysis. The only known clinical isolate of
<italic>A. aureolus</italic>
(IHEM 22515) was isolated from the cornea of a patient in Peru. We were unable to source further information about this case and thus the clinical relevance of this isolate cannot be confirmed.</p>
<p>The mutual phylogenetic position of homothallic
<italic>A. siamensis</italic>
and heterothallic
<italic>A. wyomingensis</italic>
remains unresolved.
<italic>Aspergillus siamensis</italic>
was represented in our analysis by only two isolates from soil in Thailand, which were included in the original description (
<xref rid="R39" ref-type="bibr">Eamvijarn et al. 2013</xref>
). The
<italic>A. wyomingensis</italic>
lineage included 15 isolates; 12 of them came from Wyoming (USA) and were closely related to each other and to one isolate from China, while two isolates from Australia and Europe displayed a higher number of unique positions. The ratio of MAT1-1-1 isolates to MAT1-2-1 isolates was 8 : 7, and the majority of MAT1-1-1 isolates from the USA (6/7) clustered in a separate subclade that was only supported in the BI analysis.</p>
<p>The
<italic>A. felis</italic>
lineage comprised 35 isolates that clustered in three main clades. Mating type gene idiomorph MAT1-1-1 was detected in 12 isolates, while 20 strains had MAT1-2-1 idiomorph (MAT idiomorph was not determined in three strains). There was no clustering based on geographic origin as all three clades included isolates from two to four continents. Clade 3 contained only clinical isolates (n = 4). Clinical strains were predominant in clade 1 (18 : 2) whereas environmental strains dominated in clade 2 (7 : 4). The ratio of MAT1-1-1 isolates to MAT1-2-1 isolates in clade 1 was balanced (10 : 9) but was biased toward MAT1-2-1 idiomorph in clades 2 (1 : 7) and 3 (1 : 3). Eight isolates of
<italic>A.</italic>
<italic>pseudoviridinutans</italic>
, a sister species of
<italic>A. felis</italic>
, were examined in this study; MAT1-1-1 idiomorph was determined in five of them and MAT1-2-1 idiomorph in three of them. There was no apparent clustering based on clinical or environmental origin of strains, or their MAT idiomorph (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
).</p>
<p>A basal clade of AVSC comprises three soil-borne species. Whilst
<italic>A. viridinutans</italic>
and
<italic>A. frankstonensis</italic>
are known only from one locality in Australia, 13
<italic>A. arcoverdensis</italic>
strains included in the analysis were isolated on three continents, i.e., South America, Asia and Australia. Both,
<italic>A. viridinutans</italic>
and
<italic>A.</italic>
<italic>frankstonensis</italic>
were represented only by one and two isolates, respectively, included in the original descriptions (
<xref rid="R102" ref-type="bibr">McLennan et al. 1954</xref>
,
<xref rid="R154" ref-type="bibr">Talbot et al. 2017</xref>
), and only isolates of one mating type are known for each of these species. Isolates of both mating types were present in
<italic>A. arcoverdensis</italic>
(MAT1-1-1 : MAT1-2-1 ratio, 8 : 5). A geographical clustering was apparent in
<italic>A. arcoverdensis</italic>
strains; two strains from China and one strain from Australia formed sublineages separate from the Brazilian strains (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
).</p>
</sec>
<sec id="s3f">
<title>Mating experiments and morphology of spores</title>
<p>The MAT1-1-1 and MAT1-2-1 idiomorphs were determined for 100 of 104 isolates representing heterothallic species in AVSC (
<xref rid="T1" ref-type="table">Table 1</xref>
). Systematic mating experiments were first performed within major phylogenetic clades of the AVSC. Opposite mating type strains representing genetic and geographic diversity for each heterothallic species were selected for mating experiments and crossed in all possible combinations if not otherwise indicated (
<xref ref-type="fig" rid="F6">Fig. 6</xref>
). Successful mating was observed in lineages of
<italic>A. felis</italic>
,
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
. At least some individuals representing all three phylogenetic subclades of
<italic>A. felis</italic>
(
<xref ref-type="fig" rid="F3">Fig. 3</xref>
,
<xref ref-type="fig" rid="F5">5</xref>
) and
<italic>A. udagawae</italic>
(
<xref ref-type="fig" rid="F2">Fig. 2</xref>
,
<xref ref-type="fig" rid="F5">5</xref>
) crossed successfully with individuals from the other subclades. The mating capacity of individual isolates was unequal. Whilst some isolates of a particular species were able to mate with a broad spectrum of opposite mating type strains of the same species, others produced fertile ascomata with only a limited set of strains or did not mate at all. The morphology of ascospores among different crosses in these three species was consistent (
<xref ref-type="fig" rid="F7">Fig. 7</xref>
). The exception was great variability in the convex surface ornamentation of
<italic>A. wyomingensis</italic>
ascospores among and as well as within pairings of different isolates ranging from almost smooth, tuberculate to echinulate (
<xref ref-type="fig" rid="F7">Fig. 7</xref>
). Although both the width and height of ascospores of
<italic>A. felis</italic>
,
<italic>A. udagawae</italic>
and
<italic>A.</italic>
<italic>wyomingensis</italic>
overlapped significantly, their dimensions were statistically significantly different (Tukey's HSD test, p value < 0.05) (
<xref ref-type="fig" rid="F6">Fig. 6</xref>
). No fertile cleistothecia were produced by crossing opposite mating type isolates of
<italic>A. pseudoviridinutans</italic>
,
<italic>A. acrensis</italic>
and
<italic>A. arcoverdensis</italic>
. Mating experiments were not performed in
<italic>A. viridinutans</italic>
and
<italic>A. frankstonensis</italic>
due to the absence of opposite mating type strains.</p>
<p>Opposite mating type isolates of each heterothallic species were also selected for interspecific mating assays and crossed in all possible combinations. Morphological characteristics of AVSC ascospores and induced hybrids are summarised in
<xref rid="T5" ref-type="table">Table 5</xref>
. Only three of 12 selected
<italic>A. udagawae</italic>
isolates produced fertile ascomata with some isolates of
<italic>A. felis</italic>
,
<italic>A. wyomingensis</italic>
or
<italic>A.</italic>
<italic>acrensis</italic>
(
<xref ref-type="fig" rid="F8">Fig. 8</xref>
). The highest mating capacity was observed in the ex-type strain of
<italic>A. udagawae</italic>
IFM 46972 that produced fertile ascomata when crossed with
<italic>A. felis</italic>
(CCF 5609, CCF 4171 and CCF 5611),
<italic>A. wyomingensis</italic>
(CCF 4416 and CCF 4411) and
<italic>A. acrensis</italic>
(IFM 57290). The width and height of ascospores of interspecific hybrids between
<italic>A. udagawae</italic>
and
<italic>A. acrensis</italic>
were significantly different (Tukey's HSD test, p value < 0.05) from
<italic>A. udagawae</italic>
(
<xref ref-type="fig" rid="F8">Fig. 8</xref>
). Approximately 50 % of hybrid ascospores from mating CMF ISB 2190 with IFM 57290 lacked visible equatorial crests and if present, they were frequently interrupted or stellate (
<xref ref-type="fig" rid="F9">Fig. 9</xref>
) in contrast to
<italic>A. udagawae</italic>
(visible crests present in > 90 % of ascospores, crests continuous). The ascomata from mating IFM 46972 with IFM 57290 contained only low numbers of ascospores that were globose or subglobose and glabrous (without crests and ornamentation on convex surface). This observation supported the hypothesis that
<italic>A. acrensis</italic>
is a separate species despite its close phylogenetic relationships to
<italic>A. udagawae</italic>
. The ascospore dimensions of hybrids between
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
were similar to those of
<italic> A. udagawae</italic>
and both width and height were significantly different (Tukey's HSD test, p value < 0.05) from
<italic>A. wyomingensis</italic>
(
<xref ref-type="fig" rid="F8">Fig. 8</xref>
). These hybrid ascospores had well-defined equatorial crests that were most commonly 0.5–1 μm broad and similar to those of
<italic>A. udagawae</italic>
(
<xref ref-type="fig" rid="F9">Fig. 9</xref>
). The hybrids of
<italic>A. udagawae</italic>
and
<italic>A. felis</italic>
had ascospores with similar equatorial crest length and body width to
<italic>A. udagawae</italic>
but were significantly different from
<italic>A. felis</italic>
, and their height was significantly different from both
<italic>A. felis</italic>
and
<italic>A. udagawae</italic>
(
<xref ref-type="fig" rid="F8">Fig. 8</xref>
). The ascomata of hybrids between
<italic>A. udagawae</italic>
with
<italic>A. wyomingensis</italic>
and
<italic>A. felis</italic>
, respectively, usually contained only low numbers of ascospores. No mating or production of infertile ascomata only was observed between crosses of
<italic>A.</italic>
<italic>udagawae</italic>
and the remaining heterothallic AVSC members (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
). Interestingly, the majority of interspecific hybrids produced approximately 1–10 % of globose or subglobose asco-spores with abnormally large dimensions, approximately 6.5–10.5 μm diam (their dimensions were not included for calculations of statistical measures in
<xref ref-type="fig" rid="F8">Fig. 8</xref>
and
<xref ref-type="fig" rid="F10">10</xref>
, and in
<xref rid="T5" ref-type="table">Table 5</xref>
). These cells had thick walls similar to normal ascospores, but lacked equatorial crests and had a glabrous or echinulate surface. Their dimensions were intermediate between normal ascospores and asci but their walls were dissimilar to those of thin-walled asci. These cells were not observed among progeny of the intraspecific crosses (intraspecific mating assay) and their presence probably indicates a defect in meiosis and ascospore development.</p>
<p>Two MAT1-1-1 isolates of
<italic>A. pseudoviridinutans</italic>
selected for interspecific mating assays, namely the ex-type strain NRRL 62904 and strain IFM 59502, were able to mate with a relatively high number of MAT1-2-1 isolates of
<italic>A. felis</italic>
(
<xref ref-type="fig" rid="F10">Fig. 10</xref>
). The ascospores of these hybrids were statistically significantly different in their width and height from
<italic>A. felis</italic>
. Equatorial crests were absent in approximately 5–20 % hybrid ascospores and, if present, they were shorter than those of
<italic>A. felis</italic>
(
<xref rid="T5" ref-type="table">Table 5</xref>
). These observations suggest that
<italic>A. pseudoviridinutans</italic>
should be treated as a separate species as proposed by species delimitation methods despite the close phylogenetic relationships of both species and incomplete lineage sorting detected between these two species (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
). Only one interspecific hybrid was induced in our assay between
<italic>A. wyomingensis</italic>
CCF 4169 and
<italic>A. felis</italic>
NRRL 62900. The ascospore body width and height of this hybrid was significantly different from both parental species (
<xref ref-type="fig" rid="F10">Fig. 10</xref>
). In contrast to
<italic>A. wyomingensis</italic>
, equatorial crests were present in the majority of hybrids and they were occasionally interrupted and stellate (
<xref ref-type="fig" rid="F11">Fig. 11</xref>
). Infertile ascomata were observed in some crosses between
<italic>A. felis</italic>
and following species:
<italic>A. acrensis</italic>
,
<italic>A. wyomingensis</italic>
and
<italic>A. viridinutans</italic>
.</p>
<p>
<italic>Aspergillus aureolus</italic>
and
<italic>A. siamensis</italic>
are the only two homothallic species in the AVSC and readily produce ascomata on a broad spectrum of media and growth temperatures and are easily distinguishable from the eight heterothallic AVSC members. Most
<italic>A. aureolus</italic>
isolates produce distinctive yellow colonies in contrast to the whitish colonies of
<italic>A. siamensis</italic>
(
<xref ref-type="fig" rid="F12">Fig. 12</xref>
). The ascospores of both species have similar dimensions, convex surface ornamentation and equatorial crest length (
<xref rid="T5" ref-type="table">Table 5</xref>
,
<xref ref-type="fig" rid="F12">Fig. 12</xref>
) and most closely resemble those of
<italic>A. felis</italic>
from among heterothallic species.</p>
<p>The macromorphology of colonies, micromorphology of asexual morphs and physiology have only limited discriminatory power in AVSC members, as recognized in previous studies (
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
,
<xref rid="R100" ref-type="bibr">Matsuzawa et al. 2015</xref>
). We compared surface ornamentation of conidia in all currently recognized species using SEM. The ornamentation showed a micro-tuberculate pattern and was broadly identical across all species (
<xref ref-type="fig" rid="F13">Fig. 13</xref>
).</p>
</sec>
</sec>
<sec id="s4">
<title>TAXONOMY</title>
<p>
<bold>
<italic>Aspergillus acrensis</italic>
</bold>
Hubka, A. Nováková, Yaguchi, Matsuz. & Y. Horie,
<italic>sp. nov.</italic>
— MycoBank MB822542;
<xref ref-type="fig" rid="F14">Fig. 14</xref>
</p>
<p>
<italic>Etymology</italic>
. Named after the region of origin of the ex-type strain – state Acre located in the northern Brazil.</p>
<p>Mycelium composed of hyaline, branched, septate, smooth-walled hyphae. Conidial heads greyish green, loosely columnar, up to 140 μm long, 15–25 μm diam. Conidiophores uniseriate, arising from aerial hyphae or the basal mycelium, hyaline to pale yellowish brown, frequently nodding, smooth, 150–600 μm long; stipes 3–5.5(–8) μm wide in the middle; vesicles hyaline to greyish green, pyriform, subclavate to clavate, (6–)9–16(–20) μm diam; phialides ampulliform, hyaline to greyish green, 4.5–6(–7.5) × 1.5–2.5(–3) μm, covering approximately the apical half of the vesicle. Conidia hyaline to greyish green, globose, subglobose to broadly ellipsoidal, smooth-walled to delicately roughened, microtuberculate in SEM, 2.5–3 × 2–2.5 μm (mean ± standard deviation, 2.8 ± 0.2 × 2.4 ± 0.2; length/width ratio 1.1–1.3, 1.2 ± 0.1). Heterothallic, sexual morph unknown.</p>
<p>Culture characteristics (7 d at 25 °C, unless otherwise stated) — Colonies on MEA attained 51–62 mm diam, sparsely lanose, slightly raised, flat, yellowish white (ISCC–NBS No. 92) to pale green (No. 149), no exudate, soluble pigment light greyish yellow (No. 101), reverse light greenish yellow (No. 101) to brilliant greenish yellow (No. 98). Colonies on CYA attained 33–48 mm diam, floccose, slightly raised, flat to slightly radially furrowed, yellowish white (No. 92) to greenish white (No. 153), sporulation in the colony centre pale green (No. 149) to greyish green (No. 150), no exudate, soluble pigment dark greyish yellow (No. 91), reverse deep yellow (No. 85), light olive brown (No. 94) to moderate olive brown (No. 95) with light yellow (No. 86) margin. Colonies on CYA at 37 °C grow more rapidly compared to 25 °C and attained 60–70 mm diam, lanose, slightly raised, flat to radially furrowed, white mycelium in margins, sporulation light olive grey (No. 112) to olive grey (No. 113), no exudate, no soluble pigment, reverse colourless, moderate yellow (No. 87) to greyish yellow (No. 90). Colonies on CZA attained 36–48 mm diam, lanose, slightly raised, flat, yellowish white (No. 92), no exudate, no or light greyish yellow (No. 101) soluble pigment, reverse light yellow (No. 86), light greenish yellow (101) to brilliant greenish yellow (No. 98). Colonies on YES lanose, yellowish white (No. 92), irregularly furrowed, no exudate, soluble pigment brilliant yellow (No. 83), reverse brilliant yellow (No. 83). Colonies on CY20S attained 58–65 mm diam, lanose, slightly raised, flat, yellowish white (No. 92), no exudate, no soluble pigment, reverse moderate brown (No. 58) to moderate reddish brown (No. 43). Colonies on CREA attained 32–35 mm diam, sparsely lanose, plane, mycelium yellowish white, no visible sporulation, reverse strong brown (No. 55), no acid production. Growth on MEA at 45 °C, no growth on MEA at 47 °C.</p>
<p>Exometabolites —
<italic></italic>
Isolate IFM 57291 produced an aszonapyrone, a fumigatin, tryptoquivalines, tryptoquivalones; isolate IFM 57290 an aszonapyrone, fumagillin, fumigatins, helvolic acid, pseurotin A, tryptoquivalines, and a trytoquivalone; isolate CCF 4959 pseurotin A, viriditoxin and several potential naphtho-gamma-pyrones; CCF 4960 antafumicins, fumagillin, a fumigatin, helvolic acid, pseurotin A, and a tryptoquivalone; and CCF 4961 an aszonapyrone, fumagillin, fumigatins, pseurotin A, tryptoquivalines and tryptoquivalones. In general, similar metabolites are also produced by the two most closely related species, i.e.,
<italic>A. aureolus</italic>
and
<italic>A. udagawae</italic>
.
<italic>Aspergillus aureolus</italic>
produces fumagillin, helvolic acid, pseurotin A, tryptoquivalines, tryptoquivalones and viriditoxin as well as several unique yellow secondary metabolites.
<italic>Aspergillus udagawae</italic>
produces fumagillin, fumigatins, tryptoquivalines and tryptoquivalones (
<xref rid="R43" ref-type="bibr">Frisvad & Larsen 2015a</xref>
).</p>
<p>
<italic>Specimens examined.</italic>
B
<sc>razil</sc>
, State of Acre, Xapuri, grassland soil in a cattle farm, 6 Nov. 2001,
<italic>Y. Horie</italic>
(holotype IFM 57291H, isotypes PRM 935088 and PRM 935089, culture ex-type IFM 57291
<sup>T</sup>
= CCF 4670
<sup>T</sup>
); State of Amazonas, Manaus, forest soil in tropical rain forest, 11 Nov. 2001,
<italic>Y. Horie</italic>
, culture IFM 57290 (= CCF 4666). –R
<sc>omania</sc>
, Movile cave, above the Lake Room, cave sediment, 8 June 2014,
<italic>A. Nováková</italic>
, culture CCF 4959; Movile cave, cave corridor, cave sediment, 8 June 2014,
<italic>A. Nováková</italic>
, culture CCF 4960; Movile cave, Lake Room, cave sediment, 8 June 2014,
<italic>A. Nováková</italic>
, culture CCF 4961.</p>
<p>Notes —
<italic></italic>
The morphology of
<italic>A. acrensis</italic>
strongly resembles that of several other
<italic>A. viridinutans</italic>
complex members. The closely related taxa
<italic>A. aureolus</italic>
and
<italic>A. siamensis</italic>
are readily distinguished from
<italic>A. acrensis</italic>
by the production of ascomata under standard cultivation conditions (both are homothallic).
<italic>Aspergillus viridinutans</italic>
and
<italic>A. frankstonensis</italic>
grow more slowly at 25 °C and have smaller vesicles. The macromorphology of colonies and micromorphology of the asexual morph does not distinguish
<italic>A. acrensis</italic>
reliably from
<italic>A. arcoverdensis</italic>
,
<italic>A. felis</italic>
,
<italic> A. pseudoviridinutans</italic>
,
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
. Some of these species can be differentiated each from the other by their characteristic sexual morph, but the production of ascomata was not induced in
<italic>A. acrensis</italic>
despite our attempts, similarly to
<italic>A. arcoverdensis</italic>
and
<italic>A. pseudoviridinutans</italic>
. Although isolate IFM 57290 was successfully crossed with isolates of
<italic>A. udagawae</italic>
IFM 46972 and CMF ISB 2190
<italic>in vitro</italic>
, both the width and height of ascospores were statistically different from
<italic>A. udagawae</italic>
. Also, abnormalities in the shape and superficial ornamentation (
<xref ref-type="fig" rid="F9">Fig. 9</xref>
) were present in a significant number of spores (equatorial crests were absent in ~ 50 % of ascospores). Reliable identification of
<italic>A. acrensis</italic>
can currently only be achieved by molecular methods.</p>
<p>
<bold>
<italic>Aspergillus udagawae</italic>
</bold>
Horie et al., Mycoscience 36: 199. 1995.</p>
<p>
<italic>Epitypification.</italic>
B
<sc>razil</sc>
, São Paulo State, Botucatú, Lagoa Seka Avea, soil in a plantation, 23 Aug. 1993,
<italic>M. Takada</italic>
(holotype CBM-FA-0711, designated by
<xref rid="R55" ref-type="bibr">Horie et al. (1995)</xref>
, epitype designated here PRM 945579, isoepitypes PRM 945580 and 945581, MycoBank MBT378451, culture ex-epitype IFM 46972 = CBS 114217 = DTO 157-D7 = CBM-FA 0702 = KACC 41155 = CCF 4558).</p>
<p>Notes —
<italic></italic>
<xref rid="R55" ref-type="bibr">Horie et al. (1995)</xref>
designated the specimen CBM-FA-0711 as a holotype of
<italic>A. udagawae</italic>
, a dried culture with ascomata created by crossing the isolates CBM-FA-0702 (MAT1-1-1) × CBM-FA-0703 (MAT1-2-1). Although this specimen demonstrates the sexual and asexual morph of the life cycle, it is not suitable for the purposes of the recent taxonomy for several reasons. First of all, it is not clear which of the two cultures contained within the type should be considered the ex-holotype culture. Additionally, interspecific hybrids can be induced by crossing opposite mating type strains of unrelated species
<italic>in vitro</italic>
as shown in this study and some previous studies (see Discussion), and deposition of a resultant ‘hybrid’ type could lead to ambiguities. Although this second argument does not apply to
<italic>A. udagawae</italic>
as both isolates included in the holotype are closely related phylogenetically, we believe that a more clearly defined type of this species will facilitate future taxonomic work. Because it is not possible to recognize which part of the holotype belongs to particular isolate, lectotype designation (in this case part of holotype specimen) is difficult. For this reason we decided to select an epitype PRM 945579 derived from the IFM 46972 (= CBM-FA 0702) culture.</p>
</sec>
<sec id="s5">
<title>dISCUSSION</title>
<sec id="s5a">
<title>Changing species concepts in the AVSC</title>
<p>The AVSC members show considerable phenotypic variability but usually share production of nodding heads (some vesicles borne at an angle to the stipe) and relatively poor sporulation with abundant aerial mycelium. All species have a maximum growth temperature of 42 or 45 °C and the macromorphology and diameter of their colonies are similar, except for
<italic>A. viridinutans</italic>
and
<italic>A. frankstonensis</italic>
, which grow more slowly than remaining species. In addition, the morphology of conidiophores and conidia is relatively uniform across species, including the superficial ornamentation of conidia as shown here (
<xref ref-type="fig" rid="F13">Fig. 13</xref>
). For these reasons heterothallic AVSC members have resisted taxonomic classification and were only identified to a species complex level, until recently.</p>
<p>Due to the absence of taxonomically informative characters, most recently described species in the AVSC were delimited using the GCPSR rules. Using this approach, the species are recognized based on concordance between single-gene phylogenies and the absence of tree incongruities. The GCPSR has found wide application in the taxonomy of fungi (
<xref rid="R34" ref-type="bibr">Dettman et al. 2006</xref>
,
<xref rid="R64" ref-type="bibr">Hubka et al. 2013a</xref>
,
<xref rid="R119" ref-type="bibr">Peterson et al. 2015</xref>
,
<xref rid="R158" ref-type="bibr">Visagie et al. 2017</xref>
). Huge progress has been made recently in the development of statistical methods for multilocus species delimitation, driven by advances in the multispecies coalescent model (
<xref rid="R16" ref-type="bibr">Bouckaert et al. 2014</xref>
,
<xref rid="R41" ref-type="bibr">Flot 2015</xref>
,
<xref rid="R42" ref-type="bibr">Fontaneto et al. 2015</xref>
,
<xref rid="R134" ref-type="bibr">Schwarzfeld & Sperling 2015</xref>
,
<xref rid="R74" ref-type="bibr">Jones 2017</xref>
). Although the ideology of MSC delimitation methods is relatively similar to GCPSR, these methods are more robust because the species are delimited in three steps, i.e., species discovery, species tree construction and species validation (
<xref rid="R23" ref-type="bibr">Carstens et al. 2013</xref>
). The determination of species boundaries is more objective in contrast to GCPSR rules that are based on relatively subjective evaluation and comparison of single-gene trees. In addition, MSC methods are able to deal better with phenomena such as incomplete lineage sorting, recombination or non-reciprocal monophyly that lead to incongruences between single-gene trees. Compared to the phylogenetic analysis of concatenated gene datasets (including partitioned datasets) and in part also GCPSR, the MSC methods are less prone to over-delimitation of species (
<xref rid="R32" ref-type="bibr">Degnan & Rosenberg 2006</xref>
,
<xref rid="R87" ref-type="bibr">Kubatko & Degnan 2007</xref>
,
<xref rid="R54" ref-type="bibr">Heled & Drummond 2010</xref>
,
<xref rid="R127" ref-type="bibr">Rosenberg 2013</xref>
), especially when the results of multiple delimitation methods are compared in one analysis.</p>
<p>The GCPSR rules together with evaluation of limited phenotypic data were recently used for description of
<italic>A. felis</italic>
,
<italic>A.</italic>
<italic>arcoverdensis</italic>
and
<italic>A. frankstonensis</italic>
in the AVSC (
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R100" ref-type="bibr">Matsuzawa et al. 2015</xref>
,
<xref rid="R154" ref-type="bibr">Talbot et al. 2017</xref>
). Genealogical analysis using five genetic loci was carried out for delimitation of
<italic>A.</italic>
<italic>parafelis</italic>
,
<italic>A. pseudofelis</italic>
and
<italic>A. pseudoviridinutans</italic>
, three close relatives of
<italic>A. felis</italic>
(
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
). Although the authors found no conflict between single-gene phylogenies, only two isolates of each of these four species were used in analysis, and sequences of
<italic>A. felis</italic>
,
<italic>A. parafelis</italic>
and
<italic>A. pseudofelis</italic>
strains included were almost invariable. These isolates did not cover sufficiently the genetic diversity of these species as shown here. Species delimitation results based on MSC in this study showed that
<italic>A. parafelis</italic>
and
<italic>A. pseudofelis</italic>
are included in the genetically diverse lineage of
<italic>A. felis</italic>
(
<xref ref-type="fig" rid="F3">Fig. 3</xref>
). The intraspecific pairwise genetic distances in
<italic>A. felis</italic>
(
<xref rid="T6" ref-type="table">Table 6</xref>
) range from 0.6 % (
<italic>RPB2</italic>
) to 4.2 % (
<italic>benA</italic>
). Similarly, pairwise genetic distances in
<italic>A. udagawae</italic>
(
<xref rid="T6" ref-type="table">Table 6</xref>
) are 1.1 % (
<italic>benA</italic>
) to 4.9 % (
<italic>act</italic>
). Such high intraspecific diversity in these genetic loci is unusual in
<italic>Aspergillus</italic>
and it reflects the intense recombination. Thus, when only limited number of strains from such species are selected for phylogenetic analysis, the results of species delimitation techniques may be biased and prone to overestimate the number of species. As we have shown here, this was clearly the case in the study of
<xref rid="R149" ref-type="bibr">Sugui et al. (2014)</xref>
. This problem is probably widespread in current fungal taxonomy and limits possibilities of correct species boundaries delimitation. Also in this study, the number of strains of some closely related and phenotypically similar species is underrepresented, e.g.,
<italic>A.</italic>
<italic>viridinutans</italic>
and
<italic>A. frankstonensis</italic>
. In these cases, the species boundaries cannot be reliably defined using neither GCPSR rules nor MSC-based methods used in this study.</p>
</sec>
<sec id="s5b">
<title>Clinically relevant species and their identification in clinical setting</title>
<p>Although sect.
