Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000760 ( Pmc/Corpus ); précédent : 0007599; suivant : 0007610 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data</title>
<author>
<name sortKey="Wang, Xuli" sort="Wang, Xuli" uniqKey="Wang X" first="Xuli" last="Wang">Xuli Wang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences</institution>
<addr-line>Beijing, 100193, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zang, Rui" sort="Zang, Rui" uniqKey="Zang R" first="Rui" last="Zang">Rui Zang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Zhiyuan" sort="Yin, Zhiyuan" uniqKey="Yin Z" first="Zhiyuan" last="Yin">Zhiyuan Yin</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Lili" sort="Huang, Lili" uniqKey="Huang L" first="Lili" last="Huang">Lili Huang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24834333</idno>
<idno type="pmc">4020696</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020696</idno>
<idno type="RBID">PMC:4020696</idno>
<idno type="doi">10.1002/ece3.1030</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000760</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000760</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data</title>
<author>
<name sortKey="Wang, Xuli" sort="Wang, Xuli" uniqKey="Wang X" first="Xuli" last="Wang">Xuli Wang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences</institution>
<addr-line>Beijing, 100193, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zang, Rui" sort="Zang, Rui" uniqKey="Zang R" first="Rui" last="Zang">Rui Zang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Zhiyuan" sort="Yin, Zhiyuan" uniqKey="Yin Z" first="Zhiyuan" last="Yin">Zhiyuan Yin</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Lili" sort="Huang, Lili" uniqKey="Huang L" first="Lili" last="Huang">Lili Huang</name>
<affiliation>
<nlm:aff id="au1">
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and Evolution</title>
<idno type="ISSN">2045-7758</idno>
<idno type="eISSN">2045-7758</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Fungal diseases are posing tremendous threats to global economy and food safety. Among them, Valsa canker, caused by fungi of
<italic>Valsa</italic>
and their
<italic>Cytospora</italic>
anamorphs, has been a serious threat to fruit and forest trees and is one of the most destructive diseases of apple in East Asia, particularly. Accurate and robust delimitation of pathogen species is not only essential for the development of effective disease control programs, but also will advance our understanding of the emergence of plant diseases. However, species delimitation is especially difficult in
<italic>Valsa</italic>
because of the high variability of morphological traits and in many cases the lack of the teleomorph. In this study, we delimitated species boundary for pathogens causing apple Valsa canker with a multifaceted approach. Based on three independent loci, the internal transcribed spacer (ITS),
<italic>β</italic>
-tubulin (Btu), and translation elongation factor-1 alpha (EF1
<italic>α</italic>
), we inferred gene trees with both maximum likelihood and Bayesian methods, estimated species tree with Bayesian multispecies coalescent approaches, and validated species tree with Bayesian species delimitation. Through divergence time estimation and ancestral host reconstruction, we tested the possible underlying mechanisms for fungal speciation and host-range change. Our results proved that two varieties of the former morphological species
<italic>V. mali</italic>
represented two distinct species,
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