<italic>Fumigati</italic>
harbours many important pathogenic species, members of the AVSC have been overlooked by both clinicians and mycologists until recently. The presence of these soil-borne species in clinical material was first reported by
<xref rid="R79" ref-type="bibr">Katz et al. (2005)</xref>
who examined phylogenetic positions of several ‘atypical’ (poorly sporulating) clinical isolates of
<italic>A. fumigatus</italic>
. The majority of these strains grouped with, but were not identical to,
<italic>A. viridinutans</italic>
and
<italic>A. aureolus</italic>
from the AVSC. Since then many similar epidemiological and clinical studies have reported the pathogenic role of AVSC members in humans and animals, as reviewed by
<xref rid="R153" ref-type="bibr">Talbot & Barrs (2018)</xref>
. In humans the most common manifestation of disease is chronic invasive pulmonary aspergillosis in immunocompromised patients. AVSC species are also frequently reported as a cause of sino-orbital aspergillosis (SOA) in cats that is chronic, but frequently fatal. In contrast to humans and dogs, the disease usually affects ostensibly immunocompetent cats. This increasingly recognised clinical entity is most frequently caused by the AVSC species and less frequently by other cryptic species in sect.
<italic>Fumigati</italic>
(
<xref rid="R13" ref-type="bibr">Barrs et al. 2012</xref>
,
<xref rid="R14" ref-type="bibr">2013</xref>
,
<xref rid="R16" ref-type="bibr">2014</xref>
).</p>
<p>Based on the species boundaries redefined in this study, the AVSC encompasses four species that are confirmed opportunistic pathogens. According to a number of reported cases, in humans
<italic>A. udagawae</italic>
is the most important opportunistic pathogenic from the AVSC followed by
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
. In contrast, SOA in cats is most commonly caused by
<italic>A. felis</italic>
and much less frequently by
<italic>A. udagawae</italic>
and
<italic>A.</italic>
<italic>wyomingensis</italic>
(
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R16" ref-type="bibr">2014</xref>
).</p>
<p>Medically important species from the AVSC demonstrate elevated minimum inhibitory concentrations (MICs) of itraconazole and voriconazole
<italic>in vitro</italic>
, and a variable susceptibility to amphotericin B, while posaconazole and echinocandins have potent
<italic>in vitro</italic>
activities (
<xref rid="R98" ref-type="bibr">Lyskova et al. 2018</xref>
). Since the intraspecific variation in MICs of particular antifungals is usually high, the use of reliable methods for MIC determinations takes precedence over correct identification to a species level. The latter may be challenging or even impossible in the clinical setting. However, identification to the level of species complex and differentiation from
<italic>A. fumigatus</italic>
is important due to strikingly different antifungal susceptibility patterns.</p>
<p>In contrast to
<italic>A. fumigatus</italic>
, the AVSC species do not grow at 47 and 50 °C, usually sporulate less and a proportion of their vesicles are borne at an angle to the stipe. In addition, some isolates produce acidic compounds detectable on CREA (
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
,
<xref rid="R153" ref-type="bibr">Talbot & Barrs 2018</xref>
). Despite the fact that ITS rDNA region sequences are not available for all AVSC members, this universal marker for fungal species identification and barcoding can be used to achieve identification to a species complex level. The sequences from all six protein-coding genes included in this study (
<xref rid="T2" ref-type="table">Table 2</xref>
) have sufficient discriminatory power for species level identification of all clinically relevant species. Among these genes, sequences of β-tubulin and calmodulin belong to the most commonly used in the clinical practice when correct identification is required (epidemiological studies, outbreak investigations or when dealing with infections refractory to antifungal therapy). However, the discrimination between
<italic>A. felis</italic>
and
<italic>A. pseudoviridinutans</italic>
can be limited when using the β-tubulin gene due to the incomplete lineage sorting phenomenon detected in this study (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
).</p>
<p>Additionally, the increasingly used method of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gives promising results for rapid and accurate discrimination between
<italic>A. fumigatus</italic>
and other clinically relevant aspergilli from sect.
<italic>Fumigati</italic>
(
<xref rid="R1" ref-type="bibr">Alanio et al. 2011</xref>
,
<xref rid="R106" ref-type="bibr">Nakamura et al. 2017</xref>
). The development of more robust, curated and accessible MALDI-TOF spectrum databases should enable the implementation of MALDI-TOF MS for routine identification of less common aspergilli in future. Several PCR assays targeting protein-coding or microsatellite loci have also been developed and show good efficiency in discrimination of less common pathogenic species in sect.
<italic>Fumigati</italic>
(
<xref rid="R7" ref-type="bibr">Araujo et al. 2012</xref>
,
<xref rid="R40" ref-type="bibr">Fernandez-Molina et al. 2014</xref>
,
<xref rid="R28" ref-type="bibr">Chong et al. 2017</xref>
).</p>
</sec>
<sec id="s5c">
<title>Mating behaviour in the AVSC – heterothallic species</title>
<p>The increasing availability of PCR-based tools for identification of fungal genes responsible for sexual and somatic incompatibility has facilitated the ability to induce the sexual morph in fungi (
<xref rid="R38" ref-type="bibr">Dyer & O’Gorman 2011</xref>
). The characterisation of mating type (MAT) genes became routine when inducing the sexual morph of heterothallic species
<italic>in vitro</italic>
. Using this approach, the sexual morph has been induced recently in at least five members of sect.
<italic>Fumigati</italic>
(
<xref rid="R116" ref-type="bibr">O’Gorman et al. 2009</xref>
,
<xref rid="R14" ref-type="bibr">Barrs et al. 2013</xref>
,
<xref rid="R151" ref-type="bibr">Swilaiman et al. 2013</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
,
<xref rid="R62" ref-type="bibr">Hubka et al. 2017</xref>
). The discovery of a sexual cycle in pathogenic and mycotoxigenic fungi has many important consequences, because fungi with a functional sexual cycle have greater potential to increase their virulence and to develop resistance to antifungals, fungicides, etc. (
<xref rid="R89" ref-type="bibr">Kwon-Chung & Sugui 2009</xref>
,
<xref rid="R93" ref-type="bibr">Lee et al. 2010</xref>
,
<xref rid="R151" ref-type="bibr">Swilaiman et al. 2013</xref>
).</p>
<p>Here, we induced the sexual morph with a relatively high rate of success in
<italic>A. felis</italic>
,
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
(
<xref ref-type="fig" rid="F6">Fig. 6</xref>
). We demonstrated that ascospores of these three species have relatively stable morphology (
<xref ref-type="fig" rid="F7">Fig. 7</xref>
) and that the size of their ascospores is significantly different from one another (
<xref ref-type="fig" rid="F6">Fig. 6</xref>
) and can be differentiated by equatorial crest length (
<xref rid="T5" ref-type="table">Table 5</xref>
). However, not all opposite mating type strains of the same species are able to produce ascomata
<italic>in vitro</italic>
as demonstrated in all three mentioned species (
<xref ref-type="fig" rid="F6">Fig. 6</xref>
). A similar decline in mating capacity was also demonstrated in previous studies on the AVSC (
<xref rid="R150" ref-type="bibr">Sugui et al. 2010</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
), but also in
<italic>A.</italic>
<italic>lentulus</italic>
(
<xref rid="R151" ref-type="bibr">Swilaiman et al. 2013</xref>
) and
<italic>A. fumigatus</italic>
(
<xref rid="R116" ref-type="bibr">O’Gorman et al. 2009</xref>
). These species require relatively rigid conditions to complete their sexual cycle and some crosses produce low numbers of or infertile ascomata or do not mate at all (
<xref rid="R11" ref-type="bibr">Balajee et al. 2006</xref>
,
<xref rid="R163" ref-type="bibr">Yaguchi et al. 2007</xref>
,
<xref rid="R89" ref-type="bibr">Kwon-Chung & Sugui 2009</xref>
,
<xref rid="R150" ref-type="bibr">Sugui et al. 2010</xref>
,
<xref rid="R113" ref-type="bibr">Nováková et al. 2014</xref>
). For instance, fertility between two opposite mating-type isolates may be influenced by the vegetative incompatibility genes (
<xref rid="R117" ref-type="bibr">Olarte et al. 2015</xref>
), regulators of cleistothecium development and hyphal fusion (
<xref rid="R152" ref-type="bibr">Szewczyk & Krappmann 2010</xref>
).</p>
<p>We were not able to induce the sexual morph in three heterothallic members of the AVSC, i.e.,
<italic>A. acrensis</italic>
,
<italic>A. arcoverdensis</italic>
and
<italic>A. pseudoviridinutans</italic>
, despite the relatively high number of opposite mating-type strains that was available for the mating assays
<italic></italic>
(
<xref ref-type="fig" rid="F6">Fig. 6</xref>
). It is not clear if these species require different conditions for successful mating, if there are other unidentified pre-zygotic mating barriers between opposite mating type strains, or if they have lost the ability to complete their sexual cycle. The evidence that two of these species were able to mate with different species from AVSC makes the last possibility improbable (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
,
<xref ref-type="fig" rid="F10">10</xref>
). These hybrids can be differentiated from
<italic>A. udagawae</italic>
and
<italic>A. felis</italic>
, respectively, by their dimensions (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
,
<xref ref-type="fig" rid="F10">10</xref>
) and surface ornamentation (
<xref ref-type="fig" rid="F9">Fig. 9</xref>
,
<xref ref-type="fig" rid="F11">11</xref>
;
<xref rid="T5" ref-type="table">Table 5</xref>
). It demonstrates that both
<italic>A. acrensis</italic>
and
<italic>A. pseudoviridinutans</italic>
should be treated as separate taxonomic entities from their related species. Similar deviations in size and surface ornamentation of ascospores were demonstrated in other interspecific hybrids (
<xref ref-type="fig" rid="F8">Fig. 8–11</xref>
) when they were compared to parental species.</p>
</sec>
<sec id="s5d">
<title>Mating behaviour in the AVSC – homothallic species</title>
<p>Although homothallic species prevail over heterothallic in sect.
<italic>Fumigati</italic>
(
<xref ref-type="fig" rid="F1">Fig. 1</xref>
), only two homothallic species are present in the AVSC. It is supposed that heterothallism is ancestral to homothallism in fungi (
<xref rid="R108" ref-type="bibr">Nauta & Hoekstra 1992</xref>
), including
<italic>Aspergillus</italic>
(
<xref rid="R128" ref-type="bibr">Rydholm et al. 2007</xref>
,
<xref rid="R93" ref-type="bibr">Lee et al. 2010</xref>
). It is obvious from phylogenetic studies across different subgenera of
<italic>Aspergillus</italic>
, that reproductive strategy is evolutionary conservative and homothallic as well as heterothallic (or asexual) species are typically clustered in clades with a uniform reproductive strategy. For instance in subg.
<italic>Aspergillus</italic>
, the 31 currently accepted species of sect.
<italic>Aspergillus</italic>
are all homothallic (
<xref rid="R25" ref-type="bibr">Chen et al. 2016a</xref>
) while sister sect.
<italic>Restricti</italic>
encompasses 20 asexual and only one distantly related homothallic species,
<italic>A. halophilicus</italic>
(
<xref rid="R141" ref-type="bibr">Sklenář et al. 2017</xref>
). Similarly, subg.
<italic>Polypaecilum</italic>
harbours only asexual species (
<xref rid="R99" ref-type="bibr">Martinelli et al. 2017</xref>
,
<xref rid="R155" ref-type="bibr">Tanney et al. 2017</xref>
). Asexual species also predominate in subg.
<italic>Circumdati</italic>
(
<xref rid="R76" ref-type="bibr">Jurjević et al. 2015</xref>
) although most, if not all, probably have a cryptic sexual cycle as highlighted by sexual morph induction in
<italic>A. flavus</italic>
,
<italic>A. nomius</italic>
,
<italic>A. parasiticus</italic>
,
<italic>A. terreus</italic>
and
<italic>A. tubingensis</italic>
(
<xref rid="R56" ref-type="bibr">Horn et al. 2009a</xref>
,
<xref rid="R59" ref-type="bibr">b</xref>
,
<xref rid="R57" ref-type="bibr">2011</xref>
,
<xref rid="R58" ref-type="bibr">2013</xref>
,
<xref rid="R6" ref-type="bibr">Arabatzis & Velegraki 2013</xref>
). A strikingly different situation is present in subgenera
<italic>Nidulantes</italic>
(
<xref rid="R25" ref-type="bibr">Chen et al. 2016a</xref>
,
<xref rid="R69" ref-type="bibr">Hubka et al. 2016a</xref>
),
<italic>Fumigati</italic>
(
<xref ref-type="fig" rid="F1">Fig. 1</xref>
) and
<italic>Cremei</italic>
(
<xref rid="R70" ref-type="bibr">Hubka et al. 2016b</xref>
) where heterothallic and homothallic species interchange like a mosaic along the phylogenetic tree.</p>
<p>Common genetic distances between closely related sister species across aspergilli usually range between 2–4 % in
<italic>benA</italic>
and
<italic>CaM</italic>
loci and 1–2 % in
<italic>RPB2</italic>
locus; the situation in AVSC is very similar (
<xref rid="T7" ref-type="table">Table 7</xref>
). Interestingly, there are only few examples of closely related homothallic and heterothallic/asexual species in
<italic>Aspergillus</italic>
despite their common origin. Genetic similarities between related couples of homothallic and heterothallic/asexual exceeding 95 % are rare, with only two examples in subg.
<italic>Circumdati</italic>
and one in subg.
<italic>Cremei</italic>
(
<xref rid="T8" ref-type="table">Table 8</xref>
). Section
<italic>Fumigati</italic>
is exceptional because it contains at least five pairs of highly related homothallic and heterothallic species (
<xref rid="T8" ref-type="table">Table 8</xref>
;
<xref ref-type="fig" rid="F1">Fig. 1</xref>
).
<italic>Aspergillus acrensis</italic>
, described here, and
<italic>A. aureolus</italic>
represent the most closely related pair across genus
<italic>Aspergillus</italic>
(
<xref rid="T8" ref-type="table">Table 8</xref>
) and thus could be an ideal model for studying the evolution of reproductive modes. If we accept the hypothesis about the derived origin of homothallic species, it is probable that
<italic>A. aureolus</italic>
evolved in the lineage of
<italic>A. acrensis</italic>
relatively recently, due to the extremely low genetic distances of both species. This is also likely the reason why the multilocus species delimitation method STACEY and also some single-locus methods failed to segregate
<italic>A. acrensis</italic>
from
<italic>A. aureolus</italic>
(
<xref ref-type="fig" rid="F2">Fig. 2</xref>
) in this study.</p>
</sec>
<sec id="s5e">
<title>Interspecific hybridization in fungi and its consequences</title>
<p>Interspecific hybridization is an important process affecting speciation and adaptation of micro- and macroorganisms, however, relatively little is still known about the frequency of hybridization in fungi and its role in evolution of fungal species. Fungal hybrids may form either by a partial or complete sexual cycle or by a parasexual process. Mating between two species may be prevented by pre-zygotic barriers (e.g., gamete recognition) and various post-zygotic barriers (developmental problems, hybrid viability and ability to reproduce, etc.). The disagreement between phylogenetic/morphological species concepts and biological species compatibilities has been repeatedly described in fungi. Phylogenetic divergence in some fungal groups might have preceded development of reproductive barriers as shown by interspecific hybrids induced
<italic>in vitro</italic>
between primary human and animal pathogenic
<italic>Trichophyton</italic>
species (
<xref rid="R81" ref-type="bibr">Kawasaki et al. 2009</xref>
,
<xref rid="R82" ref-type="bibr">2010</xref>
,
<xref rid="R5" ref-type="bibr">Anzawa et al. 2010</xref>
,
<xref rid="R80" ref-type="bibr">Kawasaki 2011</xref>
), opportunistic pathogenic
<italic>Candida albicans</italic>
and
<italic>C. dubliniensis</italic>
(
<xref rid="R122" ref-type="bibr">Pujol et al. 2004</xref>
), members of
<italic>Aspergillus</italic>
sect.
<italic>Fumigati</italic>
(
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
,
<xref rid="R154" ref-type="bibr">Talbot et al. 2017</xref>
), mycotoxigenic
<italic>A.</italic>
<italic>flavus</italic>
and
<italic>A. parasiticus</italic>
(
<xref rid="R117" ref-type="bibr">Olarte et al. 2015</xref>
),
<italic>A.</italic>
<italic>flavus</italic>
and
<italic>A. minisclerotigenes</italic>
(
<xref rid="R31" ref-type="bibr">Damann & DeRobertis 2013</xref>
), phytopathogenic species from the
<italic>Fusarium graminearum</italic>
complex (
<xref rid="R19" ref-type="bibr">Bowden & Leslie 1999</xref>
) and species of
<italic>Neurospora</italic>
(
<xref rid="R35" ref-type="bibr">Dettman et al. 2003</xref>
). Natural interspecific hybrids resulting from recombination between species or parasexual reproduction are most commonly reported and have been extensively studied in saprophytic yeasts (
<xref rid="R53" ref-type="bibr">González et al. 2008</xref>
,
<xref rid="R140" ref-type="bibr">Sipiczki 2008</xref>
,
<xref rid="R107" ref-type="bibr">Nakao et al. 2009</xref>
,
<xref rid="R97" ref-type="bibr">Louis et al. 2012</xref>
), the plant endophyte
<italic>Epichloë</italic>
(
<xref rid="R30" ref-type="bibr">Cox et al. 2014</xref>
,
<xref rid="R24" ref-type="bibr">Charlton et al. 2014</xref>
,
<xref rid="R138" ref-type="bibr">Shymanovich et al. 2017</xref>
) and in various plant pathogenic fungi including species of
<italic>Fusarium graminearum</italic>
complex (
<xref rid="R115" ref-type="bibr">O’Donnell et al. 2004</xref>
,
<xref rid="R146" ref-type="bibr">Starkey et al. 2007</xref>
),
<italic>Ophiostoma</italic>
(
<xref rid="R21" ref-type="bibr">Brasier et al. 1998</xref>
,
<xref rid="R142" ref-type="bibr">Solla et al. 2008</xref>
),
<italic>Microbotryum</italic>
(
<xref rid="R50" ref-type="bibr">Gladieux et al. 2010</xref>
),
<italic>Melampsora</italic>
(
<xref rid="R143" ref-type="bibr">Spiers & Hopcroft 1994</xref>
,
<xref rid="R110" ref-type="bibr">Newcombe et al. 2000</xref>
),
<italic>Botrytis</italic>
(
<xref rid="R144" ref-type="bibr">Staats et al. 2005</xref>
),
<italic>Verticillium</italic>
(
<xref rid="R72" ref-type="bibr">Inderbitzin et al. 2011</xref>
) and
<italic>Heterobasidion</italic>
(
<xref rid="R52" ref-type="bibr">Gonthier et al. 2007</xref>
,
<xref rid="R96" ref-type="bibr">Lockman et al. 2014</xref>
).</p>
<p>Considering that
<italic>in vitro</italic>
induction of hybrids is relatively successful, it is surprising that reports on the isolation of naturally occurring hybrids are infrequent in human and animal pathogenic fungi. It suggests that post-zygotic mating barriers play a fundamental role in the maintenance of species boundaries. Naturally occurring hybrids have been detected in yeasts and dimorphic fungi, including between
<italic>Candida</italic>
spp. (
<xref rid="R133" ref-type="bibr">Schröder et al. 2016</xref>
),
<italic>Malassezia</italic>
spp. (
<xref rid="R161" ref-type="bibr">Wu et al. 2015</xref>
),
<italic>Cryptococcus neoformans</italic>
and
<italic>C. gattii</italic>
(
<xref rid="R17" ref-type="bibr">Bovers et al. 2006</xref>
,
<xref rid="R18" ref-type="bibr">2008</xref>
,
<xref rid="R90" ref-type="bibr">Kwon-Chung & Varma 2006</xref>
,
<xref rid="R4" ref-type="bibr">Aminnejad et al. 2012</xref>
) and
<italic>Coccidioides immitis</italic>
and
<italic>C. posadasii</italic>
(
<xref rid="R73" ref-type="bibr">Johnson et al. 2015</xref>
). However, to date, reports on these hybrids in filamentous fungi are restricted to the
<italic>Neocosmospora solani</italic>
complex (
<xref rid="R137" ref-type="bibr">Short et al. 2013</xref>
,
<xref rid="R136" ref-type="bibr">2014</xref>
). Species definition has become a controversial issue in some of these species complexes with naturally occurring hybrids because of differing opinions on species concepts among taxonomists (
<xref rid="R90" ref-type="bibr">Kwon-Chung & Varma 2006</xref>
,
<xref rid="R80" ref-type="bibr">Kawasaki 2011</xref>
,
<xref rid="R88" ref-type="bibr">Kwon-Chung et al. 2017</xref>
).</p>
<p>Even in cases where interspecific hybrids with high fitness and fertility can be demonstrated, the intensity of gene flow between natural populations must be sufficient to oppose genetic drift in order to have a significant impact on genetic isolation of species. In fungi, these processes cannot be evaluated rigorously by
<italic>in vitro</italic>
mating assays, as these cannot be extrapolated fully to a natural setting (
<xref rid="R146" ref-type="bibr">Starkey et al. 2007</xref>
,
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
,
<xref rid="R66" ref-type="bibr">Hubka et al. 2015a</xref>
). Indeed, natural interspecific hybrids have never been reported for the majority of species that readily produce hybrids
<italic>in vitro</italic>
, including
<italic>Aspergillus</italic>
, dermatophytes and
<italic>Neurospora</italic>
. The MSC and GCPSR approaches provide practical tools for evaluating the significance of gene flow between natural populations and for assessing species limits. The interpretation of
<italic>in vitro</italic>
mating assays without a robust phylogeny is thus controversial, because a number of clearly phylogenetically, morphologically and ecologically distinct species lack effective reproductive barriers. In addition, the evaluation of biological species limits using mating assays requires determination of the fitness and fertility of progeny, which is demanding in both time and cost.</p>
<p>In general, mating success between different species under laboratory conditions is much lower compared to intraspecific mating, suggesting strong reproductive isolation between species and adherence to the biological species concept. In agreement with this, only a limited number of strains with exceptional mating capacity are usually capable of interspecific hybridization with strains of different species, e.g.,
<italic>A. udagawae</italic>
strain IFM 46972 (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
) or
<italic>A. pseudoviridinutans</italic>
strain IFM 59502 (
<xref ref-type="fig" rid="F10">Fig. 10</xref>
).</p>
<p>Several studies demonstrated that interspecific hybrids express genetic abnormalities or have decreased fertility and viability. Genetic analysis of the progeny of a cross between
<italic>F. asiaticum</italic>
×
<italic>F. graminearum</italic>
detected multiple abnormalities that were absent in intraspecific crosses of
<italic>F. graminearum</italic>
, i.e., pronounced segregation distortion, chromosomal inversions, and recombination in several studied linkage groups (
<xref rid="R75" ref-type="bibr">Jurgenson et al. 2002</xref>
,
<xref rid="R48" ref-type="bibr">Gale et al. 2005</xref>
). Matings between
<italic>C.</italic>
<italic>neoformans</italic>
×
<italic>C. gattii</italic>
produced only a low percentage of viable progeny. It has been suggested that
<italic>C. neoformans</italic>
and
<italic>C. gattii</italic>
produce only stable diploid hybrids, but not true recombinants (
<xref rid="R90" ref-type="bibr">Kwon-Chung & Varma 2006</xref>
). Although
<xref rid="R117" ref-type="bibr">Olarte et al. (2015)</xref>
obtained hybrid progeny of
<italic>A. flavus</italic>
and
<italic>A. parasiticus</italic>
, fertile crosses were rare and involved only one parental strain of
<italic>A.</italic>
<italic>flavus</italic>
. Viable ascospores were extremely rare, suggesting extensive genetic incompatibility and post-zygotic incompatibility mechanisms. Morphologically, the progeny differed from parental strains in growth rate, sclerotium production, stipe length, conidial head seriation and conidial features (
<xref rid="R117" ref-type="bibr">Olarte et al. 2015</xref>
). Decreased viability of hybrid ascospores was also detected among
<italic>Neurospora</italic>
spp. (
<xref rid="R35" ref-type="bibr">Dettman et al. 2003</xref>
) and in
<italic>Aspergillus</italic>
sect.
<italic>Fumigati</italic>
, in addition to abnormalities in their surface ornamentation visualised by SEM (
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
), which is in agreement with the present study (
<xref ref-type="fig" rid="F9">Fig. 9</xref>
,
<xref ref-type="fig" rid="F11">11</xref>
). Apart from ascospore ornamentation, we also found significant differences in hybrid ascospore dimensions from parental species (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
,
<xref ref-type="fig" rid="F10">10</xref>
).</p>
<p>The relatively recent globalization of trade in horticultural and agricultural plants, and introduction of non-native plant species has resulted in the inadvertent introduction of alien plant pathogens into non-endemic areas, contributing to the emergence of some devastating plant diseases (
<xref rid="R20" ref-type="bibr">Brasier 2001</xref>
,
<xref rid="R103" ref-type="bibr">Mehrabi et al. 2011</xref>
,
<xref rid="R36" ref-type="bibr">Dickie et al. 2017</xref>
). Anthropogenic activities or changes in the distribution of fungi (e.g., in response to climate changes) may bring together related, previously allopatric pathogenic species. Subsequent interspecific hybridization could give rise to pathogens with new features, including adaptation to new niches and host species, and varying degrees of virulence, as evidenced in
<italic>Verticillium longisporum</italic>
,
<italic>Zymoseptoria pseudotritici</italic>
,
<italic>Blumeria graminis</italic>
f. sp.
<italic>triticale</italic>
, and hybrids between
<italic>Ophiostoma novo-ulmi</italic>
and
<italic>O. ulmi</italic>
(
<xref rid="R20" ref-type="bibr">Brasier 2001</xref>
,
<xref rid="R131" ref-type="bibr">Schardl & Craven 2003</xref>
,
<xref rid="R33" ref-type="bibr">Depotter et al. 2016</xref>
).</p>
<p>As far as we know, the occurrence of
<italic>Aspergillus</italic>
interspecific hybrids in nature has not been proven despite successful hybridization of some species
<italic>in vitro</italic>
. However, there is no reason to assume that this phenomenon does not occur occasionally. Genetic recombination similar to that found in intraspecific mating occurred in half of the progeny produced by mating
<italic>A. fumigatus</italic>
with
<italic>A. felis</italic>
, while the other half were probably diploids or aneuploids (
<xref rid="R149" ref-type="bibr">Sugui et al. 2014</xref>
). Progeny resulting from mating between
<italic>A. flavus</italic>
and
<italic>A. minisclerotigenes</italic>
was fertile when crossed with parental strains and the frequency of successful matings was similar to that within pairs of
<italic>A. flavus</italic>
and
<italic>A.</italic>
<italic>minisclerotigenes</italic>
strains, respectively (
<xref rid="R31" ref-type="bibr">Damann & DeRobertis 2013</xref>
). Ultimately, the viable hybrid must present some characteristics that promotes its survival (
<xref rid="R156" ref-type="bibr">Turner et al. 2010</xref>
,
<xref rid="R105" ref-type="bibr">Mixão & Gabaldón 2018</xref>
). For instance
<xref rid="R117" ref-type="bibr">Olarte at al. (2015)</xref>
showed that some F
<sub>1</sub>
progeny of
<italic>A. flavus</italic>
×
<italic>A. parasiticus</italic>
produced higher aflatoxin concentrations compared to midpoint parent aflatoxin levels, and some hybrids synthesized G aflatoxins that were not produced by the parents. This suggested that hybridization is an important diversifying force generating novel toxin profiles (
<xref rid="R117" ref-type="bibr">Olarte et al. 2015</xref>
). Although interspecific hybridization in aspergilli is a relatively newly discovered phenomenon, it is likely to have played an important role in the evolution of the genus.</p>
<p>The relationship between hybridization and changes in virulence potential is not well understood in human and animal fungal pathogens but its role in the emergence of novel plant fungal pathogens is well documented, as discussed. The evidence of biological compatibility between major pathogens in
<italic>Aspergillus</italic>
sect.
<italic>Fumigati</italic>
sheds new light on possible interspecific transfer of virulence genes, genes responsible for antifungal resistance, and other genes influencing adaptation of these fungi to a changing environment. Further studies should elucidate to what extent interspecific hybridization shaped the evolution of these opportunistic pathogens.</p>
</sec>
</sec>
<sec id="s6">
<title>CONCLUSIONS</title>
<p>Based on consensus results of species delimitation methods and after evaluation of mating assay results and phenotypic data, we now recognise 10 species within the AVSC. This number comprises nine previously recognised and one new species proposed here.
<italic>Aspergillus pseudofelis</italic>
and
<italic>A. parafelis</italic>
are placed in synonymy with
<italic>A. felis</italic>
. All four genetic loci used for phylogenetic analysis across the AVSC have sufficient variability for reliable species identification and can be used as DNA barcodes. Though more laborious, the MSC are a suitable tool for delimitation of genetically diverse cryptic species in cases where classical phylogenetic, morphological and mating compatibility data do not yield satisfactory results.</p>
</sec>
</body>
<back>
<ack>
<p>This research was supported by the project of the Charles University Grant Agency (GAUK 1434217), Czech Science Foundation (No. 17-20286S), Charles University Research Centre program No. 20406, the project BIOCEV (CZ.1.05/1.1.00/02.0109) provided by the Ministry of Education, Youth and Sports of CR and ERDF, and by a Thompson Research Fellowship from the University of Sydney. We thank Milada Chudíčková and Alena Gabrielová for their invaluable assistance in the laboratory, CCF collection staff (Ivana Kelnarová and Adéla Kovaříčková) for lyophilization of the cultures, Miroslav Hyliš for assistance with scanning electron microscopy, Stephen W. Peterson, Kyung J. Kwon-Chung, Adrian M. Zelazny, Maria Dolores Pinheiro and Dirk Stubbe for providing important cultures for this study. Vit Hubka is grateful for support from the Czechoslovak Microscopy Society (CSMS scholarship 2016).</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="R1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alanio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Beretti</surname>
<given-names>J-L</given-names>
</name>
<name>
<surname>Dauphin</surname>
<given-names>B</given-names>
</name>
</person-group>
, et al.
<year>2011</year>
<article-title>Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species</article-title>
.
<source>Clinical Microbiology and Infection</source>
<volume>17</volume>
:
<fpage>750</fpage>
<lpage>755</lpage>
.
<pub-id pub-id-type="pmid">20673266</pub-id>
</mixed-citation>
</ref>
<ref id="R2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alastruey-Izquierdo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mellado</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Peláez</surname>
<given-names>T</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study)</article-title>
.
<source>Antimicrobial Agents and Chemotherapy</source>
<volume>57</volume>
:
<fpage>3380</fpage>
<lpage>3387</lpage>
.
<pub-id pub-id-type="pmid">23669377</pub-id>
</mixed-citation>
</ref>
<ref id="R3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alcazar-Fuoli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mellado</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Alastruey-Izquierdo</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2008</year>
<article-title>Aspergillus section Fumigati: Antifungal susceptibility patterns and sequence-based identification</article-title>
.
<source>Antimicrobial Agents and Chemotherapy</source>
<volume>52</volume>
:
<fpage>1244</fpage>
<lpage>1251</lpage>
.
<pub-id pub-id-type="pmid">18212093</pub-id>
</mixed-citation>
</ref>
<ref id="R4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aminnejad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Arabatzis</surname>
<given-names>M</given-names>
</name>
</person-group>
, et al.
<year>2012</year>
<article-title>Identification of novel hybrids between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII</article-title>
.
<source>Mycopathologia</source>
<volume>173</volume>
:
<fpage>337</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="pmid">22081254</pub-id>
</mixed-citation>
</ref>
<ref id="R5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anzawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kawasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mochizuki</surname>
<given-names>T</given-names>
</name>
</person-group>
, et al.
<year>2010</year>
<article-title>Successful mating of Trichophyton rubrum with Arthroderma simii</article-title>
.
<source>Medical Mycology</source>
<volume>48</volume>
:
<fpage>629</fpage>
<lpage>634</lpage>
.
<pub-id pub-id-type="pmid">20392147</pub-id>
</mixed-citation>
</ref>
<ref id="R6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arabatzis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Velegraki</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Sexual reproduction in the opportunistic human pathogen Aspergillus terreus</article-title>
.
<source>Mycologia</source>
<volume>105</volume>
:
<fpage>71</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="pmid">23074177</pub-id>
</mixed-citation>
</ref>
<ref id="R7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Araujo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Amorim</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gusmão</surname>
<given-names>L.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Diversity and specificity of microsatellites within Aspergillus section Fumigati</article-title>
.
<source>BMC Microbiology</source>
<volume>12</volume>
:
<fpage>154</fpage>
.
<pub-id pub-id-type="pmid">22838495</pub-id>
</mixed-citation>
</ref>
<ref id="R8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balajee</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Gribskov</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>M</given-names>
</name>
</person-group>
, et al.
<year>2005a</year>
<article-title>Mistaken identity: Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus</article-title>
.
<source>Journal of Clinical Microbiology</source>
<volume>43</volume>
:
<fpage>5996</fpage>
<lpage>5999</lpage>
.
<pub-id pub-id-type="pmid">16333088</pub-id>
</mixed-citation>
</ref>
<ref id="R9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balajee</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Gribskov</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Hanley</surname>
<given-names>E</given-names>
</name>
</person-group>
, et al.
<year>2005b</year>
<article-title>Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus</article-title>
.
<source>Eukaryotic Cell</source>
<volume>4</volume>
:
<fpage>625</fpage>
<lpage>632</lpage>
.
<pub-id pub-id-type="pmid">15755924</pub-id>
</mixed-citation>
</ref>
<ref id="R10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balajee</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Kano</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Baddley</surname>
<given-names>JW</given-names>
</name>
</person-group>
, et al.
<year>2009</year>
<article-title>Molecular identification of Aspergillus species collected for the transplant-associated infection surveillance network</article-title>
.
<source>Journal of Clinical Microbiology</source>
<volume>47</volume>
:
<fpage>3138</fpage>
<lpage>3141</lpage>
.
<pub-id pub-id-type="pmid">19675215</pub-id>
</mixed-citation>
</ref>
<ref id="R11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balajee</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Nickle</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Varga</surname>
<given-names>J</given-names>
</name>
</person-group>
, et al.
<year>2006</year>
<article-title>Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping</article-title>
.
<source>Eukaryotic Cell</source>
<volume>5</volume>
:
<fpage>1705</fpage>
<lpage>1712</lpage>
.
<pub-id pub-id-type="pmid">17030996</pub-id>
</mixed-citation>
</ref>
<ref id="R12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrs</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Beatty</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dhand</surname>
<given-names>NK</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Computed tomographic features of feline sino-nasal and sino-orbital aspergillosis</article-title>
.
<source>The Veterinary Journal</source>
<volume>201</volume>
:
<fpage>215</fpage>
<lpage>222</lpage>
.
<pub-id pub-id-type="pmid">24685469</pub-id>
</mixed-citation>
</ref>
<ref id="R13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrs</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Halliday</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>P</given-names>
</name>
</person-group>
, et al.
<year>2012</year>
<article-title>Sinonasal and sino-orbital aspergillosis in 23 cats: Aetiology, clinicopathological features and treatment outcomes</article-title>
.
<source>The Veterinary Journal</source>
<volume>191</volume>
:
<fpage>58</fpage>
<lpage>64</lpage>
.
<pub-id pub-id-type="pmid">21388842</pub-id>
</mixed-citation>
</ref>
<ref id="R14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrs</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Van Doorn</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Houbraken</surname>
<given-names>J</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats and dogs</article-title>
.
<source>PLoS One</source>
<volume>8</volume>
:
<fpage>e64871</fpage>
.
<pub-id pub-id-type="pmid">23798996</pub-id>
</mixed-citation>
</ref>
<ref id="R15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouckaert</surname>
<given-names>RR</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>DensiTree: making sense of sets of phylogenetic trees</article-title>
.
<source>Bioinformatics</source>
<volume>26</volume>
:
<fpage>1372</fpage>
<lpage>1373</lpage>
.
<pub-id pub-id-type="pmid">20228129</pub-id>
</mixed-citation>
</ref>
<ref id="R16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouckaert</surname>
<given-names>R[R]</given-names>
</name>
<name>
<surname>Heled</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kühnert</surname>
<given-names>D</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>BEAST 2: a software platform for Bayesian evolutionary analysis</article-title>
.
<source>PLoS Computational Biology</source>
<volume>10</volume>
:
<fpage>e1003537</fpage>
.
<pub-id pub-id-type="pmid">24722319</pub-id>
</mixed-citation>
</ref>
<ref id="R17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bovers</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hagen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kuramae</surname>
<given-names>EE</given-names>
</name>
</person-group>
, et al.
<year>2006</year>
<article-title>Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii</article-title>
.
<source>FEMS Yeast Research</source>
<volume>6</volume>
:
<fpage>599</fpage>
<lpage>607</lpage>
.
<pub-id pub-id-type="pmid">16696655</pub-id>
</mixed-citation>
</ref>
<ref id="R18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bovers</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hagen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kuramae</surname>
<given-names>EE</given-names>
</name>
</person-group>
, et al.
<year>2008</year>
<article-title>AIDS patient death caused by novel Cryptococcus neoformans × C. gattii hybrid</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>14</volume>
:
<fpage>1105</fpage>
<lpage>1108</lpage>
.
<pub-id pub-id-type="pmid">18598632</pub-id>
</mixed-citation>
</ref>
<ref id="R19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowden</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Leslie</surname>
<given-names>JF</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Sexual recombination in Gibberella zeae</article-title>
.
<source>Phytopathology</source>
<volume>89</volume>
:
<fpage>182</fpage>
<lpage>188</lpage>
.
<pub-id pub-id-type="pmid">18944794</pub-id>
</mixed-citation>
</ref>
<ref id="R20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brasier</surname>
<given-names>CM</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Rapid evolution of introduced plant pathogens via interspecific hybridization</article-title>
.
<source>Bioscience</source>
<volume>51</volume>
:
<fpage>123</fpage>
<lpage>133</lpage>
.</mixed-citation>
</ref>
<ref id="R21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brasier</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Kirk</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Pipe</surname>
<given-names>ND</given-names>
</name>
</person-group>
, et al.
<year>1998</year>
<article-title>Rare interspecific hybrids in natural populations of the Dutch elm disease pathogens Ophiostoma ulmi and O. novo-ulmi</article-title>
.
<source>Mycological Research</source>
<volume>102</volume>
:
<fpage>45</fpage>
<lpage>57</lpage>
.</mixed-citation>
</ref>
<ref id="R22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carbone</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kohn</surname>
<given-names>LM</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>A method for designing primer sets for speciation studies in filamentous ascomycetes</article-title>
.
<source>Mycologia</source>
<volume>91</volume>
:
<fpage>553</fpage>
<lpage>556</lpage>
.</mixed-citation>
</ref>
<ref id="R23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carstens</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>NM</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>How to fail at species delimitation</article-title>
.
<source>Molecular Ecology</source>
<volume>22</volume>
:
<fpage>4369</fpage>
<lpage>4383</lpage>
.
<pub-id pub-id-type="pmid">23855767</pub-id>
</mixed-citation>
</ref>
<ref id="R24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Charlton</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Craven</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Afkhami</surname>
<given-names>ME</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes</article-title>
.
<source>FEMS Microbiology Ecology</source>
<volume>90</volume>
:
<fpage>276</fpage>
<lpage>289</lpage>
.
<pub-id pub-id-type="pmid">25065688</pub-id>
</mixed-citation>
</ref>
<ref id="R25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>B</given-names>
</name>
</person-group>
, et al.
<year>2016a</year>
<article-title>Aspergillus section Nidulantes (formerly Emericella): polyphasic taxonomy, chemistry and biology</article-title>
.
<source>Studies in Mycology</source>
<volume>84</volume>
:
<fpage>1</fpage>
<lpage>118</lpage>
.
<pub-id pub-id-type="pmid">28050053</pub-id>
</mixed-citation>
</ref>
<ref id="R26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Varga</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
</person-group>
, et al.
<year>2016b</year>
<article-title>Polyphasic taxonomy of Aspergillus section Cervini</article-title>
.
<source>Studies in Mycology</source>
<volume>85</volume>
:
<fpage>65</fpage>
<lpage>89</lpage>
.
<pub-id pub-id-type="pmid">28050054</pub-id>
</mixed-citation>
</ref>
<ref id="R27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food</article-title>
.
<source>Studies in Mycology</source>
<volume>88</volume>
:
<fpage>37</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="pmid">28860671</pub-id>
</mixed-citation>
</ref>
<ref id="R28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chong</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Vonk</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Meis</surname>
<given-names>JF</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius® assay</article-title>
.
<source>Diagnostic Microbiology and Infectious Disease</source>
<volume>87</volume>
:
<fpage>247</fpage>
<lpage>252</lpage>
.
<pub-id pub-id-type="pmid">28007314</pub-id>
</mixed-citation>
</ref>
<ref id="R29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coelho</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vale-Silva</surname>
<given-names>L</given-names>
</name>
</person-group>
, et al.
<year>2011</year>
<article-title>Aspergillus viridinutans: an agent of adult chronic invasive aspergillosis</article-title>
.
<source>Medical Mycology</source>
<volume>49</volume>
:
<fpage>755</fpage>
<lpage>759</lpage>
.
<pub-id pub-id-type="pmid">21299372</pub-id>
</mixed-citation>
</ref>
<ref id="R30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cox</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>G</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns</article-title>
.
<source>PLoS Genetics</source>
<volume>10</volume>
:
<fpage>e1004180</fpage>
.
<pub-id pub-id-type="pmid">24603805</pub-id>
</mixed-citation>
</ref>
<ref id="R31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Damann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>DeRobertis</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Mating of Aspergillus flavus × Aspergillus minisclerotigenes hybrids: are they functionally mules?</article-title>
<source>Phytopathology</source>
<volume>103</volume>
:
<fpage>S2.32</fpage>
<lpage>S2.33</lpage>
.</mixed-citation>
</ref>
<ref id="R32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degnan</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Rosenberg</surname>
<given-names>NA</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Discordance of species trees with their most likely gene trees</article-title>
.
<source>PLoS Genetics</source>
<volume>2</volume>
:
<fpage>e68</fpage>
.
<pub-id pub-id-type="pmid">16733550</pub-id>
</mixed-citation>
</ref>
<ref id="R33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Depotter</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Seidl</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>TA</given-names>
</name>
</person-group>
, et al.
<year>2016</year>
<article-title>Interspecific hybridization impacts host range and pathogenicity of filamentous microbes</article-title>
.
<source>Current Opinion in Microbiology</source>
<volume>32</volume>
:
<fpage>7</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="pmid">27116367</pub-id>
</mixed-citation>
</ref>
<ref id="R34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dettman</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JW.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex</article-title>
.
<source>Mycologia</source>
<volume>98</volume>
:
<fpage>436</fpage>
<lpage>446</lpage>
.
<pub-id pub-id-type="pmid">17040072</pub-id>
</mixed-citation>
</ref>
<ref id="R35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dettman</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>E</given-names>
</name>
</person-group>
, et al.
<year>2003</year>
<article-title>Reproductive isolation and phylogenetic divergence in Neurospora: Comparing methods of species recognition in a model eukaryote</article-title>
.
<source>Evolution</source>
<volume>57</volume>
:
<fpage>2721</fpage>
<lpage>2741</lpage>
.
<pub-id pub-id-type="pmid">14761052</pub-id>
</mixed-citation>
</ref>
<ref id="R36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickie</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Bufford</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>RC</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>The emerging science of linked plant-fungal invasions</article-title>
.
<source>New Phytologist</source>
<volume>215</volume>
:
<fpage>1314</fpage>
<lpage>1332</lpage>
.
<pub-id pub-id-type="pmid">28649741</pub-id>
</mixed-citation>
</ref>
<ref id="R37">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Domsch</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Gams</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>T-H.</given-names>
</name>
</person-group>
<year>2007</year>
<source>Compendium of soil fungi, 2nd taxonomically revised edition</source>
.
<publisher-name>IHW-Verlag</publisher-name>
,
<publisher-loc>Eching</publisher-loc>
.</mixed-citation>
</ref>
<ref id="R38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dyer</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>O’Gorman</surname>
<given-names>CM</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>A fungal sexual revolution: Aspergillus and Penicillium show the way</article-title>
.
<source>Current Opinion in Microbiology</source>
<volume>14</volume>
:
<fpage>649</fpage>
<lpage>654</lpage>
.
<pub-id pub-id-type="pmid">22032932</pub-id>
</mixed-citation>
</ref>
<ref id="R39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eamvijarn</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Manoch</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chamswarng</surname>
<given-names>C</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>Aspergillus siamensis sp. nov. from soil in Thailand</article-title>
.
<source>Mycoscience</source>
<volume>54</volume>
:
<fpage>401</fpage>
<lpage>405</lpage>
.</mixed-citation>
</ref>
<ref id="R40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez-Molina</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Abad-Diaz-de-Cerio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sueiro-Olivares</surname>
<given-names>M</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Rapid and specific detection of section Fumigati and Aspergillus fumigatus in human samples using a new multiplex real-time PCR</article-title>
.
<source>Diagnostic Microbiology and Infectious Disease</source>
<volume>80</volume>
:
<fpage>111</fpage>
<lpage>118</lpage>
.
<pub-id pub-id-type="pmid">25063549</pub-id>
</mixed-citation>
</ref>
<ref id="R41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flot</surname>
<given-names>J-F</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Species delimitation's coming of age</article-title>
.
<source>Systematic Biology</source>
<volume>64</volume>
:
<fpage>897</fpage>
<lpage>899</lpage>
.
<pub-id pub-id-type="pmid">26420142</pub-id>
</mixed-citation>
</ref>
<ref id="R42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fontaneto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Flot</surname>
<given-names>J-F</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>CQ.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Guidelines for DNA taxonomy, with a focus on the meiofauna</article-title>
.
<source>Marine Biodiversity</source>
<volume>45</volume>
:
<fpage>433</fpage>
<lpage>451</lpage>
.</mixed-citation>
</ref>
<ref id="R43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>TO</given-names>
</name>
</person-group>
<year>2015a</year>
<article-title>Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati</article-title>
.
<source>Frontiers in Microbiology</source>
<volume>6</volume>
:
<fpage>1485</fpage>
.