, which diverged about 5 million years ago, much later than the divergence of their preferred hosts, excluding a scenario of fungi–host co-speciation. The marked different thermal preferences and contrasting pathogenicity in cross-inoculation suggest ecological divergences between the two species. Apple was the most likely ancestral host for both
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
. Host-range expansion led to the occurrence of
<italic>V. pyri</italic>
on both pear and apple. Our results also represent an example in which ITS data might underestimate species diversity.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abe, K" uniqKey="Abe K">K Abe</name>
</author>
<author>
<name sortKey="Kotoda, N" uniqKey="Kotoda N">N Kotoda</name>
</author>
<author>
<name sortKey="Kato, H" uniqKey="Kato H">H Kato</name>
</author>
<author>
<name sortKey="Soejima, J" uniqKey="Soejima J">J Soejima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, Gc" uniqKey="Adams G">GC Adams</name>
</author>
<author>
<name sortKey="Surve Iyer, Rs" uniqKey="Surve Iyer R">RS Surve-Iyer</name>
</author>
<author>
<name sortKey="Iezzoni, A" uniqKey="Iezzoni A">A Iezzoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrios, Gn" uniqKey="Agrios G">GN Agrios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bacon, Cd" uniqKey="Bacon C">CD Bacon</name>
</author>
<author>
<name sortKey="Mckenna, Mj" uniqKey="Mckenna M">MJ McKenna</name>
</author>
<author>
<name sortKey="Simmons, Mp" uniqKey="Simmons M">MP Simmons</name>
</author>
<author>
<name sortKey="Wagner, Wl" uniqKey="Wagner W">WL Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bandelt, Hj" uniqKey="Bandelt H">HJ Bandelt</name>
</author>
<author>
<name sortKey="Forster, P" uniqKey="Forster P">P Forster</name>
</author>
<author>
<name sortKey="Rohl, A" uniqKey="Rohl A">A Rohl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonito, Gm" uniqKey="Bonito G">GM Bonito</name>
</author>
<author>
<name sortKey="Gryganskyi, Ap" uniqKey="Gryganskyi A">AP Gryganskyi</name>
</author>
<author>
<name sortKey="Trappe, Jm" uniqKey="Trappe J">JM Trappe</name>
</author>
<author>
<name sortKey="Vilgalys, R" uniqKey="Vilgalys R">R Vilgalys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brasier, Cm" uniqKey="Brasier C">CM Brasier</name>
</author>
<author>
<name sortKey="Kirk, Sa" uniqKey="Kirk S">SA Kirk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brasier, Cm" uniqKey="Brasier C">CM Brasier</name>
</author>
<author>
<name sortKey="Cooke, Del" uniqKey="Cooke D">DEL Cooke</name>
</author>
<author>
<name sortKey="Duncan, Jm" uniqKey="Duncan J">JM Duncan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbone, I" uniqKey="Carbone I">I Carbone</name>
</author>
<author>
<name sortKey="Anderson, Jb" uniqKey="Anderson J">JB Anderson</name>
</author>
<author>
<name sortKey="Kohn, Lm" uniqKey="Kohn L">LM Kohn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coyne, Ja" uniqKey="Coyne J">JA Coyne</name>
</author>
<author>
<name sortKey="Orr, Ha" uniqKey="Orr H">HA Orr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cummings, Mp" uniqKey="Cummings M">MP Cummings</name>
</author>
<author>
<name sortKey="Neel, Mc" uniqKey="Neel M">MC Neel</name>
</author>
<author>
<name sortKey="Shaw, Kl" uniqKey="Shaw K">KL Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degnan, Jh" uniqKey="Degnan J">JH Degnan</name>
</author>
<author>
<name sortKey="Rosenberg, Na" uniqKey="Rosenberg N">NA Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degnan, Jh" uniqKey="Degnan J">JH Degnan</name>
</author>
<author>
<name sortKey="Rosenberg, Na" uniqKey="Rosenberg N">NA Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Prado, R" uniqKey="Del Prado R">R Del-Prado</name>