<pub-id pub-id-type="pmid">26779142</pub-id>
</mixed-citation>
</ref>
<ref id="R44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>TO</given-names>
</name>
</person-group>
<year>2015b</year>
<article-title>Chemodiversity in the genus Aspergillus</article-title>
.
<source>Applied Microbiology and Biotechnology</source>
<volume>99</volume>
:
<fpage>7859</fpage>
<lpage>7877</lpage>
.
<pub-id pub-id-type="pmid">26243055</pub-id>
</mixed-citation>
</ref>
<ref id="R45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Thrane</surname>
<given-names>U</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection)</article-title>
.
<source>Journal of Chromatography A</source>
<volume>404</volume>
:
<fpage>195</fpage>
<lpage>214</lpage>
.</mixed-citation>
</ref>
<ref id="R46">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Thrane</surname>
<given-names>U</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Liquid column chromatography of mycotoxins</article-title>
. In:
<person-group person-group-type="editor">
<name>
<surname>Betina</surname>
<given-names>V</given-names>
</name>
</person-group>
(eds),
<source>Chromatography of mycotoxins: techniques and applications. Journal of Chromatography Library</source>
<volume>54</volume>
:
<fpage>253</fpage>
<lpage>372</lpage>
.</mixed-citation>
</ref>
<ref id="R47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujisawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Barraclough</surname>
<given-names>TG</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets</article-title>
.
<source>Systematic Biology</source>
<volume>62</volume>
:
<fpage>707</fpage>
<lpage>724</lpage>
.
<pub-id pub-id-type="pmid">23681854</pub-id>
</mixed-citation>
</ref>
<ref id="R48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gale</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Calvo</surname>
<given-names>S</given-names>
</name>
</person-group>
, et al.
<year>2005</year>
<article-title>Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations</article-title>
.
<source>Genetics</source>
<volume>171</volume>
:
<fpage>985</fpage>
<lpage>1001</lpage>
.
<pub-id pub-id-type="pmid">16079234</pub-id>
</mixed-citation>
</ref>
<ref id="R49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gautier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Normand</surname>
<given-names>A-C</given-names>
</name>
<name>
<surname>Ranque</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Previously unknown species of Aspergillus</article-title>
.
<source>Clinical Microbiology and Infection</source>
<volume>22</volume>
:
<fpage>662</fpage>
<lpage>669</lpage>
.
<pub-id pub-id-type="pmid">27263029</pub-id>
</mixed-citation>
</ref>
<ref id="R50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gladieux</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Vercken</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fontaine</surname>
<given-names>MC</given-names>
</name>
</person-group>
, et al.
<year>2010</year>
<article-title>Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>28</volume>
:
<fpage>459</fpage>
<lpage>471</lpage>
.
<pub-id pub-id-type="pmid">20837605</pub-id>
</mixed-citation>
</ref>
<ref id="R51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glass</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Donaldson</surname>
<given-names>GC</given-names>
</name>
</person-group>
<year>1995</year>
<article-title>Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes</article-title>
.
<source>Applied and Environmental Microbiology</source>
<volume>61</volume>
:
<fpage>1323</fpage>
<lpage>1330</lpage>
.
<pub-id pub-id-type="pmid">7747954</pub-id>
</mixed-citation>
</ref>
<ref id="R52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonthier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nicolotti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Linzer</surname>
<given-names>R</given-names>
</name>
</person-group>
, et al.
<year>2007</year>
<article-title>Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon</article-title>
.
<source>Molecular Ecology</source>
<volume>16</volume>
:
<fpage>1389</fpage>
<lpage>1400</lpage>
.
<pub-id pub-id-type="pmid">17391264</pub-id>
</mixed-citation>
</ref>
<ref id="R53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>González</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Barrio</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Querol</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing</article-title>
.
<source>Applied and Environmental Microbiology</source>
<volume>74</volume>
:
<fpage>2314</fpage>
<lpage>2320</lpage>
.
<pub-id pub-id-type="pmid">18296532</pub-id>
</mixed-citation>
</ref>
<ref id="R54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heled</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Bayesian inference of species trees from multilocus data</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>27</volume>
:
<fpage>570</fpage>
<lpage>580</lpage>
.
<pub-id pub-id-type="pmid">19906793</pub-id>
</mixed-citation>
</ref>
<ref id="R55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miyaji</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nishimura</surname>
<given-names>K</given-names>
</name>
</person-group>
, et al.
<year>1995</year>
<article-title>New and interesting species of Neosartorya from Brazilian soil</article-title>
.
<source>Mycoscience</source>
<volume>36</volume>
:
<fpage>199</fpage>
<lpage>204</lpage>
.</mixed-citation>
</ref>
<ref id="R56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horn</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Carbone</surname>
<given-names>I.</given-names>
</name>
</person-group>
<year>2009a</year>
<article-title>Sexual reproduction in Aspergillus flavus</article-title>
.
<source>Mycologia</source>
<volume>101</volume>
:
<fpage>423</fpage>
<lpage>429</lpage>
.
<pub-id pub-id-type="pmid">19537215</pub-id>
</mixed-citation>
</ref>
<ref id="R57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horn</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Carbone</surname>
<given-names>I.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Sexual reproduction in aflatoxin-producing Aspergillus nomius</article-title>
.
<source>Mycologia</source>
<volume>103</volume>
:
<fpage>174</fpage>
<lpage>183</lpage>
.
<pub-id pub-id-type="pmid">20943531</pub-id>
</mixed-citation>
</ref>
<ref id="R58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horn</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Olarte</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>SW</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>Sexual reproduction in Aspergillus tubingensis from section Nigri</article-title>
.
<source>Mycologia</source>
<volume>105</volume>
:
<fpage>1153</fpage>
<lpage>1163</lpage>
.
<pub-id pub-id-type="pmid">23709489</pub-id>
</mixed-citation>
</ref>
<ref id="R59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horn</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Ramirez-Prado</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Carbone</surname>
<given-names>I.</given-names>
</name>
</person-group>
<year>2009b</year>
<article-title>The sexual state of Aspergillus parasiticus</article-title>
.
<source>Mycologia</source>
<volume>101</volume>
:
<fpage>275</fpage>
<lpage>280</lpage>
.
<pub-id pub-id-type="pmid">19397202</pub-id>
</mixed-citation>
</ref>
<ref id="R60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hothorn</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bretz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Westfall</surname>
<given-names>P.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Simultaneous inference in general parametric models</article-title>
.
<source>Biometrical Journal</source>
<volume>50</volume>
:
<fpage>346</fpage>
<lpage>363</lpage>
.
<pub-id pub-id-type="pmid">18481363</pub-id>
</mixed-citation>
</ref>
<ref id="R61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houbraken</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Spierenburg</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species</article-title>
.
<source>Antonie van Leeuwenhoek</source>
<volume>101</volume>
:
<fpage>403</fpage>
<lpage>421</lpage>
.
<pub-id pub-id-type="pmid">21965082</pub-id>
</mixed-citation>
</ref>
<ref id="R62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dudová</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kubátová</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Taxonomic novelties in Aspergillus section Fumigati: A. tasmanicus sp. nov., induction of sexual state in A. turcosus and overview of related species</article-title>
.
<source>Plant Systematics and Evolution</source>
<volume>303</volume>
:
<fpage>787</fpage>
<lpage>806</lpage>
.</mixed-citation>
</ref>
<ref id="R63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kolařík</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences</article-title>
.
<source>Persoonia</source>
<volume>29</volume>
:
<fpage>1</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="pmid">23606761</pub-id>
</mixed-citation>
</ref>
<ref id="R64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kolařík</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kubátová</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2013a</year>
<article-title>Taxonomical revision of Eurotium and transfer of species to Aspergillus</article-title>
.
<source>Mycologia</source>
<volume>105</volume>
:
<fpage>912</fpage>
<lpage>937</lpage>
.
<pub-id pub-id-type="pmid">23396159</pub-id>
</mixed-citation>
</ref>
<ref id="R65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kubatova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mallatova</surname>
<given-names>N</given-names>
</name>
</person-group>
, et al.
<year>2012</year>
<article-title>Rare and new aetiological agents revealed among 178 clinical Aspergillus strains obtained from Czech patients and characterised by molecular sequencing</article-title>
.
<source>Medical Mycology</source>
<volume>50</volume>
:
<fpage>601</fpage>
<lpage>610</lpage>
.
<pub-id pub-id-type="pmid">22458252</pub-id>
</mixed-citation>
</ref>
<ref id="R66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Nissen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>R</given-names>
</name>
</person-group>
, et al.
<year>2015a</year>
<article-title>Discovery of a sexual stage in Trichophyton onychocola, a presumed geophilic dermatophyte isolated from toenails of patients with a history of T. rubrum onychomycosis</article-title>
.
<source>Medical Mycology</source>
<volume>53</volume>
:
<fpage>798</fpage>
<lpage>809</lpage>
.
<pub-id pub-id-type="pmid">26129891</pub-id>
</mixed-citation>
</ref>
<ref id="R67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Nováková</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jurjević</surname>
<given-names>Ž</given-names>
</name>
</person-group>
, et al.
<year>2018</year>
<article-title>Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of A. dobrogensis sp. nov</article-title>
.
<source>International Journal of Systematic and Evolutionary Microbiology</source>
<volume>68</volume>
:
<fpage>995</fpage>
<lpage>1011</lpage>
. doi:
<pub-id pub-id-type="doi">10.1099/ijsem.0.002583</pub-id>
.
<pub-id pub-id-type="pmid">29458472</pub-id>
</mixed-citation>
</ref>
<ref id="R68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Nováková</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kolařík</surname>
<given-names>M</given-names>
</name>
</person-group>
, et al.
<year>2015b</year>
<article-title>Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov</article-title>
.
<source>Mycologia</source>
<volume>107</volume>
:
<fpage>169</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="pmid">25344259</pub-id>
</mixed-citation>
</ref>
<ref id="R69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Nováková</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>SW</given-names>
</name>
</person-group>
, et al.
<year>2016a</year>
<article-title>A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin producing species</article-title>
.
<source>Plant Systematics and Evolution</source>
<volume>302</volume>
:
<fpage>1267</fpage>
<lpage>1299</lpage>
.</mixed-citation>
</ref>
<ref id="R70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Nováková</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Samson</surname>
<given-names>R</given-names>
</name>
</person-group>
, et al.
<year>2016b</year>
<article-title>Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei)</article-title>
.
<source>Plant Systematics and Evolution</source>
<volume>302</volume>
:
<fpage>641</fpage>
<lpage>650</lpage>
.</mixed-citation>
</ref>
<ref id="R71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
</person-group>
, et al.
<year>2013b</year>
<article-title>Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumigati</article-title>
.
<source>International Journal of Systematic and Evolutionary Microbiology</source>
<volume>63</volume>
:
<fpage>783</fpage>
<lpage>789</lpage>
.
<pub-id pub-id-type="pmid">23148097</pub-id>
</mixed-citation>
</ref>
<ref id="R72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inderbitzin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Bostock</surname>
<given-names>RM</given-names>
</name>
</person-group>
, et al.
<year>2011</year>
<article-title>The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range</article-title>
.
<source>PLoS One</source>
<volume>6</volume>
:
<fpage>e18260</fpage>
.
<pub-id pub-id-type="pmid">21455321</pub-id>
</mixed-citation>
</ref>
<ref id="R73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Pappagianis</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Coccidioides species determination: does sequence analysis agree with restriction fragment length polymorphism?</article-title>
<source>Mycopathologia</source>
<volume>179</volume>
:
<fpage>373</fpage>
<lpage>379</lpage>
.
<pub-id pub-id-type="pmid">25577285</pub-id>
</mixed-citation>
</ref>
<ref id="R74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent</article-title>
.
<source>Journal of Mathematical Biology</source>
<volume>74</volume>
:
<fpage>447</fpage>
<lpage>467</lpage>
.
<pub-id pub-id-type="pmid">27287395</pub-id>
</mixed-citation>
</ref>
<ref id="R75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurgenson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bowden</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>K</given-names>
</name>
</person-group>
, et al.
<year>2002</year>
<article-title>A genetic map of Gibberella zeae (Fusarium graminearum)</article-title>
.
<source>Genetics</source>
<volume>160</volume>
:
<fpage>1451</fpage>
<lpage>1460</lpage>
.
<pub-id pub-id-type="pmid">11973300</pub-id>
</mixed-citation>
</ref>
<ref id="R76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurjević</surname>
<given-names>Ž</given-names>
</name>
<name>
<surname>Kubátová</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kolařík</surname>
<given-names>M</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>Taxonomy of Aspergillus section Petersonii sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution</article-title>
.
<source>Plant Systematics and Evolution</source>
<volume>301</volume>
:
<fpage>2441</fpage>
<lpage>2462</lpage>
.</mixed-citation>
</ref>
<ref id="R77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kapli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lutteropp</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo</article-title>
.
<source>Bioinformatics</source>
<volume>33</volume>
:
<fpage>1630</fpage>
<lpage>1638</lpage>
.
<pub-id pub-id-type="pmid">28108445</pub-id>
</mixed-citation>
</ref>
<ref id="R78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katoh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Standley</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>MAFFT multiple sequence alignment software version 7: improvements in performance and usability</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>30</volume>
:
<fpage>772</fpage>
<lpage>780</lpage>
.
<pub-id pub-id-type="pmid">23329690</pub-id>
</mixed-citation>
</ref>
<ref id="R79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katz</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Dougall</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Weeks</surname>
<given-names>K</given-names>
</name>
</person-group>
, et al.
<year>2005</year>
<article-title>Multiple genetically distinct groups revealed among clinical isolates identified as atypical Aspergillus fumigatus</article-title>
.
<source>Journal of Clinical Microbiology</source>
<volume>43</volume>
:
<fpage>551</fpage>
<lpage>555</lpage>
.
<pub-id pub-id-type="pmid">15695644</pub-id>
</mixed-citation>
</ref>
<ref id="R80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawasaki</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Verification of a taxonomy of dermatophytes based on mating results and phylogenetic analyses</article-title>
.
<source>Medical Mycology Journal</source>
<volume>52</volume>
:
<fpage>291</fpage>
<lpage>295</lpage>
.
<pub-id pub-id-type="pmid">22123327</pub-id>
</mixed-citation>
</ref>
<ref id="R81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Anzawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mochizuki</surname>
<given-names>T</given-names>
</name>
</person-group>
, et al.
<year>2009</year>
<article-title>Successful mating of a human isolate of Arthroderma simii with a tester strain of A. vanbreuseghemii</article-title>
.
<source>Medical Mycology Journal</source>
<volume>50</volume>
:
<fpage>15</fpage>
<lpage>18</lpage>
.</mixed-citation>
</ref>
<ref id="R82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Anzawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wakasa</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2010</year>
<article-title>Matings among three teleomorphs of Trichophyton mentagrophytes</article-title>
.
<source>Japanese Journal of Medical Mycology</source>
<volume>51</volume>
:
<fpage>143</fpage>
<lpage>152</lpage>
.
<pub-id pub-id-type="pmid">20716853</pub-id>
</mixed-citation>
</ref>
<ref id="R83">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kelly</surname>
<given-names>KL</given-names>
</name>
</person-group>
<year>1964</year>
<source>Inter-Society Color Council – National Bureau of Standards color name charts illustrated with centroid colors</source>
.
<publisher-name>US Government Printing Office</publisher-name>
,
<publisher-loc>Washington DC</publisher-loc>
.</mixed-citation>
</ref>
<ref id="R84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klich</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Biogeography of Aspergillus species in soil and litter</article-title>
.
<source>Mycologia</source>
<volume>94</volume>
:
<fpage>21</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="pmid">21156474</pub-id>
</mixed-citation>
</ref>
<ref id="R85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kocsubé</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Perrone</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Magistà</surname>
<given-names>D</given-names>
</name>
</person-group>
, et al.
<year>2016</year>
<article-title>Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles</article-title>
.
<source>Studies in Mycology</source>
<volume>85</volume>
:
<fpage>199</fpage>
<lpage>213</lpage>
.
<pub-id pub-id-type="pmid">28082760</pub-id>
</mixed-citation>
</ref>
<ref id="R86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kretzer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Szaro</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bruns</surname>
<given-names>TD</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications</article-title>
.
<source>Mycologia</source>
<volume>88</volume>
:
<fpage>776</fpage>
<lpage>785</lpage>
.</mixed-citation>
</ref>
<ref id="R87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kubatko</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Degnan</surname>
<given-names>JH</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Inconsistency of phylogenetic estimates from concatenated data under coalescence</article-title>
.
<source>Systematic Biology</source>
<volume>56</volume>
:
<fpage>17</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="pmid">17366134</pub-id>
</mixed-citation>
</ref>
<ref id="R88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon-Chung</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Wickes</surname>
<given-names>BL</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis</article-title>
.
<source>mSphere</source>
<volume>2</volume>
:
<fpage>e00357-16</fpage>
.</mixed-citation>
</ref>
<ref id="R89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon-Chung</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Sugui</surname>
<given-names>JA</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Sexual reproduction in Aspergillus species of medical or economical importance: why so fastidious?</article-title>
<source>Trends in Microbiology</source>
<volume>17</volume>
:
<fpage>481</fpage>
<lpage>487</lpage>
.
<pub-id pub-id-type="pmid">19783441</pub-id>
</mixed-citation>
</ref>
<ref id="R90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon-Chung</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Varma</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Do major species concepts support one, two or more species within Cryptococcus neoformans?</article-title>
<source>FEMS Yeast Research</source>
<volume>6</volume>
:
<fpage>574</fpage>
<lpage>587</lpage>
.
<pub-id pub-id-type="pmid">16696653</pub-id>
</mixed-citation>
</ref>
<ref id="R91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lanfear</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Frandsen</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>AM</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>34</volume>
:
<fpage>772</fpage>
<lpage>773</lpage>
.
<pub-id pub-id-type="pmid">28013191</pub-id>
</mixed-citation>
</ref>
<ref id="R92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leaché</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>MK</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus)</article-title>
.
<source>Proceedings of the Royal Society of London B: Biological Sciences</source>
<volume>277</volume>
:
<fpage>3071</fpage>
<lpage>3077</lpage>
.</mixed-citation>
</ref>
<ref id="R93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
</person-group>
, et al.
<year>2010</year>
<article-title>The evolution of sex: a perspective from the fungal kingdom</article-title>
.
<source>Microbiology and Molecular Biology Reviews</source>
<volume>74</volume>
:
<fpage>298</fpage>
<lpage>340</lpage>
.
<pub-id pub-id-type="pmid">20508251</pub-id>
</mixed-citation>
</ref>
<ref id="R94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Damm</surname>
<given-names>U</given-names>
</name>
</person-group>
, et al.
<year>2016</year>
<article-title>Species boundaries in plant pathogenic fungi: a Colletotrichum case study</article-title>
.
<source>BMC Evolutionary Biology</source>
<volume>16</volume>
:
<fpage>81</fpage>
.
<pub-id pub-id-type="pmid">27080690</pub-id>
</mixed-citation>
</ref>
<ref id="R95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Whelen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>BD.</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>16</volume>
:
<fpage>1799</fpage>
<lpage>1808</lpage>
.
<pub-id pub-id-type="pmid">10605121</pub-id>
</mixed-citation>
</ref>
<ref id="R96">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lockman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mascheretti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schechter</surname>
<given-names>S</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>A first generation Heterobasidion hybrid discovered in Larix lyalli in Montana</article-title>
.
<source>Plant Disease</source>
<volume>98</volume>
:
<fpage>1003</fpage>
.</mixed-citation>
</ref>
<ref id="R97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Louis</surname>
<given-names>VL</given-names>
</name>
<name>
<surname>Despons</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Friedrich</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2012</year>
<article-title>Pichia sorbitophila, an interspecies yeast hybrid, reveals early steps of genome resolution after polyploidization</article-title>
.
<source>G3: Genes, Genomes, Genetics</source>
<volume>2</volume>
:
<fpage>299</fpage>
<lpage>311</lpage>
.
<pub-id pub-id-type="pmid">22384408</pub-id>
</mixed-citation>
</ref>
<ref id="R98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyskova</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Svobodova</surname>
<given-names>L</given-names>
</name>
</person-group>
, et al.
<year>2018</year>
<article-title>Antifungal susceptibility of the Aspergillus viridinutans complex: comparison of two in vitro methods</article-title>
.
<source>Antimicrobial Agents and Chemotherapy</source>
<volume>62</volume>
:
<fpage>e01927-17</fpage>
. doi:
<pub-id pub-id-type="doi">10.1128/AAC.01927-17</pub-id>
.
<pub-id pub-id-type="pmid">29437620</pub-id>
</mixed-citation>
</ref>
<ref id="R99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinelli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zalar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gunde-Cimerman</surname>
<given-names>N</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology</article-title>
.
<source>Extremophiles</source>
<volume>21</volume>
:
<fpage>755</fpage>
<lpage>773</lpage>
.
<pub-id pub-id-type="pmid">28500388</pub-id>
</mixed-citation>
</ref>
<ref id="R100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuzawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takaki</surname>
<given-names>GMC</given-names>
</name>
<name>
<surname>Yaguchi</surname>
<given-names>T</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>Aspergillus arcoverdensis, a new species of Aspergillus section Fumigati isolated from caatinga soil in State of Pernambuco, Brazil</article-title>
.
<source>Mycoscience</source>
<volume>56</volume>
:
<fpage>123</fpage>
<lpage>131</lpage>
.</mixed-citation>
</ref>
<ref id="R101">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayr</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lass-Flörl</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Epidemiology and antifungal resistance in invasive aspergillosis according to primary disease-review of the literature</article-title>
.
<source>European Journal of Medical Research</source>
<volume>16</volume>
:
<fpage>153</fpage>
.
<pub-id pub-id-type="pmid">21486729</pub-id>
</mixed-citation>
</ref>
<ref id="R102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McLennan</surname>
<given-names>EI</given-names>
</name>
<name>
<surname>Tucker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thrower</surname>
<given-names>L.</given-names>
</name>
</person-group>
<year>1954</year>
<article-title>New soil fungi from Australian heathland: Aspergillus, Penicillium, Spegazzinia</article-title>
.
<source>Australian Journal of Botany</source>
<volume>2</volume>
:
<fpage>355</fpage>
<lpage>364</lpage>
.</mixed-citation>
</ref>
<ref id="R103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehrabi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bahkali</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Abd-Elsalam</surname>
<given-names>KA</given-names>
</name>
</person-group>
, et al.
<year>2011</year>
<article-title>Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range</article-title>
.
<source>FEMS Microbiology Reviews</source>
<volume>35</volume>
:
<fpage>542</fpage>
<lpage>554</lpage>
.
<pub-id pub-id-type="pmid">21223323</pub-id>
</mixed-citation>
</ref>
<ref id="R104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ram</surname>
<given-names>AF.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Aspergillus as a multi-purpose cell factory: current status and perspectives</article-title>
.
<source>Biotechnology Letters</source>
<volume>33</volume>
:
<fpage>469</fpage>
<lpage>476</lpage>
.
<pub-id pub-id-type="pmid">21088867</pub-id>
</mixed-citation>
</ref>
<ref id="R105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mixão</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gabaldón</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Hybridization and emergence of virulence in opportunistic human yeast pathogens</article-title>
.
<source>Yeast</source>
<volume>35</volume>
:
<fpage>5</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="pmid">28681409</pub-id>
</mixed-citation>
</ref>
<ref id="R106">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>R</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDITOF MS) for the identification and discrimination of Aspergillus species</article-title>
.
<source>BMC Microbiology</source>
<volume>17</volume>
:
<fpage>100</fpage>
.
<pub-id pub-id-type="pmid">28441930</pub-id>
</mixed-citation>
</ref>
<ref id="R107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kanamori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Itoh</surname>
<given-names>T</given-names>
</name>
</person-group>
, et al.
<year>2009</year>
<article-title>Genome sequence of the lager brewing yeast, an interspecies hybrid</article-title>
.
<source>DNA Research</source>
<volume>16</volume>
:
<fpage>115</fpage>
<lpage>129</lpage>
.
<pub-id pub-id-type="pmid">19261625</pub-id>
</mixed-citation>
</ref>
<ref id="R108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nauta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hoekstra</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>Evolution of reproductive systems in filamentous ascomycetes. I. Evolution of mating types</article-title>
.
<source>Heredity</source>
<volume>68</volume>
:
<fpage>405</fpage>
<lpage>410</lpage>
.</mixed-citation>
</ref>
<ref id="R109">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Negri</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xafranski</surname>
<given-names>H</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Cryptic and rare Aspergillus species in Brazil: prevalence in clinical samples and in vitro susceptibility to triazoles</article-title>
.
<source>Journal of Clinical Microbiology</source>
<volume>52</volume>
:
<fpage>3633</fpage>
<lpage>3640</lpage>
.