</author>
<author>
<name sortKey="Cubas, P" uniqKey="Cubas P">P Cubas</name>
</author>
<author>
<name sortKey="Lumbsch, Th" uniqKey="Lumbsch T">TH Lumbsch</name>
</author>
<author>
<name sortKey="Divakar, Pk" uniqKey="Divakar P">PK Divakar</name>
</author>
<author>
<name sortKey="Blanco, O" uniqKey="Blanco O">O Blanco</name>
</author>
<author>
<name sortKey="De Paz, Ga" uniqKey="De Paz G">GA de Paz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dettman, Jr" uniqKey="Dettman J">JR Dettman</name>
</author>
<author>
<name sortKey="Jacobson, Dj" uniqKey="Jacobson D">DJ Jacobson</name>
</author>
<author>
<name sortKey="Taylor, Jw" uniqKey="Taylor J">JW Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dobzhansky, T" uniqKey="Dobzhansky T">T Dobzhansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dupuis, Jr" uniqKey="Dupuis J">JR Dupuis</name>
</author>
<author>
<name sortKey="Roe, Ad" uniqKey="Roe A">AD Roe</name>
</author>
<author>
<name sortKey="Sperling, Fah" uniqKey="Sperling F">FAH Sperling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisher, Mc" uniqKey="Fisher M">MC Fisher</name>
</author>
<author>
<name sortKey="Henk, Da" uniqKey="Henk D">DA Henk</name>
</author>
<author>
<name sortKey="Briggs, Cj" uniqKey="Briggs C">CJ Briggs</name>
</author>
<author>
<name sortKey="Brownstein, Js" uniqKey="Brownstein J">JS Brownstein</name>
</author>
<author>
<name sortKey="Madoff, Lc" uniqKey="Madoff L">LC Madoff</name>
</author>
<author>
<name sortKey="Mccraw, Sl" uniqKey="Mccraw S">SL McCraw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gazis, R" uniqKey="Gazis R">R Gazis</name>
</author>
<author>
<name sortKey="Rehner, S" uniqKey="Rehner S">S Rehner</name>
</author>
<author>
<name sortKey="Chaverri, P" uniqKey="Chaverri P">P Chaverri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giraud, T" uniqKey="Giraud T">T Giraud</name>
</author>
<author>
<name sortKey="Refregier, G" uniqKey="Refregier G">G Refrégier</name>
</author>
<author>
<name sortKey="Hood, M" uniqKey="Hood M">M Hood</name>
</author>
<author>
<name sortKey="Le Gac, Dm" uniqKey="Le Gac D">DM Le Gac</name>
</author>
<author>
<name sortKey="De Vienne, Me" uniqKey="De Vienne M">ME de Vienne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giraud, T" uniqKey="Giraud T">T Giraud</name>
</author>
<author>
<name sortKey="Gladieux, P" uniqKey="Gladieux P">P Gladieux</name>
</author>
<author>
<name sortKey="Hood, M" uniqKey="Hood M">M Hood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glass, Nl" uniqKey="Glass N">NL Glass</name>
</author>
<author>
<name sortKey="Donaldson, Gc" uniqKey="Donaldson G">GC Donaldson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guindon, S" uniqKey="Guindon S">S Guindon</name>
</author>
<author>
<name sortKey="Gascuel, O" uniqKey="Gascuel O">O Gascuel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harder, Cb" uniqKey="Harder C">CB Harder</name>
</author>
<author>
<name sortKey="L Ss E, T" uniqKey="L Ss E T">T LæssØe</name>
</author>
<author>
<name sortKey="Fr Slev, Tg" uniqKey="Fr Slev T">TG FrØslev</name>
</author>
<author>
<name sortKey="Ekelund, F" uniqKey="Ekelund F">F Ekelund</name>
</author>
<author>
<name sortKey="Rosendahl, S" uniqKey="Rosendahl S">S Rosendahl</name>
</author>
<author>
<name sortKey="Kj Ller, R" uniqKey="Kj Ller R">R KjØller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hausdorf, B" uniqKey="Hausdorf B">B Hausdorf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heled, J" uniqKey="Heled J">J Heled</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffman, Mt" uniqKey="Hoffman M">MT Hoffman</name>