<pub-id pub-id-type="pmid">25078909</pub-id>
</mixed-citation>
</ref>
<ref id="R110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newcombe</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stirling</surname>
<given-names>B</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>S</given-names>
</name>
</person-group>
, et al.
<year>2000</year>
<article-title>Melampsora × columbiana, a natural hybrid of M. medusae and M. occidentalis</article-title>
.
<source>Mycological Research</source>
<volume>104</volume>
:
<fpage>261</fpage>
<lpage>274</lpage>
.</mixed-citation>
</ref>
<ref id="R111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>L-T</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Von Haeseler</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>32</volume>
:
<fpage>268</fpage>
<lpage>274</lpage>
.
<pub-id pub-id-type="pmid">25371430</pub-id>
</mixed-citation>
</ref>
<ref id="R112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nielsen</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Månsson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rank</surname>
<given-names>C</given-names>
</name>
</person-group>
, et al.
<year>2011</year>
<article-title>Dereplication of microbial natural products by LC-DAD-TOFMS</article-title>
.
<source>Journal of Natural Products</source>
<volume>74</volume>
:
<fpage>2338</fpage>
<lpage>2348</lpage>
.
<pub-id pub-id-type="pmid">22026385</pub-id>
</mixed-citation>
</ref>
<ref id="R113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nováková</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dudová</surname>
<given-names>Z</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>New species in Aspergillus section Fumigati from reclamation sites in Wyoming (USA) and revision of A. viridinutans complex</article-title>
.
<source>Fungal Diversity</source>
<volume>64</volume>
:
<fpage>253</fpage>
<lpage>274</lpage>
.</mixed-citation>
</ref>
<ref id="R114">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>O’Donnell</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Fusarium and its near relatives</article-title>
. In:
<person-group person-group-type="editor">
<name>
<surname>Reynolds</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JW</given-names>
</name>
</person-group>
(eds),
<source>The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics</source>
:
<fpage>225</fpage>
<lpage>233</lpage>
.
<publisher-name>CAB International</publisher-name>
,
<publisher-loc>Wallingford</publisher-loc>
.</mixed-citation>
</ref>
<ref id="R115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Donnell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Geiser</surname>
<given-names>DM</given-names>
</name>
</person-group>
, et al.
<year>2004</year>
<article-title>Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade</article-title>
.
<source>Fungal Genetics and Biology</source>
<volume>41</volume>
:
<fpage>600</fpage>
<lpage>623</lpage>
.
<pub-id pub-id-type="pmid">15121083</pub-id>
</mixed-citation>
</ref>
<ref id="R116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Gorman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Fuller</surname>
<given-names>HT</given-names>
</name>
<name>
<surname>Dyer</surname>
<given-names>PS</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus</article-title>
.
<source>Nature</source>
<volume>457</volume>
:
<fpage>471</fpage>
<lpage>474</lpage>
.
<pub-id pub-id-type="pmid">19043401</pub-id>
</mixed-citation>
</ref>
<ref id="R117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olarte</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Worthington</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Horn</surname>
<given-names>BW</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>Enhanced diversity and aflatoxigenicity in interspecific hybrids of Aspergillus flavus and Aspergillus parasiticus</article-title>
.
<source>Molecular Ecology</source>
<volume>24</volume>
:
<fpage>1889</fpage>
<lpage>1909</lpage>
.
<pub-id pub-id-type="pmid">25773520</pub-id>
</mixed-citation>
</ref>
<ref id="R118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>SW</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Phylogenetic analysis of Aspergillus species using DNA sequences from four loci</article-title>
.
<source>Mycologia</source>
<volume>100</volume>
:
<fpage>205</fpage>
<lpage>226</lpage>
.
<pub-id pub-id-type="pmid">18595197</pub-id>
</mixed-citation>
</ref>
<ref id="R119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Jurjević</surname>
<given-names>Ž</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea</article-title>
.
<source>PLoS One</source>
<volume>10</volume>
:
<fpage>e0121987</fpage>
.
<pub-id pub-id-type="pmid">25853891</pub-id>
</mixed-citation>
</ref>
<ref id="R120">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pitt</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Hocking</surname>
<given-names>AD</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Spoilage of stored, processed and preserved foods</article-title>
. In:
<person-group person-group-type="editor">
<name>
<surname>Pitt</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Hocking</surname>
<given-names>AD</given-names>
</name>
</person-group>
(eds),
<source>Fungi and food spoilage</source>
.
<publisher-name>Springer</publisher-name>
,
<publisher-loc>London</publisher-loc>
:
<fpage>401</fpage>
<lpage>421</lpage>
.</mixed-citation>
</ref>
<ref id="R121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>jModelTest: phylogenetic model averaging</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>25</volume>
:
<fpage>1253</fpage>
<lpage>1256</lpage>
.
<pub-id pub-id-type="pmid">18397919</pub-id>
</mixed-citation>
</ref>
<ref id="R122">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pujol</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Daniels</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Lockhart</surname>
<given-names>SR</given-names>
</name>
</person-group>
, et al.
<year>2004</year>
<article-title>The closely related species Candida albicans and Candida dubliniensis can mate</article-title>
.
<source>Eukaryotic Cell</source>
<volume>3</volume>
:
<fpage>1015</fpage>
<lpage>1027</lpage>
.
<pub-id pub-id-type="pmid">15302834</pub-id>
</mixed-citation>
</ref>
<ref id="R123">
<mixed-citation publication-type="book">
<collab>R Core Team</collab>
.
<year>2015</year>
<source>R: A language and environment for statistical computing</source>
.
<publisher-name>R Foundation for Statistical Computing</publisher-name>
,
<publisher-loc>Vienna</publisher-loc>
.</mixed-citation>
</ref>
<ref id="R124">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Réblová</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hubka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Thureborn</surname>
<given-names>O</given-names>
</name>
</person-group>
, et al.
<year>2016</year>
<article-title>From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the Chaetothyriales</article-title>
.
<source>PLoS One</source>
<volume>11</volume>
:
<fpage>e0163396</fpage>
.
<pub-id pub-id-type="pmid">27732675</pub-id>
</mixed-citation>
</ref>
<ref id="R125">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reid</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Carstens</surname>
<given-names>BC</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model</article-title>
.
<source>BMC Evolutionary Biology</source>
<volume>12</volume>
:
<fpage>196</fpage>
.
<pub-id pub-id-type="pmid">23031350</pub-id>
</mixed-citation>
</ref>
<ref id="R126">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Teslenko</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van der Mark</surname>
<given-names>P</given-names>
</name>
</person-group>
, et al.
<year>2012</year>
<article-title>MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space</article-title>
.
<source>Systematic Biology</source>
<volume>61</volume>
:
<fpage>539</fpage>
<lpage>542</lpage>
.
<pub-id pub-id-type="pmid">22357727</pub-id>
</mixed-citation>
</ref>
<ref id="R127">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenberg</surname>
<given-names>NA</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Discordance of species trees with their most likely gene trees: a unifying principle</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>30</volume>
:
<fpage>2709</fpage>
<lpage>2713</lpage>
.
<pub-id pub-id-type="pmid">24030555</pub-id>
</mixed-citation>
</ref>
<ref id="R128">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rydholm</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dyer</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lutzoni</surname>
<given-names>F.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri</article-title>
.
<source>Eukaryotic Cell</source>
<volume>6</volume>
:
<fpage>868</fpage>
<lpage>874</lpage>
.
<pub-id pub-id-type="pmid">17384199</pub-id>
</mixed-citation>
</ref>
<ref id="R129">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabino</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Veríssimo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Parada</surname>
<given-names>H</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Molecular screening of 246 Portuguese Aspergillus isolates among different clinical and environmental sources</article-title>
.
<source>Medical Mycology</source>
<volume>52</volume>
:
<fpage>519</fpage>
<lpage>529</lpage>
.
<pub-id pub-id-type="pmid">24847040</pub-id>
</mixed-citation>
</ref>
<ref id="R130">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samson</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Visagie</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Houbraken</surname>
<given-names>J</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Phylogeny, identification and nomenclature of the genus Aspergillus</article-title>
.
<source>Studies in Mycology</source>
<volume>78</volume>
:
<fpage>141</fpage>
<lpage>173</lpage>
.
<pub-id pub-id-type="pmid">25492982</pub-id>
</mixed-citation>
</ref>
<ref id="R131">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schardl</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Craven</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Interspecific hybridization in plant-associated fungi and oomycetes: a review</article-title>
.
<source>Molecular Ecology</source>
<volume>12</volume>
:
<fpage>2861</fpage>
<lpage>2873</lpage>
.
<pub-id pub-id-type="pmid">14629368</pub-id>
</mixed-citation>
</ref>
<ref id="R132">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmitt</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Crespo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Divakar</surname>
<given-names>PK</given-names>
</name>
</person-group>
, et al.
<year>2009</year>
<article-title>New primers for promising single-copy genes in fungal phylogenetics and systematics</article-title>
.
<source>Persoonia</source>
<volume>23</volume>
:
<fpage>35</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="pmid">20198159</pub-id>
</mixed-citation>
</ref>
<ref id="R133">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schröder</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>De San Vicente</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Prandini</surname>
<given-names>TH</given-names>
</name>
</person-group>
, et al.
<year>2016</year>
<article-title>Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species</article-title>
.
<source>PLoS Genetics</source>
<volume>12</volume>
:
<fpage>e1006404</fpage>
.
<pub-id pub-id-type="pmid">27806045</pub-id>
</mixed-citation>
</ref>
<ref id="R134">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwarzfeld</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Sperling</surname>
<given-names>FA</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae)</article-title>
.
<source>Molecular Phylogenetics and Evolution</source>
<volume>93</volume>
:
<fpage>234</fpage>
<lpage>248</lpage>
.
<pub-id pub-id-type="pmid">26265257</pub-id>
</mixed-citation>
</ref>
<ref id="R135">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shigeyasu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>N</given-names>
</name>
</person-group>
, et al.
<year>2012</year>
<article-title>Keratomycosis caused by Aspergillus viridinutans: an Aspergillus fumigatus-resembling mold presenting distinct clinical and antifungal susceptibility patterns</article-title>
.
<source>Medical Mycology</source>
<volume>50</volume>
:
<fpage>525</fpage>
<lpage>528</lpage>
.
<pub-id pub-id-type="pmid">22329455</pub-id>
</mixed-citation>
</ref>
<ref id="R136">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Short</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>O’Donnell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Geiser</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Clonality, recombination, and hybridization in the plumbing-inhabiting human pathogen Fusarium keratoplasticum inferred from multilocus sequence typing</article-title>
.
<source>BMC Evolutionary Biology</source>
<volume>14</volume>
:
<fpage>91</fpage>
.
<pub-id pub-id-type="pmid">24766947</pub-id>
</mixed-citation>
</ref>
<ref id="R137">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Short</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>O’Donnell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Thrane</surname>
<given-names>U</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov</article-title>
.
<source>Fungal Genetics and Biology</source>
<volume>53</volume>
:
<fpage>59</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="pmid">23396261</pub-id>
</mixed-citation>
</ref>
<ref id="R138">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shymanovich</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Charlton</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Musso</surname>
<given-names>AM</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Interspecific and intraspecific hybrid Epichloë species symbiotic with the North American native grass Poa alsodes</article-title>
.
<source>Mycologia</source>
<volume>109</volume>
:
<fpage>459</fpage>
<lpage>474</lpage>
.
<pub-id pub-id-type="pmid">28723242</pub-id>
</mixed-citation>
</ref>
<ref id="R139">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dal Grande</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Divakar</surname>
<given-names>PK</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota)</article-title>
.
<source>PLoS One</source>
<volume>10</volume>
:
<fpage>e0124625</fpage>
.
<pub-id pub-id-type="pmid">25932996</pub-id>
</mixed-citation>
</ref>
<ref id="R140">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sipiczki</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Interspecies hybridization and recombination in Saccharomyces wine yeasts</article-title>
.
<source>FEMS Yeast Research</source>
<volume>8</volume>
:
<fpage>996</fpage>
<lpage>1007</lpage>
.
<pub-id pub-id-type="pmid">18355270</pub-id>
</mixed-citation>
</ref>
<ref id="R141">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sklenář</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jurjević</surname>
<given-names>Ž</given-names>
</name>
<name>
<surname>Zalar</surname>
<given-names>P</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti</article-title>
.
<source>Studies in Mycology</source>
<volume>88</volume>
:
<fpage>161</fpage>
<lpage>236</lpage>
.
<pub-id pub-id-type="pmid">29158611</pub-id>
</mixed-citation>
</ref>
<ref id="R142">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solla</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dacasa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nasmith</surname>
<given-names>C</given-names>
</name>
</person-group>
, et al.
<year>2008</year>
<article-title>Analysis of Spanish populations of Ophiostoma ulmi and O. novo-ulmi using phenotypic characteristics and RAPD markers</article-title>
.
<source>Plant Pathology</source>
<volume>57</volume>
:
<fpage>33</fpage>
<lpage>44</lpage>
.</mixed-citation>
</ref>
<ref id="R143">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spiers</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hopcroft</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>Comparative studies of the poplar rusts Melampsora medusae, M. larici-populina and their interspecific hybrid M. medusae-populina</article-title>
.
<source>Mycological Research</source>
<volume>98</volume>
:
<fpage>889</fpage>
<lpage>903</lpage>
.</mixed-citation>
</ref>
<ref id="R144">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staats</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van Baarlen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Van Kan</surname>
<given-names>JA.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity</article-title>
.
<source>Molecular Biology and Evolution</source>
<volume>22</volume>
:
<fpage>333</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="pmid">15496556</pub-id>
</mixed-citation>
</ref>
<ref id="R145">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hoover</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rougemont</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>A rapid bootstrap algorithm for the RAxML web servers</article-title>
.
<source>Systematic Biology</source>
<volume>57</volume>
:
<fpage>758</fpage>
<lpage>771</lpage>
.
<pub-id pub-id-type="pmid">18853362</pub-id>
</mixed-citation>
</ref>
<ref id="R146">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Starkey</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>T</given-names>
</name>
</person-group>
, et al.
<year>2007</year>
<article-title>Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity</article-title>
.
<source>Fungal Genetics and Biology</source>
<volume>44</volume>
:
<fpage>1191</fpage>
<lpage>1204</lpage>
.
<pub-id pub-id-type="pmid">17451976</pub-id>
</mixed-citation>
</ref>
<ref id="R147">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stewart</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Timmer</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>CB</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen</article-title>
.
<source>BMC Evolutionary Biology</source>
<volume>14</volume>
:
<fpage>38</fpage>
.
<pub-id pub-id-type="pmid">24593138</pub-id>
</mixed-citation>
</ref>
<ref id="R148">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugui</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kwon-Chung</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Juvvadi</surname>
<given-names>PR</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>Aspergillus fumigatus and related species</article-title>
.
<source>Cold Spring Harbor Perspectives in Medicine</source>
<volume>5</volume>
:
<fpage>a019786</fpage>
.</mixed-citation>
</ref>
<ref id="R149">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugui</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Figat</surname>
<given-names>A</given-names>
</name>
</person-group>
, et al.
<year>2014</year>
<article-title>Genetic relatedness versus biological compatibility between Aspergillus fumigatus and related species</article-title>
.
<source>Journal of Clinical Microbiology</source>
<volume>52</volume>
:
<fpage>3707</fpage>
<lpage>3721</lpage>
.
<pub-id pub-id-type="pmid">25100816</pub-id>
</mixed-citation>
</ref>
<ref id="R150">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugui</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Vinh</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Nardone</surname>
<given-names>G</given-names>
</name>
</person-group>
, et al.
<year>2010</year>
<article-title>Neosartorya udagawae (Aspergillus udagawae), an emerging agent of aspergillosis: How different is it from Aspergillus fumigatus?</article-title>
<source>Journal of Clinical Microbiology</source>
<volume>48</volume>
:
<fpage>220</fpage>
<lpage>228</lpage>
.
<pub-id pub-id-type="pmid">19889894</pub-id>
</mixed-citation>
</ref>
<ref id="R151">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swilaiman</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>O’Gorman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Balajee</surname>
<given-names>SA</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus</article-title>
.
<source>Eukaryotic Cell</source>
<volume>12</volume>
:
<fpage>962</fpage>
<lpage>969</lpage>
.
<pub-id pub-id-type="pmid">23650087</pub-id>
</mixed-citation>
</ref>
<ref id="R152">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szewczyk</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Krappmann</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation</article-title>
.
<source>Eukaryotic Cell</source>
<volume>9</volume>
:
<fpage>774</fpage>
<lpage>783</lpage>
.
<pub-id pub-id-type="pmid">20348388</pub-id>
</mixed-citation>
</ref>
<ref id="R153">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talbot</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Barrs</surname>
<given-names>VR</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>One-health pathogens in the Aspergillus viridinutans complex</article-title>
.
<source>Medical Mycology</source>
<volume>56</volume>
:
<fpage>1</fpage>
<lpage>12</lpage>
.</mixed-citation>
</ref>
<ref id="R154">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talbot</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Houbraken</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Frisvad</surname>
<given-names>JC</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Discovery of Aspergillus frankstonensis sp. nov. during environmental sampling for animal and human fungal pathogens</article-title>
.
<source>PLoS One</source>
<volume>12</volume>
:
<fpage>e0181660</fpage>
.
<pub-id pub-id-type="pmid">28792943</pub-id>
</mixed-citation>
</ref>
<ref id="R155">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanney</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Visagie</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Yilmaz</surname>
<given-names>N</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>Aspergillus subgenus Polypaecilum from the built environment</article-title>
.
<source>Studies in Mycology</source>
<volume>88</volume>
:
<fpage>237</fpage>
<lpage>267</lpage>
.
<pub-id pub-id-type="pmid">29317789</pub-id>
</mixed-citation>
</ref>
<ref id="R156">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turner</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JW.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Reinforced postmating reproductive isolation barriers in Neurospora, an Ascomycete microfungus</article-title>
.
<source>Journal of Evolutionary Biology</source>
<volume>23</volume>
:
<fpage>1642</fpage>
<lpage>1656</lpage>
.
<pub-id pub-id-type="pmid">20546092</pub-id>
</mixed-citation>
</ref>
<ref id="R157">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinh</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Shea</surname>
<given-names>YR</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>PA</given-names>
</name>
</person-group>
, et al.
<year>2009</year>
<article-title>Chronic invasive aspergillosis caused by Aspergillus viridinutans</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>15</volume>
:
<fpage>1292</fpage>
<lpage>1294</lpage>
.
<pub-id pub-id-type="pmid">19751595</pub-id>
</mixed-citation>
</ref>
<ref id="R158">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Visagie</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Yilmaz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Renaud</surname>
<given-names>JB</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states</article-title>
.
<source>MycoKeys</source>
<volume>19</volume>
:
<fpage>1</fpage>
<lpage>30</lpage>
.</mixed-citation>
</ref>
<ref id="R159">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Bruns</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
</person-group>
, et al.
<year>1990</year>
<article-title>Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics</article-title>
. In:
<person-group person-group-type="editor">
<name>
<surname>Innis</surname>
<given-names>MA</given-names>
</name>
</person-group>
, et al. (eds),
<source>PCR protocols: a guide to methods and applications</source>
:
<fpage>315</fpage>
<lpage>322</lpage>
.
<publisher-name>Academic Press</publisher-name>
,
<publisher-loc>San Diego</publisher-loc>
.</mixed-citation>
</ref>
<ref id="R160">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wickham</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2009</year>
<source>ggplot2: Elegant Graphics for Data Analysis</source>
.
<publisher-name>Springer-Verlag</publisher-name>
,
<publisher-loc>New York</publisher-loc>
.</mixed-citation>
</ref>
<ref id="R161">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
</person-group>
, et al.
<year>2015</year>
<article-title>Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin</article-title>
.
<source>PLoS Genetics</source>
<volume>11</volume>
:
<fpage>e1005614</fpage>
.
<pub-id pub-id-type="pmid">26539826</pub-id>
</mixed-citation>
</ref>
<ref id="R162">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution</article-title>
.
<source>Journal of Heredity</source>
<volume>108</volume>
:
<fpage>431</fpage>
<lpage>437</lpage>
.
<pub-id pub-id-type="pmid">28379490</pub-id>
</mixed-citation>
</ref>
<ref id="R163">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yaguchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Horie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>R</given-names>
</name>
</person-group>
, et al.
<year>2007</year>
<article-title>Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan</article-title>
.
<source>Japanese Journal of Medical Mycology</source>
<volume>48</volume>
:
<fpage>37</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="pmid">17287721</pub-id>
</mixed-citation>
</ref>
<ref id="R164">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Rannala</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Bayesian species delimitation using multilocus sequence data</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
<volume>107</volume>
:
<fpage>9264</fpage>
<lpage>9269</lpage>
.</mixed-citation>
</ref>
<ref id="R165">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
</person-group>
, et al.
<year>2017</year>
<article-title>ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data</article-title>
.
<source>Methods in Ecology and Evolution</source>
<volume>8</volume>
:
<fpage>28</fpage>
<lpage>36</lpage>
.</mixed-citation>
</ref>
<ref id="R166">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kapli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pavlidis</surname>
<given-names>P</given-names>
</name>
</person-group>
, et al.
<year>2013</year>
<article-title>A general species delimitation method with applications to phylogenetic placements</article-title>
.
<source>Bioinformatics</source>
<volume>29</volume>
:
<fpage>2869</fpage>
<lpage>2876</lpage>
.
<pub-id pub-id-type="pmid">23990417</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Fig. 1</label>
<caption>
<p>Phylogenetic relationships of the sect.
<italic>Fumigati</italic>
members inferred from Bayesian analysis of the combined, 4-gene dataset of β-tubulin (
<italic>benA</italic>
), calmodulin (
<italic>CaM</italic>
), actin (
<italic>act</italic>
) and RNA polymerase II second largest subunit (
<italic>RPB2</italic>
) genes. Bayesian posterior probabilities (PP) and Maximum likelihood bootstrap supports (BS) are appended to nodes; only PP ≥ 95 % and BS ≥ 70 % are shown; lower supports are indicated with a hyphen, whereas asterisks indicate full support (1.00 PP or 100 % BS); ex-type strains are designated by a superscript
<sup>T</sup>
; species names in quotes are considered synonyms; the bar indicates the number of substitutions per site. The tree is rooted with
<italic>Aspergillus clavatus</italic>
NRRL 1
<sup>T</sup>
. The reproductive mode of each species is designated by icons before the species name (see legend).</p>
</caption>
<graphic xlink:href="per-41-142-g001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Fig. 2</label>
<caption>
<p>Schematic representation of results of species delimitation methods in
<italic>Aspergillus viridinutans</italic>
species complex based on four genetic loci. The results of multilocus method (STACEY) are compared to results of single-locus methods (PTP, bGMYC, GMYC). The results of STACEY are shown as tree branches with different colours, while the results of single-locus methods are depicted with coloured bars highlighting congruence across methods. The displayed tree is derived from IQ-TREE analysis based on a concatenated dataset and is used solely for the comprehensive presentation of the results from different methods. The species validation analysis results (BP&P) are appended to nodes and shown in grey bordered boxes; the values represent posterior probabilities calculated in three scenarios having different prior distributions of parameters θ (ancestral population size) and τ
<sub>0</sub>
(root age). The top value represents the results of analysis with large ancestral population sizes and deep divergence: θ ~ G (1, 10) and τ
<sub>0</sub>
~ G (1, 10); the middle value represents the results of analysis with large ancestral populations sizes and shallow divergences among species: θ ~ G (1, 10) and τ
<sub>0</sub>
~ G (2, 2000); and the bottom value small ancestral population sizes and shallow divergences among species: θ ~ G (2, 2000) and τ
<sub>0</sub>
~ G (2, 2000).</p>
</caption>
<graphic xlink:href="per-41-142-g002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Fig. 3</label>
<caption>
<p>Schematic representation of results of species delimitation methods in
<italic>Aspergillus felis</italic>
clade based on six genetic loci. The results of multilocus method (STACEY) are compared to results of single-locus methods (mPTP, bGMYC, GMYC). The results of STACEY are shown as tree branches with different colours, while the results of single-locus methods are depicted with coloured bars highlighting congruence across methods. The displayed tree is derived from IQ-TREE analysis based on a concatenated dataset and is used solely for the comprehensive presentation of the results from different methods. The species validation analysis results (BP&P) are appended to nodes and shown in grey bordered boxes; the values represent posterior probabilities calculated in three scenarios having different prior distributions of parameters θ (ancestral population size) and τ
<sub>0</sub>
(root age). The top value represents the results of analysis with large ancestral population sizes and deep divergence: θ ~ G (1, 10) and τ
<sub>0</sub>
~ G (1, 10); the middle value represents the results of analysis with large ancestral populations sizes and shallow divergences among species: θ ~ G (1, 10) and τ
<sub>0</sub>
~ G (2, 2000); and the bottom value small ancestral population sizes and shallow divergences among species: θ ~ G (2, 2000) and τ
<sub>0</sub>
~ G (2, 2000).</p>
</caption>
<graphic xlink:href="per-41-142-g003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Fig. 4</label>
<caption>
<p>Species tree inferred with *BEAST visualized by using DensiTree (
<xref rid="R15" ref-type="bibr">Bouckaert 2010</xref>
). All trees created in the analysis (except 25 % burn-in phase) are displayed on the left side. Trees with the most common topology are highlighted by blue, trees with the second most common topology by red, trees with the third most common topology by pale green and all other trees by dark green. On the right side, the consensus trees of the three most common topologies are displayed.</p>
</caption>
<graphic xlink:href="per-41-142-g004"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>Fig. 5</label>
<caption>
<p>Phylogenetic relationships of the
<italic>Aspergillus viridinutans</italic>
species complex
<italic></italic>
members inferred from Bayesian analysis of the combined, 4-gene dataset of β-tubulin (
<italic>benA</italic>
), calmodulin (
<italic>CaM</italic>
), actin (
<italic>act</italic>
) and RNA polymerase II second largest subunit (
<italic>RPB2</italic>
) genes. Bayesian posterior probabilities (PP) and Maximum likelihood bootstrap supports (BS) are appended to nodes; only PP ≥ 90 % and BS ≥ 70 % are shown; lower supports are indicated with a hyphen, whereas asterisks indicate full support (1.00 PP or 100 % BS); ex-type strains are designated by a superscript
<sup>T</sup>
; species names in quotes are considered synonyms; the bar indicates the number of substitutions per site. The tree is rooted with
<italic>Aspergillus lentulus</italic>
NRRL 35552
<sup>T</sup>
. The geographic origin and reproductive mode with MAT idiomorph (if known) is designated by icons before the isolate number while substrate of origin is designated by icons after isolate number (see legend).</p>
</caption>
<graphic xlink:href="per-41-142-g005"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>Fig. 6</label>
<caption>
<p>Schematic depiction of results of intraspecific mating experiments between opposite mating type isolates of heterothallic members of the
<italic>Aspergillus viridinutans</italic>
species complex. Only successful mating experiments are displayed by connecting lines between opposite mating type isolates; remaining mating experiments were negative. Isolates marked by asterisk were only crossed with ex-type strains of
<italic>A. felis</italic>
(CBS 130245
<sup>T</sup>
),
<italic>A. parafelis</italic>
(NRRL 62900
<sup>T</sup>
) and
<italic>A. pseudofelis</italic>
(NRRL 62903
<sup>T</sup>
). Boxplot and violin graphs were created in R 3.3.4 (
<xref rid="R123" ref-type="bibr">R Core Team 2015</xref>
) with package
<italic>ggplot2</italic>
(
<xref rid="R160" ref-type="bibr">Wickham 2009</xref>
) and show the differences between the width and height of ascospores of
<italic>A. udagawae</italic>
,
<italic> A. wyomingensis</italic>
and
<italic>A. felis</italic>
. Different letters above the plot indicate significant difference (P < 0.05) in the size of the ascospores between different species based on Tukey's HSD test. Boxplots show median, interquartile range, values within ± 1.5 of interquartile range (whiskers) and outliers.</p>
</caption>
<graphic xlink:href="per-41-142-g006"></graphic>
</fig>
<fig id="F7" orientation="portrait" position="float">
<label>Fig. 7</label>
<caption>
<p>Comparison of morphology of sexual morphs of
<italic>A. felis</italic>
,
<italic>A. udagawae</italic>
and
<italic>A. wyomingensis</italic>
. a. Fertile cleistothecia of
<italic>A. felis</italic>
as a result of crossing of isolates IFM 60053 × FRR 5680; b. ascospores in light microscopy; c–d. ascospores in scanning electron microscopy: CBS 130245
<sup>T</sup>
× CCF 5627 (c), CBS 130245
<sup>T</sup>
× IFM 60053 (d); e. fertile cleistothecia of
<italic>A. udagawae</italic>
as a result of crossing of isolates IFM 46972
<sup>T</sup>
× IFM 46973; f. ascospores in light microscopy; g–h. ascospores in scanning electron microscopy; i. fertile cleistothecia of
<italic>A. wyomingensis</italic>
as a result of crossing of isolates CCF 4416 × CCF 4417
<sup>T</sup>
; j. ascospores in light microscopy (CCF 4416 × CCF 4169); k–n. ascospores in scanning electron microscopy: CCF 4416 × CCF 4417
<sup>T</sup>
(k–l), CCF 4417
<sup>T</sup>
× CCF 4419 (m–n). — Scale bars: b, f, j = 5 μm; c–d, g–h, k–n = 2 μm.</p>
</caption>
<graphic xlink:href="per-41-142-g007"></graphic>
</fig>
<fig id="F8" orientation="portrait" position="float">
<label>Fig. 8</label>
<caption>
<p>Schematic depiction of results of interspecific mating experiments between opposite mating type isolates of
<italic>A. udagawae</italic>
and other heterothallic members of
<italic>Aspergillus viridinutans</italic>
species complex. Only successful mating experiments are displayed by coloured connecting lines between opposite mating type isolates (different colours correspond to hybrids between different species); grey dashed lines indicate production of infertile ascomata; remaining mating experiments were negative. Boxplot and violin graphs were created in R 3.3.4 (
<xref rid="R123" ref-type="bibr">R Core Team 2015</xref>
) with package
<italic>ggplot2</italic>
(
<xref rid="R160" ref-type="bibr">Wickham 2009</xref>
) and show the differences between the width and height of ascospores of particular species
<italic></italic>
and their hybrids. Different letters above the plot indicate significant difference (P < 0.05) in the size of the ascospores based on Tukey's HSD test. Boxplots show median, interquartile range, values within ± 1.5 of interquartile range (whiskers) and outliers.</p>
</caption>
<graphic xlink:href="per-41-142-g008"></graphic>
</fig>
<fig id="F9" orientation="portrait" position="float">
<label>Fig. 9</label>
<caption>
<p>Ascospore morphology of interspecific hybrids between
<italic>A. udagawae</italic>
and other species. a–g. Hybrid of
<italic>A. udagawae</italic>
CMF ISB 2190 ×
<italic>A. acrensis</italic>
IFM 57290; a–b. ascospores in light microscopy; c–g. ascospores in scanning electron microscopy; h–r. hybrid of
<italic>A. udagawae</italic>
CCF 4479 ×
<italic>A. felis</italic>
NRRL 62901; h–k. ascospores in light microscopy; l–r. ascospores in scanning electron microscopy; s–v. hybrid of
<italic>A. udagawae</italic>
IFM 46972
<sup>T</sup>
×
<italic>A. wyomingensis</italic>
CCF 4411; s–t. ascospores in light microscopy; u–v. ascospores in scanning electron microscopy. — Scale bars: a–b, h–k, s–t = 5 μm; c–g, l–r, u–v = 2 μm.</p>
</caption>
<graphic xlink:href="per-41-142-g009"></graphic>
</fig>
<fig id="F10" orientation="portrait" position="float">
<label>Fig. 10</label>
<caption>
<p>Schematic depiction of results of interspecific mating experiments between opposite mating type isolates of heterothallic members of
<italic>Aspergillus viridinutans</italic>
species complex except of
<italic>A. udagawae</italic>
. Only successful mating experiments are displayed by coloured connecting lines between opposite mating type isolates (different colours correspond to hybrids between different species); grey dashed lines indicate production of infertile ascomata; remaining mating experiments were negative. Boxplot and violin graphs were created in R 3.3.4 (
<xref rid="R123" ref-type="bibr">R Core Team 2015</xref>
) with package
<italic>ggplot2</italic>
(
<xref rid="R160" ref-type="bibr">Wickham 2009</xref>
) and show the differences between the width and height of ascospores of particular species
<italic></italic>
and their hybrids. Different letters above the plot indicate significant difference (P < 0.05) in the size of the ascospores based on Tukey's HSD test. Boxplots show median, interquartile range, values within ± 1.5 of interquartile range (whiskers) and outliers.</p>
</caption>
<graphic xlink:href="per-41-142-g010"></graphic>
</fig>
<fig id="F11" orientation="portrait" position="float">
<label>Fig. 11</label>
<caption>
<p>Ascospore morphology of interspecific hybrids between
<italic>A. felis</italic>
,
<italic>A. pseudoviridinutans</italic>
and
<italic>A. wyomingensis.</italic>
a–e. Hybrid of
<italic>A. felis</italic>
×
<italic>A. pseudoviridinutans</italic>
; a–c. ascospores of hybrid CCF 4497 × IFM 59502 in light microscopy; d–e. ascospores in scanning electron microscopy: CCF 4497 × IFM 59502 (d), CCF 4171 × IFM 59502 (e); f–l. hybrid of
<italic>A. felis</italic>
NRRL 62900 ×
<italic>A. wyomingensis</italic>
CCF 4169; f–g. ascospores in light microscopy; h–l. ascospores in scanning electron microscopy. — Scale bars: a–c, f–g = 5 μm; d–e, h–l = 2 μm.</p>
</caption>
<graphic xlink:href="per-41-142-g011"></graphic>
</fig>
<fig id="F12" orientation="portrait" position="float">
<label>Fig. 12</label>
<caption>
<p>Sexual morph morphology of homothallic species from
<italic>Aspergillus viridinutans</italic>
complex
<italic>.</italic>
a–d.
<italic>Aspergillus aureolus</italic>
isolates IFM 47021
<sup>T</sup>
(a–b, d) and IFM 46584 (c); a. Macromorphology of ascomata after 3 wk of incubation on MEA at 37 °C; b. ascospores in light microscopy; c–d. ascospores in scanning electron microscopy; e–h.
<italic>Aspergillus siamensis</italic>
isolate IFM 59793
<sup>T</sup>
; e. macromorphology of ascomata after 3 wk of incubation on MEA at 37 °C; f. ascospores in light microscopy; g–h. ascospores in scanning electron microscopy. — Scale bars: b, f = 5 μm; c–d, g–h = 2 μm.</p>
</caption>
<graphic xlink:href="per-41-142-g012"></graphic>
</fig>
<fig id="F13" orientation="portrait" position="float">
<label>Fig. 13</label>
<caption>
<p>Conidia with micro-tuberculate surface ornamentation pattern observed by scanning electron microscopy. a.
<italic>Aspergillus acrensis</italic>
IFM 57290; b.
<italic>A. arcoverdensis</italic>
IFM 61334
<sup>T</sup>
; c.
<italic>A. aureolus</italic>
IFM 46584; d.
<italic>A. felis</italic>
CBS 130245
<sup>T</sup>
; e.
<italic>A. felis</italic>
NRRL 62900 (ex-type of
<italic>A. parafelis</italic>
); f.
<italic>A. felis</italic>
NRRL 62903 (ex-type of
<italic>A. pseudofelis</italic>
); g.
<italic>A. frankstonensis</italic>
CBS 142234; h.
<italic>A. pseudoviridinutans</italic>
CBS 458.75; i.
<italic>A. siamensis</italic>
IFM 59793
<sup>T</sup>
; j.
<italic>A. udagawae</italic>
IFM 46972
<sup>T</sup>
; k.
<italic>A. viridinutans</italic>
IFM 47045
<sup>T</sup>
; l.
<italic>A. wyomingensis</italic>
CCF 4414. — Scale bars = 2 μm.</p>
</caption>
<graphic xlink:href="per-41-142-g013"></graphic>
</fig>
<fig id="F14" orientation="portrait" position="float">
<label>Fig. 14</label>
<caption>
<p>Micromorphology and macromorphology of
<italic>Aspergillus acrensis</italic>
. a–e. Colonies of IFM 57291
<sup>T</sup>
incubated 7 d at 25 °C on MEA, CYA, CZA, YES, and on CYA at 37 °C (from left to right); f–j. reverse of colonies of IFM 57291
<sup>T</sup>
incubated 7 d at 25 °C on MEA, CYA, CZA, YES, and on CYA at 37 °C (from left to right); k–n. conidiophores; o. conidia. — Scale bars = 10 μm.</p>
</caption>
<graphic xlink:href="per-41-142-g014"></graphic>
</fig>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>List of
<italic>Aspergillus</italic>
strains, information on isolation source and reproductive strategy.</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="1" colspan="1">Species / Culture collection nos.
<xref ref-type="fn" rid="tfn1">
<sup>1</sup>
</xref>
,
<xref ref-type="fn" rid="tfn2">
<sup>2</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">Locality, substrate, year of isolation
<xref ref-type="fn" rid="tfn3">
<sup>3</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>MAT</italic>
locus
<xref ref-type="fn" rid="tfn4">
<sup>4</sup>
</xref>
,
<xref ref-type="fn" rid="tfn5">
<sup>5</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aspergillus acrensis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 57291
<sup>T</sup>
= CCF 4670
<sup>T</sup>
(01-BA-462-5)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Acre, Xapuri, grassland soil in cattle farm, 2001</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 57290 = CCF 4666 (01-BA-666-5)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Amazonas, Manaus, tropical rain forest soil, 2001</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4959 (S973)</td>
<td align="left" rowspan="1" colspan="1">Romania, Movile cave, above the Lake Room, cave sediment, 2014</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4960 (S974)</td>
<td align="left" rowspan="1" colspan="1">Romania, Movile cave, cave sediment, 2014</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4961 (S975)</td>
<td align="left" rowspan="1" colspan="1">Romania, Movile cave, Lake Room, cave sediment, 2014</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. arcoverdensis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61334
<sup>T</sup>
= JCM 19878
<sup>T</sup>
= CCF 4900
<sup>T</sup>
(6-2-32)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61333 = CCF 4899 (10-2-3)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61337 = JCM 19879 = CCF 4901 (1-1-34)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61338 = JCM 19880 = CCF 4902 (6-2-3)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61339 = CCF 4903 (2-1-11)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61340 = CCF 4904 (7-2-33)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61345 = CCF 5633 (3-2-2)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61346 = CCF 4906 (4-2-14)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61349 = CCF 4907 (4-2-9)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61362 = CCF 4908 (5-2-2)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Pernambuco, near Arcoverde, semi-desert soil in a caatinga area, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59922 = CCF 4560 (08-SA-2-2)</td>
<td align="left" rowspan="1" colspan="1">China, soil, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59923 = CCF 4569 (08-SA-2-1)</td>
<td align="left" rowspan="1" colspan="1">China, soil, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> FRR 1266 = CBS 121595 = DTO 019-F2 = CCF 4574</td>
<td align="left" rowspan="1" colspan="1">Australia, New South Wales, Warrumbungle National Park, sandy soil, 1971</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. aureolus</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 47021
<sup>T</sup>
= IFM 46935
<sup>T</sup>
= IFM 53589
<sup>T</sup>
= CBS 105.55
<sup>T</sup>
= NRRL 2244
<sup>T</sup>
= IMI 06145
<sup>T</sup>
= KACC 41204
<sup>T</sup>
= KACC 41095
<sup>T</sup>
= CCF 4644
<sup>T</sup>
= CCF 4646
<sup>T</sup>
= CCF 4648
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">Ghana, Tafo, soil, 1950</td>
<td align="left" rowspan="1" colspan="1">homothallic</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 46584 = IFM 46936 = CBM-FA-0692 = CCF 4645 = CCF 4647</td>
<td align="left" rowspan="1" colspan="1">Brazil, São Paulo State, Botucatú, soil, 1993</td>
<td align="left" rowspan="1" colspan="1">homothallic</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 53615 = CBM-FA-934 = CCF 4571 (ex-type of
<italic>A. indohii</italic>
)</td>
<td align="left" rowspan="1" colspan="1">Brazil, Acre, Cruzeiro do Sul, soil in a grassland in a tropical rain forest, 2001</td>
<td align="left" rowspan="1" colspan="1">homothallic</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IHEM 22515 (RV 71215)</td>
<td align="left" rowspan="1" colspan="1">Peru, Lima, human cornea, < 1995</td>
<td align="left" rowspan="1" colspan="1">homothallic</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 130245
<sup>T</sup>
= DTO 131-F4
<sup>T</sup>
= CCF 5620</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis in a 3.5-year-old DSH cat, MN, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KC797620)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> NRRL 62900 = CM-3147 = CCF 4895 (ex-type of
<italic>A. parafelis</italic>
)</td>
<td align="left" rowspan="1" colspan="1">Spain, human oropharyngeal exudate, 2004</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KJ858505)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> NRRL 62903 = CM-6087 = CCF 4897 (ex-type of
<italic>A. pseudofelis</italic>
)</td>
<td align="left" rowspan="1" colspan="1">Spain, human sputum, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KJ858507)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> NRRL 62901 = CM-5623 = CCF 4896 = CCF 4557 (Viridi-Pinh)</td>
<td align="left" rowspan="1" colspan="1">Portugal, bronchoalveolar lavage, chronic invasive aspergillosis in a 56-year-old male, 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KJ858506)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59564 = CCF 5612</td>
<td align="left" rowspan="1" colspan="1">Japan, human, sputum, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 60053 = CCF 4559</td>
<td align="left" rowspan="1" colspan="1">Japan, abscess near thigh bone, 40-year-old man with osteomyelitis, 2012</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (HF937392)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 54303 = CCF 4570</td>
<td align="left" rowspan="1" colspan="1">Japan, human, clinical material, < 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> FRR 5679 = CCF 5613 (MK246)</td>
<td align="left" rowspan="1" colspan="1">Australia, thoracic mass in a cat, < 2005</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> FRR 5680 = CCF 5615 (MK284)</td>
<td align="left" rowspan="1" colspan="1">Australia, retrobulbar mass, sino-orbital aspergillosis in a cat, < 2005</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 2937</td>
<td align="left" rowspan="1" colspan="1">Czech Republic, near Kladno, soil of spoil-bank, 1993</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (
<bold>LT796767</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4002 (AK 196/07)</td>
<td align="left" rowspan="1" colspan="1">Czech Republic, Markovičky, near Kutná Hora, old silver mine waste dump, 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4003 (AK 27/07)</td>
<td align="left" rowspan="1" colspan="1">Czech Republic, Chvaletice, soil crust, abandoned tailing pond, 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4171 = CMF ISB 2162 = IFM 60852 (F39)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil from coal mine dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (
<bold>LT796766</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4172 (F47)</td>
<td align="left" rowspan="1" colspan="1">Spain, Andalusia, Aracena, Gruta de la Maravillas, cave air, 2010</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4148 = CMF ISB 1975 = IFM 60868 (F22)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil from coal mine dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (
<bold>LT796760</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4376 (AK 102/11)</td>
<td align="left" rowspan="1" colspan="1">Czech Republic, Krušné hory, near Abertamy, soil from old dump, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4497 = CMF ISB 1936 (F6)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil from coal mine dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4498 = IFM 60853 (F49)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil from coal mine dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-E4 = CCF 5609 (2384/07)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 7-year-old DSH cat, FN, 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KC797622)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-E5 = CCF 5610 (4091/09)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 3-year-old Himalayan cat, FN, 2009</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797627)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-G1 = CCF 5611 (834/07)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis, 2-year-old Himalayan cat, MN, 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KC797625)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5614 (14/4138)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis, 5-year-old cat, Ragoll, MN, 2013</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5616 (Felix H. D)</td>
<td align="left" rowspan="1" colspan="1">Australia, Canberra, retrobulbar mass, sino-orbital aspergillosis, 8-year-old domestic longhair cat</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-F1 = CCF 5617 (66/10)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 5-year-old DSH cat, FN, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797629)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5618 (Luigi C.)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis, 2-year-old BSH cat, MN, 2012</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 130248 = DTO 131-G3 = CCF 5619 (1767/10)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 4-year-old DSH cat, FN, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KC797621)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 130249 = DTO 155-G3 = CCF 5621 (1207/05)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, vitreous humor, disseminated invasive apsergillosis 9-year-old Old English Sheepdog, MN, 2005</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-F2 = CCF 5622 (3532/09)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 4.5-year-old Ragdoll cat, MN, 2009</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 130247 = DTO 131-G2 = CCF 5623 (1020/07)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis, 2-year-old DSH cat, FN, 2007</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797632)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-E9 = CCF 5624 (1848/08)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 1.5-year-old DSH cat, MN, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797628)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-E3 = CCF 5625 (3008/08 D)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 8-year-old Persian cat, FN, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797634)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-F6 = CCF 5626 (8651/09)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 8-year-old DSH cat, MN, 2009</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (KC797624)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 130244 = DTO 131-E6 = CCF 5627 (4067/09D)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis, 5-year-old Cornish Rex cat, FN, 2009</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797630)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 131-F3 = CCF 5628 (2188/08)</td>
<td align="left" rowspan="1" colspan="1">Australia, Brisbane, retrobulbar mass, sino-orbital aspergillosis, 7-year-old DSH cat, FN, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 130246 = DTO 131-F9 = CCF 5629 (448/08)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, nasal cavity, sino-nasal aspergillosis 13-year-old DLH cat, MN, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KC797631)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. frankstonensis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 142233
<sup>T</sup>
= IBT 34172
<sup>T</sup>
= DTO 341-E7
<sup>T</sup>
= CCF 5799
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">Australia, Victoria, Frankston, woodland soil, 2015</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 142234 = IBT 34204 = DTO 341-F3 = CCF 5798</td>
<td align="left" rowspan="1" colspan="1">Australia, Victoria, Frankston, woodland soil, 2015</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. pseudoviridinutans</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> NRRL 62904
<sup>T</sup>
= CCF 5631 (NIHAV1, 1720)</td>
<td align="left" rowspan="1" colspan="1">USA, U.S. National Institutes of Health, mediastinal lymph node, 14-year-old boy with chronic granulomatous disease, 2004</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (KJ858509)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CBS 458.75 = KACC 41203 = IHEM 9862 (ex-type of
<italic>A. fumigatus</italic>
var.