</author>
<author>
<name sortKey="Arnold, Ae" uniqKey="Arnold A">AE Arnold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
<author>
<name sortKey="Bull, Jj" uniqKey="Bull J">JJ Bull</name>
</author>
<author>
<name sortKey="Cunningham, Cw" uniqKey="Cunningham C">CW Cunningham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hull, Dl" uniqKey="Hull D">DL Hull</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huson, Dh" uniqKey="Huson D">DH Huson</name>
</author>
<author>
<name sortKey="Bryant, D" uniqKey="Bryant D">D Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jargeat, P" uniqKey="Jargeat P">P Jargeat</name>
</author>
<author>
<name sortKey="Martos, F" uniqKey="Martos F">F Martos</name>
</author>
<author>
<name sortKey="Carriconde, F" uniqKey="Carriconde F">F Carriconde</name>
</author>
<author>
<name sortKey="Gryta, H" uniqKey="Gryta H">H Gryta</name>
</author>
<author>
<name sortKey="Moreau, P A" uniqKey="Moreau P">P-A Moreau</name>
</author>
<author>
<name sortKey="Gardes, M" uniqKey="Gardes M">M Gardes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Ke" uniqKey="Jones K">KE Jones</name>
</author>
<author>
<name sortKey="Patel, Ng" uniqKey="Patel N">NG Patel</name>
</author>
<author>
<name sortKey="Levy, Ma" uniqKey="Levy M">MA Levy</name>
</author>
<author>
<name sortKey="Storeygard, A" uniqKey="Storeygard A">A Storeygard</name>
</author>
<author>
<name sortKey="Balk, D" uniqKey="Balk D">D Balk</name>
</author>
<author>
<name sortKey="Gittleman, Jl" uniqKey="Gittleman J">JL Gittleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasuga, T" uniqKey="Kasuga T">T Kasuga</name>
</author>
<author>
<name sortKey="White, Tj" uniqKey="White T">TJ White</name>
</author>
<author>
<name sortKey="Taylor, Jw" uniqKey="Taylor J">JW Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lacap, Dc" uniqKey="Lacap D">DC Lacap</name>
</author>
<author>
<name sortKey="Hyde, Kd" uniqKey="Hyde K">KD Hyde</name>
</author>
<author>
<name sortKey="Liew, Ecy" uniqKey="Liew E">ECY Liew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Van, A" uniqKey="Le Van A">A Lê Van</name>
</author>
<author>
<name sortKey="Gladieux, P" uniqKey="Gladieux P">P Gladieux</name>
</author>
<author>
<name sortKey="Lemaire, Cornillea" uniqKey="Lemaire C">CornilleA Lemaire</name>
</author>
<author>
<name sortKey="Giraud, T" uniqKey="Giraud T">T Giraud</name>
</author>
<author>
<name sortKey="Durel, C E" uniqKey="Durel C">C-E Durel</name>
</author>
<author>
<name sortKey="Caffier, V" uniqKey="Caffier V">V Caffier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leache, Ad" uniqKey="Leache A">AD Leaché</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leavitt, Sd" uniqKey="Leavitt S">SD Leavitt</name>
</author>
<author>
<name sortKey="Esslinger, Tl" uniqKey="Esslinger T">TL Esslinger</name>
</author>
<author>
<name sortKey="Divakar, Pk" uniqKey="Divakar P">PK Divakar</name>
</author>
<author>
<name sortKey="Lumbsch, Ht" uniqKey="Lumbsch H">HT Lumbsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Dh" uniqKey="Lee D">DH Lee</name>
</author>
<author>
<name sortKey="Lee, Sw" uniqKey="Lee S">SW Lee</name>
</author>
<author>
<name sortKey="Chi, Kh" uniqKey="Chi K">KH Chi</name>
</author>
<author>
<name sortKey="Kim, Da" uniqKey="Kim D">DA Kim</name>
</author>
<author>
<name sortKey="Uhm, Jy" uniqKey="Uhm J">JY Uhm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Librado, P" uniqKey="Librado P">P Librado</name>
</author>
<author>
<name sortKey="Rozas, J" uniqKey="Rozas J">J Rozas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Wyy" uniqKey="Lo W">WYY Lo</name>
</author>
<author>
<name sortKey="Donoghue, Mj" uniqKey="Donoghue M">MJ Donoghue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lumbsch, Ht" uniqKey="Lumbsch H">HT Lumbsch</name>
</author>
<author>
<name sortKey="Leavitt, Sd" uniqKey="Leavitt S">SD Leavitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moon, Cd" uniqKey="Moon C">CD Moon</name>
</author>
<author>
<name sortKey="Craven, Kd" uniqKey="Craven K">KD Craven</name>
</author>
<author>
<name sortKey="Leuchtmann, A" uniqKey="Leuchtmann A">A Leuchtmann</name>
</author>
<author>
<name sortKey="Clement, Sl" uniqKey="Clement S">SL Clement</name>
</author>
<author>
<name sortKey="Schardl, Cl" uniqKey="Schardl C">CL Schardl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newcombe, G" uniqKey="Newcombe G">G Newcombe</name>
</author>
<author>
<name sortKey="Stirling, B" uniqKey="Stirling B">B Stirling</name>
</author>
<author>
<name sortKey="Mcdonald, S" uniqKey="Mcdonald S">S McDonald</name>
</author>
<author>
<name sortKey="Bradshaw, Hd" uniqKey="Bradshaw H">HD Bradshaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, Rh" uniqKey="Nilsson R">RH Nilsson</name>
</author>
<author>
<name sortKey="Kristiansson, E" uniqKey="Kristiansson E">E Kristiansson</name>
</author>
<author>
<name sortKey="Ryberg, M" uniqKey="Ryberg M">M Ryberg</name>
</author>
<author>
<name sortKey="Hallbenberg, N" uniqKey="Hallbenberg N">N Hallbenberg</name>
</author>
<author>
<name sortKey="Larsson, K H" uniqKey="Larsson K">K-H Larsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nylander, Jaa" uniqKey="Nylander J">JAA Nylander</name>
</author>
<author>
<name sortKey="Olsson, U" uniqKey="Olsson U">U Olsson</name>
</author>
<author>
<name sortKey="Alstrom, P" uniqKey="Alstrom P">P Alström</name>
</author>
<author>
<name sortKey="Sanmartin, I" uniqKey="Sanmartin I">I Sanmartín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Donnell, K" uniqKey="O Donnell K">K O'Donnell</name>
</author>
<author>
<name sortKey="Ward, Tj" uniqKey="Ward T">TJ Ward</name>
</author>
<author>
<name sortKey="Geiser, Dm" uniqKey="Geiser D">DM Geiser</name>
</author>
<author>
<name sortKey="Corby Kistler, H" uniqKey="Corby Kistler H">H Corby Kistler</name>
</author>
<author>
<name sortKey="Aoki, T" uniqKey="Aoki T">T Aoki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rintoul, T" uniqKey="Rintoul T">T Rintoul</name>
</author>
<author>
<name sortKey="Eggertson, Q" uniqKey="Eggertson Q">Q Eggertson</name>
</author>
<author>
<name sortKey="Levesque, Ca" uniqKey="Levesque C">CA Lévesque</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenberg, Na" uniqKey="Rosenberg N">NA Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoch, Cl" uniqKey="Schoch C">CL Schoch</name>
</author>
<author>
<name sortKey="Seifert, Ka" uniqKey="Seifert K">KA Seifert</name>
</author>
<author>
<name sortKey="Huhndorf, S" uniqKey="Huhndorf S">S Huhndorf</name>
</author>
<author>
<name sortKey="Robert, V" uniqKey="Robert V">V Robert</name>
</author>
<author>
<name sortKey="Spouge, Jl" uniqKey="Spouge J">JL Spouge</name>
</author>
<author>
<name sortKey="Levesque, Ca" uniqKey="Levesque C">CA Levesque</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sites, Jw" uniqKey="Sites J">JW Sites</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sterelny, K" uniqKey="Sterelny K">K Sterelny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stukenbrock, Eh" uniqKey="Stukenbrock E">EH Stukenbrock</name>
</author>
<author>
<name sortKey="Christiansen, Fb" uniqKey="Christiansen F">FB Christiansen</name>
</author>
<author>
<name sortKey="Hansen, Tt" uniqKey="Hansen T">TT Hansen</name>
</author>
<author>