<italic> sclerotiorum</italic>
)</td>
<td align="left" rowspan="1" colspan="1">India, Lucknow, Mohanlalganj, soil, < 1971</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IMI 182127 = KACC 41614 = CCF 5630</td>
<td align="left" rowspan="1" colspan="1">Srí Lanka,
<italic> Pinus caribea</italic>
, < 1974</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 55266 = CCF 5644</td>
<td align="left" rowspan="1" colspan="1">Japan, human, lung, 2004</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 57289 = CCF 4665</td>
<td align="left" rowspan="1" colspan="1">Brazil, Mato Grosso, soil</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59502 = CCF 4561</td>
<td align="left" rowspan="1" colspan="1">Japan, cornea, keratomycosis, 26-year-old woman, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59503 = CCF 4562</td>
<td align="left" rowspan="1" colspan="1">Japan, cornea, keratomycosis, 26-year-old woman, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5632 (NIHAV2, 2594)</td>
<td align="left" rowspan="1" colspan="1">USA, lung biopsy, 8-year-old boy with hyperimmunoglobulin-E syndrome, 2004</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (
<bold>LT796761</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. siamensis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59793
<sup>T</sup>
= KUFC 6349
<sup>T</sup>
= CCF 4685
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">Thailand, Chonburi Province, Samaesarn Island, coastal forest soil, 2008</td>
<td align="left" rowspan="1" colspan="1">homothallic</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 61157 = KUFC 6397 = CCF 4686</td>
<td align="left" rowspan="1" colspan="1">Thailand, Chiang Mai, termite nest soil, 2009</td>
<td align="left" rowspan="1" colspan="1">homothallic</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. udagawae</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 46972
<sup>T</sup>
= CBS 114217
<sup>T</sup>
= DTO 157-D7
<sup>T</sup>
= CBM-FA 0702
<sup>T</sup>
= KACC 41155
<sup>T</sup>
= CCF 4558
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">Brazil, São Paulo State, Botucatú, Lagoa Seka Avea, plantation soil, 1993</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 46973 = CBS 114218 = DTO 157-D8 = CBM-FA 0703 = KACC 41156 = CCF 5672</td>
<td align="left" rowspan="1" colspan="1">Brazil, São Paulo State, Botucatú, Lagoa Seka Avea, plantation soil, 1993</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 5058 = CCF 4662</td>
<td align="left" rowspan="1" colspan="1">Japan, human, eye</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 51744 = CCF 4671</td>
<td align="left" rowspan="1" colspan="1">Japan, human, clinical material, 2002</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 53868 = CCF 4667</td>
<td align="left" rowspan="1" colspan="1">Japan, human, clinical material, 2004</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 54131 = CBM-FA-0697 = CCF 4663</td>
<td align="left" rowspan="1" colspan="1">China, Shaanxi, soil, 1994</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 54132 = CBM-FA-0698 = CCF 4664</td>
<td align="left" rowspan="1" colspan="1">China, Shaanxi, soil, 1994</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 54745 = CBM-FA-694 = CCF 4661</td>
<td align="left" rowspan="1" colspan="1">China, Shaanxi, soil, 1994</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 55207 = NBRC 31952 = CCF 4660</td>
<td align="left" rowspan="1" colspan="1">Russia, soil, 1985</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 62155 = CCF 4668</td>
<td align="left" rowspan="1" colspan="1">Brazil, soil, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4475 (F2)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, prairie soil, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4476 (F32)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4478 = CMF ISB 2193 (F66)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Gilette, soil, mine waste dump, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4479 = CMF ISB 2189 (F70)</td>
<td align="left" rowspan="1" colspan="1">USA, Illinois, soil, mine waste dump, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4481 = CMF ISB 2191 (F83)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Gilette, soil, mine waste dump, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4491 = CMF ISB 1971 (F3)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, prairie soil, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4492 (F21)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (HF937389)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4494 (F44)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, prairie soil, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CMF ISB 1972 = CCF 4502 (F11)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CMF ISB 2190 = CCF 5635 (F76)</td>
<td align="left" rowspan="1" colspan="1">USA, Indiana, soil, mine waste dump, 2011</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CMF ISB 2509 = CCF 5636 (F20)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5637 (F37)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Gilette, soil, mine waste dump, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5638 (3C8)</td>
<td align="left" rowspan="1" colspan="1">USA, Philadelphia, retrobulbar mass, sino-orbital aspergillosis, 4-year-old Persian cat, MN, 2012</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 166-D6 = CCF 5639 (11.3356, Milo)</td>
<td align="left" rowspan="1" colspan="1">Australia, Sydney, retrobulbar mass, sino-orbital aspergillosis 2-year-old DSH cat, MN, 2011</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 5634 (B3)</td>
<td align="left" rowspan="1" colspan="1">Czech Republic, Hostěradice, earthworm casts, 2012</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. viridinutans</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 47045
<sup>T</sup>
= IFM 47046
<sup>T</sup>
= IMI 367415
<sup>T</sup>
= IMI 062875
<sup>T</sup>
= NRRL 4365
<sup>T</sup>
= NRRL 576
<sup>T</sup>
= CBS 127.56
<sup>T</sup>
= KACC 41142
<sup>T</sup>
= CCF 4382
<sup>T</sup>
= CCF 4568
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">Australia, Victoria, Frankston, rabbit dung, 1954</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (HF937390)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. wyomingensis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4417
<sup>T</sup>
= CMF ISB 2494
<sup>T</sup>
= CBS 135456
<sup>T</sup>
(F30)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (HF937391)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4169 = CMF ISB 2486 (F24)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4170 = CMF ISB 2485 (F12)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (
<bold>LT796765</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4411 = CMF ISB 1977 = IFM 60854 (F5)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4412 (F9)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4413 = CMF ISB 2317 (F10)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4414 = CMF ISB 1974 = IFM 60856 (F13)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (
<bold>LT796762</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4415 = CMF ISB 2487 (F28)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4416 = CMF ISB 1976 = CBS 135455 (F29)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (HF937388)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4418 = CMF ISB 2162 = IFM 60855 (F31)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4419 = CMF ISB 2495 (F53)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> CCF 4420 = CMF ISB 2491 (F60)</td>
<td align="left" rowspan="1" colspan="1">USA, Wyoming, Glenrock, soil, mine waste dump, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IMI 133982 = CCF 4383</td>
<td align="left" rowspan="1" colspan="1">Russia, Moscow, soil, < 1968</td>
<td align="left" rowspan="1" colspan="1">MAT1-1-1 (
<bold>LT796763</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> IFM 59681 = CCF 4563</td>
<td align="left" rowspan="1" colspan="1">China, Urumqi, soil, 2008</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1 (
<bold>LT796764</bold>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> DTO 155-G2 = CCF 5640 (Yogurt R.)</td>
<td align="left" rowspan="1" colspan="1">Australia, Melbourne, retrobulbar mass in a 1.5-year-old BSH cat, MN, 2010</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">outgroup</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. lentulus</italic>
NRRL 35552
<sup>T</sup>
= CBS 117885
<sup>T</sup>
= IBT 27201
<sup>T</sup>
= KACC 41940
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">USA, human, clinical material</td>
<td align="left" rowspan="1" colspan="1">MAT1-2-1</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn1">
<p>
<sup>1</sup>
Culture collection acronyms: CBM-FA = Natural History Museum & Institute, Chiba, Japan; CBS = CBS culture collection housed at the Westerdijk Institute, Utrecht, The Netherlands; CCF = Culture Collection of Fungi, Prague, Czech Republic; CM = Filamentous fungus collection of the Spanish National Center for Microbiology, Madrid, Spain; CMF ISB = Collection of Microscopic Fungi, Institute of Soil Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic; DTO = working collection of the Applied and Industrial Mycology department housed at the Westerdijk Institute, Utrecht, The Netherlands; FRR = Food Fungal Culture Collection, North Ryde, Australia; IBT = culture collection of the DTU Systems Biology, Lyngby, Denmark; IFM = Collection at the Medical Mycology Research Centre, Chiba University, Japan; IHEM = Belgian Coordinated Collections of Micro-organisms (BCCM/IHEM), Brussels, Belgium; IMI = CABI's collection of fungi and bacteria, Egham, UK; JCM = Japan Collection of Microorganisms, Tsukuba, Japan; KACC = Korean Agricultural Culture Collection, Wanju, South Korea; KUFC = Kasetsart University Fungal Collection, Bangkok, Thailand; NBRC (IFO) = Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan; NRRL = Agricultural Research Service Culture Collection, Peoria, Illinois, USA.</p>
</fn>
<fn id="tfn2">
<p>
<sup>2</sup>
Original numbers of strains and personal strain designations are given in parentheses.</p>
</fn>
<fn id="tfn3">
<p>
<sup>3</sup>
BSH = British shorthair; DLH = domestic longhair; DSH = domestic shorthair; FN = female neutered (desexed); MN = male neutered; ND = not determined.</p>
</fn>
<fn id="tfn4">
<p>
<sup>4</sup>
When available, sequence number in public database is given in parentheses; in the remaining cases, the MAT idiomorph was confirmed only on the electrophoretogram (specific PCR and length of amplicons).</p>
</fn>
<fn id="tfn5">
<p>
<sup>5</sup>
Sequences generated in this study are in
<bold>bold</bold>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>List of
<italic>Aspergillus</italic>
strains and sequences used in phylogenetic analysis; accession numbers in
<bold>bold</bold>
were generated for this study.</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="2" colspan="1">Species</th>
<th align="left" rowspan="2" colspan="1">Culture collection nos.
<xref ref-type="fn" rid="tfn6">
<sup>1</sup>
</xref>
</th>
<th align="center" colspan="7" rowspan="1">GenBank/ENA/DDBJ accession numbers
<hr></hr>
</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">ITS</th>
<th align="center" rowspan="1" colspan="1">
<italic>benA</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>CaM</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPB2</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>act</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>mcm7</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>tsr1</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="5" colspan="1">
<italic>Aspergillus acrensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">IFM 57291
<sup>T</sup>
= CCF 4670
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795980</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795981</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795982</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795983</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 57290 = CCF 4666</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795976</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795977</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795978</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795979</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4959</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795984</bold>
</td>
<td align="left" rowspan="1" colspan="1">LT558741</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795985</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795986</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4960</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795987</bold>
</td>
<td align="left" rowspan="1" colspan="1">LT558742</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795988</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795989</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4961</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795990</bold>
</td>
<td align="left" rowspan="1" colspan="1">LT558743</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795991</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795992</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="13" colspan="1">
<italic>A. arcoverdensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">IFM 61334
<sup>T</sup>
= JCM 19878
<sup>T</sup>
= CCF 4900
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818845</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795958</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795959</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818867</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61333 = CCF 4899</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795954</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795955</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795956</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795957</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61337 = JCM 19879 = CCF 4901</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818846</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795960</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795961</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818868</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61338 = JCM 19880 = CCF 4902</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818847</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795962</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795963</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818869</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61339 = CCF 4903</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818848</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795964</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795965</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818870</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61340 = CCF 4904</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818849</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795966</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795967</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818871</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61345 = CCF 5633</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818850</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795968</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795969</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818872</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61346 = CCF 4906</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818851</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795970</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795971</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818873</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61349 = CCF 4907</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818852</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795972</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795973</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818874</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61362 = CCF 4908</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818853</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795974</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795975</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818875</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 59922 = CCF 4560</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795944</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795945</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795946</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795947</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 59923 = CCF 4569</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB818844</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795948</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795949</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB818866</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FRR 1266 = CBS 121595 = DTO 019-F2 = CCF 4574</td>
<td align="left" rowspan="1" colspan="1">JX021672</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795950</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795951</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795952</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795953</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="4" colspan="1">
<italic>A. aureolus</italic>
</td>
<td align="left" rowspan="1" colspan="1">IFM 47021
<sup>T</sup>
= IFM 46935
<sup>T</sup>
= IFM 53589
<sup>T</sup>
= CBS 105.55
<sup>T</sup>
= NRRL 2244
<sup>T</sup>
= IMI 06145
<sup>T</sup>
= KACC 41204
<sup>T</sup>
= KACC 41095
<sup>T</sup>
= CCF 4644
<sup>T</sup>
= CCF 4646
<sup>T</sup>
= CCF 4648
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">EF669950</td>
<td align="left" rowspan="1" colspan="1">EF669808</td>
<td align="left" rowspan="1" colspan="1">HG426051</td>
<td align="left" rowspan="1" colspan="1">EF669738</td>
<td align="left" rowspan="1" colspan="1">DQ094861</td>
<td align="left" rowspan="1" colspan="1">KJ914718</td>
<td align="left" rowspan="1" colspan="1">KJ914750</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 46584 = IFM 46936 = CBM-FA-0692 = CCF 4645 = CCF 4647</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796001</bold>
</td>
<td align="left" rowspan="1" colspan="1">HG426050</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796002</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796003</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 53615 = CBM-FA-934 = CCF 4571 (ex-type of
<italic>A. indohii</italic>
)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB488757</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795998</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795999</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796000</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IHEM 22515</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796004</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796005</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796006</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796007</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796153</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796756</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="35" colspan="1">
<italic>A. felis</italic>
</td>
<td align="left" rowspan="1" colspan="1">CBS 130245
<sup>T</sup>
= DTO 131-F4
<sup>T</sup>
= CCF 5620</td>
<td align="left" rowspan="1" colspan="1">KF558318</td>
<td align="left" rowspan="1" colspan="1">KJ914694</td>
<td align="left" rowspan="1" colspan="1">KJ914706</td>
<td align="left" rowspan="1" colspan="1">KJ914735</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795880</bold>
</td>
<td align="left" rowspan="1" colspan="1">KJ914724</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796745</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NRRL 62900 = CM-3147 = CCF 4895 (ex-type of
<italic>A. parafelis</italic>
)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">KJ914692</td>
<td align="left" rowspan="1" colspan="1">KJ914702</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795839</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795838</bold>
</td>
<td align="left" rowspan="1" colspan="1">KJ914720</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796734</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NRRL 62903 = CM-6087 = CCF 4897 (ex-type of
<italic>A. pseudofelis</italic>
)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">KJ914697</td>
<td align="left" rowspan="1" colspan="1">KJ914705</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795891</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795892</bold>
</td>
<td align="left" rowspan="1" colspan="1">KJ914723</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796749</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NRRL 62901 = CM-5623 = CCF 4896 = CCF 4557</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">KJ914693</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795813</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795814</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795815</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796152</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796727</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 59564 = CCF 5612</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795801</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795802</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795803</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795804</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796126</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796724</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 60053 = CCF 4559</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795856</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795857</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795858</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795859</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796138</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796739</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 54303 = CCF 4570</td>
<td align="left" rowspan="1" colspan="1">AB250780</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795860</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795861</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795862</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795863</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796139</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796740</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FRR 5679 = CCF 5613 </td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795805</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795806</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795807</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795808</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796127</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796725</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FRR 5680 = CCF 5615 </td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795844</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795845</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795846</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795847</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796135</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796736</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 2937</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795816</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795817</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795818</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795819</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796129</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796728</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4002</td>
<td align="left" rowspan="1" colspan="1">FR733865</td>
<td align="left" rowspan="1" colspan="1">FR775350</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795824</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795825</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795826</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796131</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796730</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4003</td>
<td align="left" rowspan="1" colspan="1">FR733866</td>
<td align="left" rowspan="1" colspan="1">FR775349</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795827</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795828</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795829</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796132</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796731</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4171 = CMF ISB 2162 = IFM 60852</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795840</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795841</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795842</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795843</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796134</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796735</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4172</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795834</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795835</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795836</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795837</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796133</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796733</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4148 = CMF ISB 1975 = IFM 60868</td>
<td align="left" rowspan="1" colspan="1">HE578063</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795868</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795869</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795870</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795871</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796741</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4376</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795872</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795873</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795874</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795875</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796141</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796743</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4497 = CMF ISB 1936</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795820</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795821</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795822</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795823</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796130</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796729</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4498 = IFM 60853</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795830</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795831</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795832</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795833</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796732</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-E4 = CCF 5609 </td>
<td align="left" rowspan="1" colspan="1">JX021673</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795789</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795790</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795791</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795792</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796123</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796721</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-E5 = CCF 5610 </td>
<td align="left" rowspan="1" colspan="1">JX021674</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795793</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795794</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795795</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795796</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796124</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796722</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-G1 = CCF 5611 </td>
<td align="left" rowspan="1" colspan="1">JX021682</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795797</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795798</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795799</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795800</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796125</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796723</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5614 </td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795809</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795810</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795811</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795812</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796128</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796726</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5616</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795848</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795849</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795850</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795851</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796136</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796737</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-F1 = CCF 5617</td>
<td align="left" rowspan="1" colspan="1">JX021677</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795852</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795853</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795854</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795855</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796137</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796738</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5618</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795864</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795865</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795866</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795867</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796140</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796742</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 130248 = DTO 131-G3 = CCF 5619</td>
<td align="left" rowspan="1" colspan="1">JX021684</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795876</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795877</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795878</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795879</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796142</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796744</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 130249 = DTO 155-G3 = CCF 5621</td>
<td align="left" rowspan="1" colspan="1">JX021686</td>
<td align="left" rowspan="1" colspan="1">JX021711</td>
<td align="left" rowspan="1" colspan="1">JX021713</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795881</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795882</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796143</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796746</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-F2 = CCF 5622 </td>
<td align="left" rowspan="1" colspan="1">JX021678</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795883</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795884</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795885</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795886</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796144</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796747</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 130247 = DTO 131-G2 = CCF 5623</td>
<td align="left" rowspan="1" colspan="1">JX021683</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795887</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795888</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795889</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795890</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796145</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796748</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-E9 = CCF 5624 </td>
<td align="left" rowspan="1" colspan="1">JX021676</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795893</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795894</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795895</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795896</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796146</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796750</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-E3 = CCF 5625 </td>
<td align="left" rowspan="1" colspan="1">JX021671</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795897</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795898</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795899</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795900</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796147</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796751</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-F6 = CCF 5626 </td>
<td align="left" rowspan="1" colspan="1">JX021680</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795901</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795902</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795903</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795904</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796148</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796752</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 130244 = DTO 131-E6 = CCF 5627</td>
<td align="left" rowspan="1" colspan="1">JX021675</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795905</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795906</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795907</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795908</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796149</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796753</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 131-F3 = CCF 5628 </td>
<td align="left" rowspan="1" colspan="1">JX021679</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795909</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795910</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795911</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795912</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796150</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796754</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 130246 = DTO 131-F9 = CCF 5629</td>
<td align="left" rowspan="1" colspan="1">JX021681</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795913</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795914</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795915</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795916</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796151</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796755</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">
<italic>A. frankstonensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">CBS 142233
<sup>T</sup>
= IBT 34172
<sup>T</sup>
= DTO 341-E7
<sup>T</sup>
= CCF 5799
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">KY808756</td>
<td align="left" rowspan="1" colspan="1">KY808594</td>
<td align="left" rowspan="1" colspan="1">KY808724</td>
<td align="left" rowspan="1" colspan="1">KY808948</td>
<td align="left" rowspan="1" colspan="1">KY808549</td>
<td align="left" rowspan="1" colspan="1">KY808901</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT904842</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 142234 = IBT 34204 = DTO 341-F3 = CCF 5798</td>
<td align="left" rowspan="1" colspan="1">KY808761</td>
<td align="left" rowspan="1" colspan="1">KY808599</td>
<td align="left" rowspan="1" colspan="1">KY808729</td>
<td align="left" rowspan="1" colspan="1">KY808953</td>
<td align="left" rowspan="1" colspan="1">KY808554</td>
<td align="left" rowspan="1" colspan="1">KY808906</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="8" colspan="1">
<italic>A. pseudoviridintans</italic>
</td>
<td align="left" rowspan="1" colspan="1">NRRL 62904
<sup>T</sup>
= CCF 5631</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">KJ914690</td>
<td align="left" rowspan="1" colspan="1">KJ914708</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795930</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795931</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796119</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796717</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CBS 458.75 = KACC 41203 = IHEM 9862 (ex-type of
<italic>A. fumigatus</italic>
var.
<italic> sclerotiorum</italic>
)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795925</bold>
</td>
<td align="left" rowspan="1" colspan="1">HG426048</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795926</bold>
</td>
<td align="left" rowspan="1" colspan="1">DQ094853</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796117</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796715</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IMI 182127 = KACC 41614 = CCF 5630</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795927</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795928</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795929</bold>
</td>
<td align="left" rowspan="1" colspan="1">DQ094850</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796118</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796716</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 55266 = CCF 5644</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795917</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795918</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795919</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795920</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796115</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796713</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 57289 = CCF 4665</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795921</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795922</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795923</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795924</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796116</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796714</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 59502 = CCF 4561</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795936</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795937</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795938</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795939</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796121</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796719</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 59503 = CCF 4562</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795940</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795941</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795942</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795943</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796122</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796720</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5632</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795932</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795933</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795934</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795935</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796120</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796718</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">
<italic>A. siamensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">IFM 59793
<sup>T</sup>
= KUFC 6349
<sup>T</sup>
= CCF 4685
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB646989</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795993</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795994</bold>
</td>
<td align="left" rowspan="1" colspan="1">AB776703</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 61157 = KUFC 6397 = CCF 4686</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">AB776701</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795995</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795996</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT795997</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="25" colspan="1">
<italic>A. udagawae</italic>
</td>
<td align="left" rowspan="1" colspan="1">IFM 46972
<sup>T</sup>
= CBS 114217
<sup>T</sup>
= DTO 157-D7
<sup>T</sup>
= CBM-FA 0702
<sup>T</sup>
= KACC 41155
<sup>T</sup>
= CCF 4558
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">AB185265</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796063</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796064</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796065</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796066</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 46973 = CBS 114218 = DTO 157-D8 = CBM-FA 0703 = KACC 41156 = CCF 5672</td>
<td align="left" rowspan="1" colspan="1">JN943591</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796067</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796068</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796069</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796070</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 5058 = CCF 4662</td>
<td align="left" rowspan="1" colspan="1">AB250402</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796075</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796076</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796077</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796078</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 51744 = CCF 4671</td>
<td align="left" rowspan="1" colspan="1">AB250403</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796079</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796080</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796081</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796082</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 53868 = CCF 4667</td>
<td align="left" rowspan="1" colspan="1">AB250405</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796111</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796112</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796113</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796114</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 54131 = CBM-FA-0697 = CCF 4663</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796083</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796084</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796085</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796086</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 54132 = CBM-FA-0698 = CCF 4664</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796087</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796088</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796089</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796090</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 54745 = CBM-FA-694 = CCF 4661</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796091</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796092</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796093</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796094</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 55207 = NBRC 31952 = CCF 4660</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796095</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796096</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796097</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796098</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 62155 = CCF 4668</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796099</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796100</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796101</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796102</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4475</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933366</td>
<td align="left" rowspan="1" colspan="1">HF933407</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796037</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796038</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4476</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933371</td>
<td align="left" rowspan="1" colspan="1">HF933412</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796043</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796044</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4478 = CMF ISB 2193</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933376</td>
<td align="left" rowspan="1" colspan="1">HF933416</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796045</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796046</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4479 = CMF ISB 2189</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933377</td>
<td align="left" rowspan="1" colspan="1">HF933417</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796047</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796048</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4481 = CMF ISB 2191</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933379</td>
<td align="left" rowspan="1" colspan="1">HF933419</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796049</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796050</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4491 = CMF ISB 1971</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933370</td>
<td align="left" rowspan="1" colspan="1">HF933411</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796051</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796052</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4492</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933368</td>
<td align="left" rowspan="1" colspan="1">HF933409</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796053</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796054</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4494</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933373</td>
<td align="left" rowspan="1" colspan="1">HF933413</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796055</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796056</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMF ISB 1972 = CCF 4502</td>
<td align="left" rowspan="1" colspan="1">HE578061</td>
<td align="left" rowspan="1" colspan="1">HE578075</td>
<td align="left" rowspan="1" colspan="1">HF933405</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796057</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796058</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMF ISB 2190 = CCF 5635</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HG426055</td>
<td align="left" rowspan="1" colspan="1">HG426049</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796059</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796060</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMF ISB 2509 = CCF 5636</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933367</td>
<td align="left" rowspan="1" colspan="1">HF933408</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796061</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796062</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5637</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796071</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796072</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796073</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796074</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5638</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796103</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796104</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796105</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796106</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796156</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796758</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 166-D6 = CCF 5639</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796107</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796108</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796109</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796110</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796155</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796759</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 5634</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796039</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796040</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796041</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796042</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. viridinutans</italic>
</td>
<td align="left" rowspan="1" colspan="1">IFM 47045
<sup>T</sup>
= IFM 47046
<sup>T</sup>
= IMI 367415
<sup>T</sup>
= IMI 062875
<sup>T</sup>
= NRRL 4365
<sup>T</sup>
= NRRL 576
<sup>T</sup>
= CBS 127.56
<sup>T</sup>
= KACC 41142
<sup>T</sup>
= CCF 4382
<sup>T</sup>
= CCF 4568
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">EF669978</td>
<td align="left" rowspan="1" colspan="1">EF669834</td>
<td align="left" rowspan="1" colspan="1">EF669904</td>
<td align="left" rowspan="1" colspan="1">EF669765</td>
<td align="left" rowspan="1" colspan="1">DQ094862</td>
<td align="left" rowspan="1" colspan="1">KJ914717</td>
<td align="left" rowspan="1" colspan="1">KJ914751</td>
</tr>
<tr>
<td align="left" rowspan="15" colspan="1">
<italic>A. wyomingensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">CCF 4417
<sup>T</sup>
= CMF ISB 2494
<sup>T</sup>
= CBS 135456
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">HG324081</td>
<td align="left" rowspan="1" colspan="1">HF933359</td>
<td align="left" rowspan="1" colspan="1">HF933397</td>
<td align="left" rowspan="1" colspan="1">HF937378</td>
<td align="left" rowspan="1" colspan="1">HF937382</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4169 = CMF ISB 2486</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933354</td>
<td align="left" rowspan="1" colspan="1">HF933394</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796009</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796008</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4170 = CMF ISB 2485</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933356</td>
<td align="left" rowspan="1" colspan="1">HF933392</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796011</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796010</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4411 = CMF ISB 1977 = IFM 60854</td>
<td align="left" rowspan="1" colspan="1">HE578062</td>
<td align="left" rowspan="1" colspan="1">HE578077</td>
<td align="left" rowspan="1" colspan="1">HF933389</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796016</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796015</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4412</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933352</td>
<td align="left" rowspan="1" colspan="1">HF933390</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796018</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796017</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4413 = CMF ISB 2317</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933360</td>
<td align="left" rowspan="1" colspan="1">HF933391</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796019</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796020</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4414 = CMF ISB 1974 = IFM 60856</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933353</td>
<td align="left" rowspan="1" colspan="1">HF933393</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796021</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796022</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4415 = CMF ISB 2487</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933357</td>
<td align="left" rowspan="1" colspan="1">HF933395</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796023</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796024</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4416 = CMF ISB 1976 = CBS 135455</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933358</td>
<td align="left" rowspan="1" colspan="1">HF933396</td>
<td align="left" rowspan="1" colspan="1">HF937377</td>
<td align="left" rowspan="1" colspan="1">HF937381</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4418 = CMF ISB 2162 = IFM 60855</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933355</td>
<td align="left" rowspan="1" colspan="1">HF933398</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796025</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796026</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4419 = CMF ISB 2495</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933361</td>
<td align="left" rowspan="1" colspan="1">HF933399</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796027</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796028</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CCF 4420 = CMF ISB 2491</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HF933362</td>
<td align="left" rowspan="1" colspan="1">HF933400</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796029</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796030</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IMI 133982 = CCF 4383</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796012</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796013</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796014</bold>
</td>
<td align="left" rowspan="1" colspan="1">DQ094860</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">IFM 59681 = CCF 4563</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">HG426056</td>
<td align="left" rowspan="1" colspan="1">HG426053</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796031</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796032</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DTO 155-G2
<bold> = </bold>
CCF 5640</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796033</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796034</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796035</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796036</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796154</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>LT796757</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">outgroup</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. lentulus</italic>
</td>
<td align="left" rowspan="1" colspan="1">NRRL 35552
<sup>T</sup>
= CBS 117885
<sup>T</sup>
= IBT 27201
<sup>T</sup>
= KACC 41940
<sup>T</sup>
</td>
<td align="left" rowspan="1" colspan="1">EF669969</td>
<td align="left" rowspan="1" colspan="1">EF669825</td>
<td align="left" rowspan="1" colspan="1">EF669895</td>
<td align="left" rowspan="1" colspan="1">EF669756</td>
<td align="left" rowspan="1" colspan="1">DQ094873</td>
<td align="left" rowspan="1" colspan="1">KJ914712</td>
<td align="left" rowspan="1" colspan="1">KJ914746</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn6">
<p>
<sup>1</sup>
Culture collection acronyms: CBM-FA = Natural History Museum & Institute, Chiba, Japan; CBS = CBS culture collection housed at the Westerdijk Institute, Utrecht, The Netherlands; CCF = Culture Collection of Fungi, Prague, Czech Republic; CM = Filamentous fungus collection of the Spanish National Center for Microbiology, Madrid, Spain; CMF ISB = Collection of Microscopic Fungi, Institute of Soil Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic; DTO = working collection of the Applied and Industrial Mycology department housed at the Westerdijk Institute, Utrecht, The Netherlands; FRR = Food Fungal Culture Collection, North Ride, Australia; IBT = culture collection of the DTU Systems Biology, Lyngby, Denmark; IFM = Collection at the Medical Mycology Research Centre, Chiba University, Japan; IHEM = Belgian Coordinated Collections of Micro-organisms (BCCM/IHEM), Brussels, Belgium; IMI = CABI's collection of fungi and bacteria, Egham, UK; JCM = Japan Collection of Microorganisms, Tsukuba, Japan; KACC = Korean Agricultural Culture Collection, Wanju, South Korea; KUFC = Kasetsart University Fungal Collection, Bangkok, Thailand; NBRC (IFO) = Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan; NRRL = Agricultural Research Service Culture Collection, Peoria, Illinois, USA.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Partition-merging results and best substitution model for each partition according to Bayesian information criterion (BIC) as proposed by PartitionFinder v. 1.1.0. for combined dataset of
<italic>benA</italic>
,
<italic>CaM</italic>
,
<italic>act</italic>
and
<italic>RPB2</italic>
genes.</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="1" colspan="1">Dataset</th>
<th align="left" rowspan="1" colspan="1">Phylogenetic method</th>
<th align="left" rowspan="1" colspan="1">Partitioning scheme (substitution model)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="2" colspan="1">Section
<italic> Fumigati</italic>
(
<xref ref-type="fig" rid="F1">Fig. 1</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Maximum likelihood</td>
<td align="left" rowspan="1" colspan="1">
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
introns (TrNef+G); 3rd codon positions of
<italic>benA</italic>
(GTR+G); 1st codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
+
<italic>RPB2</italic>
+ 2nd codon positions of
<italic>act</italic>
+ 3rd codon positions of
<italic>act</italic>
(TIM+I); 2nd codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic>RPB2</italic>
(HKY); 3rd codon positions of
<italic>CaM</italic>
+
<italic> RPB2</italic>
(HKY+G)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bayesian inference</td>
<td align="left" rowspan="1" colspan="1">
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
introns (K80+G); 3rd codon positions of
<italic>benA</italic>
(GTR+G); 1st codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
+
<italic>RPB2</italic>
+ 2nd codon positions of
<italic>act</italic>
+ 3rd codon positions of
<italic>act</italic>
(GTR+I); 2nd codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic>RPB2</italic>
(HKY); 3rd codon positions of
<italic>CaM</italic>
+
<italic> RPB2</italic>
(HKY+G)</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">
<italic>A. viridinutans</italic>
clade (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Maximum likelihood</td>
<td align="left" rowspan="1" colspan="1">
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
introns (K80+G); 3rd codon positions of
<italic>benA</italic>
+
<italic> CaM</italic>
+
<italic>RPB2</italic>
(TrN+G); 1st codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
+
<italic>RPB2</italic>
+ 3rd codon positions of
<italic>act</italic>
(TrN); 2nd codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic>act</italic>
+
<italic>RPB2</italic>
(F81)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bayesian inference</td>
<td align="left" rowspan="1" colspan="1">
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
introns (K80+G); 3rd codon positions of
<italic>benA</italic>
+
<italic> CaM</italic>
+
<italic>RPB2</italic>
(HKY+G); 1st codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic> act</italic>
+
<italic>RPB2</italic>
+ 3rd codon positions of
<italic>act</italic>
(HKY); 2nd codon positions of
<italic>benA</italic>
+
<italic>CaM</italic>
+
<italic>act</italic>
+
<italic>RPB2</italic>
(F81)</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="T4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<p>Overview of alignments characteristics used for phylogenetic analyses.</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="1" colspan="1">Alignment characteristic</th>
<th align="left" rowspan="1" colspan="1">
<italic>benA</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>CaM</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>act</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>RPB2</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>mcm7</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>tsr1</italic>
</th>
<th align="left" rowspan="1" colspan="1">Combined dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Section
<italic>Fumigati</italic>
(
<xref ref-type="fig" rid="F1">Fig. 1</xref>
)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Length (bp)</td>
<td align="left" rowspan="1" colspan="1">534</td>
<td align="left" rowspan="1" colspan="1">697</td>
<td align="left" rowspan="1" colspan="1">431</td>
<td align="left" rowspan="1" colspan="1">999</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2661</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Variable position</td>
<td align="left" rowspan="1" colspan="1">268</td>
<td align="left" rowspan="1" colspan="1">322</td>
<td align="left" rowspan="1" colspan="1">234</td>
<td align="left" rowspan="1" colspan="1">280</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1104</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Parsimony informative sites</td>
<td align="left" rowspan="1" colspan="1">184</td>
<td align="left" rowspan="1" colspan="1">226</td>
<td align="left" rowspan="1" colspan="1">148</td>
<td align="left" rowspan="1" colspan="1">186</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">744</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. viridinutans</italic>
complex (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Length (bp)</td>
<td align="left" rowspan="1" colspan="1">475</td>
<td align="left" rowspan="1" colspan="1">697</td>
<td align="left" rowspan="1" colspan="1">344</td>
<td align="left" rowspan="1" colspan="1">967</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2483</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Variable position</td>
<td align="left" rowspan="1" colspan="1">115</td>
<td align="left" rowspan="1" colspan="1">168</td>
<td align="left" rowspan="1" colspan="1">102</td>
<td align="left" rowspan="1" colspan="1">135</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">520</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Parsimony informative sites</td>
<td align="left" rowspan="1" colspan="1">84</td>
<td align="left" rowspan="1" colspan="1">114</td>
<td align="left" rowspan="1" colspan="1">70</td>
<td align="left" rowspan="1" colspan="1">81</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">349</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
clade (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Length (bp)</td>
<td align="left" rowspan="1" colspan="1">474</td>
<td align="left" rowspan="1" colspan="1">681</td>
<td align="left" rowspan="1" colspan="1">329</td>
<td align="left" rowspan="1" colspan="1">967</td>
<td align="left" rowspan="1" colspan="1">623</td>
<td align="left" rowspan="1" colspan="1">761</td>
<td align="left" rowspan="1" colspan="1">3835</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Variable position</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">73</td>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">59</td>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="left" rowspan="1" colspan="1">103</td>
<td align="left" rowspan="1" colspan="1">380</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Parsimony informative sites</td>
<td align="left" rowspan="1" colspan="1">50</td>
<td align="left" rowspan="1" colspan="1">49</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">58</td>
<td align="left" rowspan="1" colspan="1">231</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="T5" orientation="portrait" position="float">
<label>Table 5</label>
<caption>
<p>Ascospores characteristics of
<italic>Aspergillus viridinutans</italic>
complex species and interspecific hybrids.</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="2" colspan="1">Species / interspecific hybrid (×)</th>
<th align="left" colspan="2" rowspan="1">Ascospore body (mean ± standard deviation; μm))
<hr></hr>
</th>
<th align="left" colspan="2" rowspan="1">Ornamentation of ascospores
<hr></hr>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">width</th>
<th align="left" rowspan="1" colspan="1">height</th>
<th align="left" rowspan="1" colspan="1">length of crests (μm)
<xref ref-type="fn" rid="tfn7">
<sup>1</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">surface ornamentation
<xref ref-type="fn" rid="tfn8">
<sup>2</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aspergillus aureolus</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.8 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">4.4 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">(0.5–)1–1.5</td>
<td align="left" rowspan="1" colspan="1">crests present
<xref ref-type="fn" rid="tfn9">
<sup>3</sup>
</xref>
; CS tuberculate to echinulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.4 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">3.9 ± 0.6</td>
<td align="left" rowspan="1" colspan="1">0.5–1.5(–2)</td>
<td align="left" rowspan="1" colspan="1">crests present
<xref ref-type="fn" rid="tfn9">
<sup>3</sup>
</xref>
; CS tuberculate to echinulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. siamensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.5 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">3.7 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">(0.5–)1–1.5</td>
<td align="left" rowspan="1" colspan="1">crests present
<xref ref-type="fn" rid="tfn9">
<sup>3</sup>
</xref>
; CS tuberculate, echinulate to reticulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. udagawae</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.8 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">4.2 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">(0–)0.5(–1)</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in < 10 % of ascospores (LM); CS tuberculate to reticulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. wyomingensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.2 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">3.4 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">0–0.5</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in > 50 % of ascospores (LM); CS almost smooth, tuberculate, echinulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
<italic>A. pseudoviridinutans</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.9 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">4.2 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">(0–)0.5–1</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in 5–20 % of ascospores (LM) depending on parental isolates; CS tuberculate to echinulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
<italic>A. wyomingensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">4.8 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">4.3 ± 0.3</td>
<td align="left" rowspan="1" colspan="1">(0–)0.5–1</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in ~ 10 % of ascospores (LM); CS tuberculate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
<italic>A. udagawae</italic>
</td>
<td align="left" rowspan="1" colspan="1">5.1 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">4.5 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">0–0.5(–1)</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in ~ 20 % of ascospores (LM); CS echinulate, tuberculate to reticulate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. udagawae</italic>
×
<italic>A. wyomingensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">5.0 ± 0.4</td>
<td align="left" rowspan="1" colspan="1">4.6 ± 0.3</td>
<td align="left" rowspan="1" colspan="1">0–1</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in ~ 15 % of ascospores (LM); CS tuberculate (SEM)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. udagawae</italic>
<italic>A. acrensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">5.2 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">4.4 ± 0.5</td>
<td align="left" rowspan="1" colspan="1">0–0.5</td>
<td align="left" rowspan="1" colspan="1">visible crests absent in ~ 50 % of ascospores (LM) in CMF ISB 2190 ཌ IFM 57290 and in 100 % of ascospores in IFM 46972 ཌ IFM 57290; CS tuberculate to echinulate in CMF ISB 2190 ཌ IFM 57290 (SEM) and glabrous in IFM 46972 ཌ IFM 57290 (LM)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn7">
<p>
<sup>1</sup>
Values in parentheses are less common (less than 10 % of measurements).</p>
</fn>
<fn id="tfn8">
<p>
<sup>2</sup>
LM = light microscopy; SEM = scanning electron microscopy; CS = convex surface.</p>
</fn>
<fn id="tfn9">
<p>
<sup>3</sup>
Crests may absent in < 1 % of ascospores in some isolates / crosses.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T6" orientation="portrait" position="float">
<label>Table 6</label>
<caption>
<p>Highest intraspecific pairwise genetic distances in members of
<italic>Aspergillus viridinutans</italic>
complex (%).</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="2" colspan="1">Species (no. of isolates)</th>
<th align="left" colspan="6" rowspan="1">Highest genetic distances between two isolates according to different genetic loci
<hr></hr>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">
<italic>benA</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>CaM</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>RPB2</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>act</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>mcm7</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>tsr1</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. acrensis</italic>
(5)</td>
<td align="left" rowspan="1" colspan="1">0.2</td>
<td align="left" rowspan="1" colspan="1">0.9</td>
<td align="left" rowspan="1" colspan="1">0.2</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">ND</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. arcoverdensis</italic>
(13)</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0.9</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" rowspan="1" colspan="1">1.4</td>
<td align="left" rowspan="1" colspan="1">ND</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. aureolus</italic>
(4)</td>
<td align="left" rowspan="1" colspan="1">0.4</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0.1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">ND</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. felis</italic>
(35)</td>
<td align="left" rowspan="1" colspan="1">4.2</td>
<td align="left" rowspan="1" colspan="1">2.4</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1">2.5</td>
<td align="left" rowspan="1" colspan="1">1.3</td>
<td align="left" rowspan="1" colspan="1">3.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. frankstonensis</italic>
(2)</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0.2</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. pseudoviridinutans</italic>
(8)</td>
<td align="left" rowspan="1" colspan="1">2.6</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
<td align="left" rowspan="1" colspan="1">1.9</td>
<td align="left" rowspan="1" colspan="1">2.1</td>
<td align="left" rowspan="1" colspan="1">0.7</td>
<td align="left" rowspan="1" colspan="1">1.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. siamensis</italic>
(2)</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0.1</td>
<td align="left" rowspan="1" colspan="1">0.1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">ND</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. udagawae</italic>
(25)</td>
<td align="left" rowspan="1" colspan="1">1.1</td>
<td align="left" rowspan="1" colspan="1">2.8</td>
<td align="left" rowspan="1" colspan="1">1.2</td>
<td align="left" rowspan="1" colspan="1">4.9</td>
<td align="left" rowspan="1" colspan="1">ND</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>A. wyomingensis</italic>
(15)</td>
<td align="left" rowspan="1" colspan="1">0.4</td>
<td align="left" rowspan="1" colspan="1">0.9</td>
<td align="left" rowspan="1" colspan="1">0.4</td>
<td align="left" rowspan="1" colspan="1">0.9</td>
<td align="left" rowspan="1" colspan="1">ND</td>
<td align="left" rowspan="1" colspan="1">ND</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn10">
<p>ND, not determined.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T7" orientation="portrait" position="float">
<label>Table 7</label>
<caption>
<p>Genetic similarities between the ex-type isolates of
<italic>Aspergillus viridinutans</italic>
complex members based on identities from BLAST similarity search
<xref ref-type="fn" rid="tfn11">
<sup>1</sup>
</xref>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="2" colspan="1">Species</th>
<th align="left" colspan="10" rowspan="1">Genetic similarities between species:
<italic>benA</italic>
<bold>/ </bold>
<italic>CaM</italic>
/
<italic>RPB2</italic>
(%)
<hr></hr>
1</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">1.</th>
<th align="left" rowspan="1" colspan="1">2.</th>
<th align="left" rowspan="1" colspan="1">3.</th>
<th align="left" rowspan="1" colspan="1">4.</th>
<th align="left" rowspan="1" colspan="1">5.</th>
<th align="left" rowspan="1" colspan="1">6.</th>
<th align="left" rowspan="1" colspan="1">7.</th>
<th align="left" rowspan="1" colspan="1">8.</th>
<th align="left" rowspan="1" colspan="1">9.</th>
<th align="left" rowspan="1" colspan="1">10.</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1.
<italic>A. acrensis</italic>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2.
<italic>A. arcoverdensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">94.5/95.2/98.0</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3.
<italic> A. aureolus</italic>
</td>
<td align="left" rowspan="1" colspan="1">99.6/98.8/99.0</td>
<td align="left" rowspan="1" colspan="1">94.5/95.6/98.1</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4.
<italic>A. felis</italic>
</td>
<td align="left" rowspan="1" colspan="1">92.0/95.6/97.7</td>
<td align="left" rowspan="1" colspan="1">93.4/96.8/97.6</td>
<td align="left" rowspan="1" colspan="1">92.4/95.9/97.8</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5.
<italic>A. frankstonensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">95.3/94.7/98.0</td>
<td align="left" rowspan="1" colspan="1">95.6/97.1/98.3</td>
<td align="left" rowspan="1" colspan="1">95.3/94.9/98.2</td>
<td align="left" rowspan="1" colspan="1">92.6/96.2/97.7</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6.
<italic>A. pseudoviridinutans</italic>
</td>
<td align="left" rowspan="1" colspan="1">94.7/95.2/97.6</td>
<td align="left" rowspan="1" colspan="1">95.7/96.0/97.4</td>
<td align="left" rowspan="1" colspan="1">94.9/95.5/97.8</td>
<td align="left" rowspan="1" colspan="1">95.5/97.6/98.1</td>
<td align="left" rowspan="1" colspan="1">96.0/95.3/97.5</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7.
<italic>A. siamensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">96.6/95.8/98.9</td>
<td align="left" rowspan="1" colspan="1">95.5/95.6/98.5</td>
<td align="left" rowspan="1" colspan="1">96.7/96.0/98.9</td>
<td align="left" rowspan="1" colspan="1">93.0/95.7/98.2</td>
<td align="left" rowspan="1" colspan="1">95.6/94.7/98.0</td>
<td align="left" rowspan="1" colspan="1">95.5/95.4/97.9</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8.
<italic>A. udagawae</italic>
</td>
<td align="left" rowspan="1" colspan="1">97.4/96.8/99.0</td>
<td align="left" rowspan="1" colspan="1">94.7/95.6/98.2</td>
<td align="left" rowspan="1" colspan="1">97.4/97.1/99.1</td>
<td align="left" rowspan="1" colspan="1">92.0/95.9/97.9</td>
<td align="left" rowspan="1" colspan="1">95.3/95.1/98.1</td>
<td align="left" rowspan="1" colspan="1">94.5/95.6/97.7</td>
<td align="left" rowspan="1" colspan="1">96.2/96.3/99.1</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9.
<italic>A. viridinutans</italic>
</td>
<td align="left" rowspan="1" colspan="1">95.3/94.8/98.6</td>
<td align="left" rowspan="1" colspan="1">96.5/97.3/99.1</td>
<td align="left" rowspan="1" colspan="1">95.5/95.1/98.6</td>
<td align="left" rowspan="1" colspan="1">93.8/95.4/98.2</td>
<td align="left" rowspan="1" colspan="1">97.5/97.8/98.8</td>
<td align="left" rowspan="1" colspan="1">96.5/94.7/97.9</td>
<td align="left" rowspan="1" colspan="1">96.3/95.3/98.8</td>
<td align="left" rowspan="1" colspan="1">95.6/95.3/98.8</td>
<td align="left" rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10.
<italic>A. wyomingensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">95.8/96.5/98.6</td>
<td align="left" rowspan="1" colspan="1">94.5/96.0/97.8</td>
<td align="left" rowspan="1" colspan="1">96.0/96.5/98.3</td>
<td align="left" rowspan="1" colspan="1">92.1/96.3/97.5</td>
<td align="left" rowspan="1" colspan="1">95.4/95.8/97.6</td>
<td align="left" rowspan="1" colspan="1">94.9/95.9/97.3</td>
<td align="left" rowspan="1" colspan="1">96.9/96.5/98.9</td>
<td align="left" rowspan="1" colspan="1">95.8/96.9/98.6</td>
<td align="left" rowspan="1" colspan="1">95.6/95.7/98.3</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn11">
<p>
<sup>1</sup>
nucleotide BLAST with default setting (http://blast.ncbi.nlm.nih.gov/Blast.cgi).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T8" orientation="portrait" position="float">
<label>Table 8</label>
<caption>
<p>Genetic similarities between selected homothallic species and their most closely related heterothallic / anamorphic relatives across diversity of the genus
<italic>Aspergillus.</italic>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th align="left" rowspan="1" colspan="1">Homothallic species (section) – closest heterothallic / anamorphic species</th>
<th align="left" rowspan="1" colspan="1">Genetic similarities (%):
<italic>benA / CaM / RPB2</italic>
<xref ref-type="fn" rid="tfn12">
<sup>1</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">subg.
<italic>Aspergillus</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. halophilicus</italic>
(
<italic>Restricti</italic>
) – any species</td>
<td align="left" rowspan="1" colspan="1">≤89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. montevidensis</italic>
(
<italic>Aspergillus</italic>
) – any species</td>
<td align="left" rowspan="1" colspan="1">≤88</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">subg.
<italic>Circumdati</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. alliaceus</italic>
(
<italic>Flavi</italic>
) –
<italic>A. lanosus</italic>
</td>
<td align="left" rowspan="1" colspan="1">96.4 / 95.7 / 99.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. muricatus</italic>
(
<italic>Circumdati</italic>
) –
<italic>A. ochraceus</italic>
</td>
<td align="left" rowspan="1" colspan="1">≤91</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. neoflavipes</italic>
(
<italic>Flavipedes</italic>
) –
<italic>A. micronesiensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">94.8 / 91.9 / 97.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. neoniveus</italic>
(
<italic>Terrei</italic>
) – any species</td>
<td align="left" rowspan="1" colspan="1">≤90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">subg.
<italic>Cremei</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. chrysellus</italic>
(
<italic>Cremei</italic>
) –
<italic>A. wentii</italic>
</td>
<td align="left" rowspan="1" colspan="1">97.1 / 97.2 / 97.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. cremeus</italic>
(
<italic>Cremei</italic>
)
<italic></italic>
– any species</td>
<td align="left" rowspan="1" colspan="1">≤91</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. stromatoides</italic>
(
<italic>Cremei</italic>
)
<italic></italic>
– any species</td>
<td align="left" rowspan="1" colspan="1">≤93</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">subg.
<italic>Fumigati</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. acanthosporus</italic>
(
<italic>Clavati</italic>
) –
<italic>A. clavatus</italic>
</td>
<td align="left" rowspan="1" colspan="1">≤93</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. aureolus</italic>
(
<italic>Fumigati</italic>
) –
<italic>A. acrensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">99.6 / 98.8 / 99.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. cejpii</italic>
(
<italic>Clavati</italic>
) – any species</td>
<td align="left" rowspan="1" colspan="1">≤88</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. fischeri</italic>
(
<italic>Fumigati</italic>
) –
<italic>A. fumigatus</italic>
</td>
<td align="left" rowspan="1" colspan="1">94.3 / 94.5 / 97.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. posadasensis</italic>
(
<italic>Clavati</italic>
) –
<italic>A. clavatus</italic>
</td>
<td align="left" rowspan="1" colspan="1">95.1 / 92.6 / 93.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. quadricinctus</italic>
(
<italic>Fumigati</italic>
) –
<italic>A. duricaulis</italic>
</td>
<td align="left" rowspan="1" colspan="1">92.6 / 95.0 / 99.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. siamensis</italic>
(
<italic>Fumigati</italic>
) –
<italic>A. wyomingensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">97.1 / 96.5 / 98.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. waksmanii</italic>
(
<italic>Fumigati</italic>
) –
<italic>A. nishimurae</italic>
</td>
<td align="left" rowspan="1" colspan="1">97.8 / 98.4 / 96.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">subg.
<italic>Nidulantes</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. discophorus</italic>
(
<italic>Nidulantes</italic>
,
<italic> A. aeneus</italic>
clade) –
<italic>A. karnatakaensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">≤92</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. falconensis</italic>
(
<italic>Nidulantes</italic>
,
<italic> A. nidulans</italic>
clade) –
<italic>A. recurvatus</italic>
</td>
<td align="left" rowspan="1" colspan="1">≤93</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. monodii</italic>
(
<italic>Usti</italic>
) – any species</td>
<td align="left" rowspan="1" colspan="1">≤90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. nidulans</italic>
(
<italic>Nidulantes</italic>
,
<italic> A. nidulans</italic>
clade) – any species</td>
<td align="left" rowspan="1" colspan="1">≤92</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. pluriseminatus</italic>
(
<italic>Nidulantes</italic>
,
<italic> A. multicolor</italic>
clade) – any species</td>
<td align="left" rowspan="1" colspan="1">≤92</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. purpureus</italic>
(
<italic>Nidulantes</italic>
,
<italic> A. spelunceus</italic>
clade) – any species</td>
<td align="left" rowspan="1" colspan="1">≤90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic> A. undulatus</italic>
(
<italic>Nidulantes</italic>
,
<italic> A. stellatus</italic>
clade) – any species</td>
<td align="left" rowspan="1" colspan="1">≤89</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn12">
<p>
<sup>1</sup>
If none of three genetic similarities exceed 95 %, the values are replaced by only one highest value (usually
<italic>RPB2</italic>
locus).</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B26  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B26  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020