<name sortKey="Dutheil, Jy" uniqKey="Dutheil J">JY Dutheil</name>
</author>
<author>
<name sortKey="Schierup, Mh" uniqKey="Schierup M">MH Schierup</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takamatsu, S" uniqKey="Takamatsu S">S Takamatsu</name>
</author>
<author>
<name sortKey="Matsuda, S" uniqKey="Matsuda S">S Matsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, O" uniqKey="Tamura O">O Tamura</name>
</author>
<author>
<name sortKey="Saito, I" uniqKey="Saito I">I Saito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D Peterson</name>
</author>
<author>
<name sortKey="Peterson, N" uniqKey="Peterson N">N Peterson</name>
</author>
<author>
<name sortKey="Stecher, G" uniqKey="Stecher G">G Stecher</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Jw" uniqKey="Taylor J">JW Taylor</name>
</author>
<author>
<name sortKey="Jacobson, Dj" uniqKey="Jacobson D">DJ Jacobson</name>
</author>
<author>
<name sortKey="Kroken, S" uniqKey="Kroken S">S Kroken</name>
</author>
<author>
<name sortKey="Kasuga, T" uniqKey="Kasuga T">T Kasuga</name>
</author>
<author>
<name sortKey="Geiser, Dm" uniqKey="Geiser D">DM Geiser</name>
</author>
<author>
<name sortKey="Hibbett, Ds" uniqKey="Hibbett D">DS Hibbett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Jd" uniqKey="Thompson J">JD Thompson</name>
</author>
<author>
<name sortKey="Gibson, Tj" uniqKey="Gibson T">TJ Gibson</name>
</author>
<author>
<name sortKey="Plewniak, F" uniqKey="Plewniak F">F Plewniak</name>
</author>
<author>
<name sortKey="Jeanmougin, F" uniqKey="Jeanmougin F">F Jeanmougin</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uhm, Jy" uniqKey="Uhm J">JY Uhm</name>
</author>
<author>
<name sortKey="Sohn, Hr" uniqKey="Sohn H">HR Sohn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verkley, Gjm" uniqKey="Verkley G">GJM Verkley</name>
</author>
<author>
<name sortKey="Quaedvlieg, W" uniqKey="Quaedvlieg W">W Quaedvlieg</name>
</author>
<author>
<name sortKey="Shin, H D" uniqKey="Shin H">H-D Shin</name>
</author>
<author>
<name sortKey="Crous, Pw" uniqKey="Crous P">PW Crous</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Zang, R" uniqKey="Zang R">R Zang</name>
</author>
<author>
<name sortKey="Huang, Ll" uniqKey="Huang L">LL Huang</name>
</author>
<author>
<name sortKey="Xie, Fq" uniqKey="Xie F">FQ Xie</name>
</author>
<author>
<name sortKey="Gao, Xn" uniqKey="Gao X">XN Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Xl" uniqKey="Wang X">XL Wang</name>
</author>
<author>
<name sortKey="Kang, Zs" uniqKey="Kang Z">ZS Kang</name>
</author>
<author>
<name sortKey="Huang, Ll" uniqKey="Huang L">LL Huang</name>
</author>
<author>
<name sortKey="Yang, P" uniqKey="Yang P">P Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Xl" uniqKey="Wang X">XL Wang</name>
</author>
<author>
<name sortKey="Wei, Jl" uniqKey="Wei J">JL Wei</name>
</author>
<author>
<name sortKey="Huang, Ll" uniqKey="Huang L">LL Huang</name>
</author>
<author>
<name sortKey="Kang, Zs" uniqKey="Kang Z">ZS Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Tj" uniqKey="White T">TJ White</name>
</author>
<author>
<name sortKey="Bruns, Td" uniqKey="Bruns T">TD Bruns</name>
</author>
<author>
<name sortKey="Lee, Sb" uniqKey="Lee S">SB Lee</name>
</author>
<author>
<name sortKey="Taylor, Jw" uniqKey="Taylor J">JW Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Rannala, B" uniqKey="Rannala B">B Rannala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="Harris, Aj" uniqKey="Harris A">AJ Harris</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zang, R" uniqKey="Zang R">R Zang</name>
</author>
<author>
<name sortKey="Ke, Xw" uniqKey="Ke X">XW Ke</name>
</author>
<author>
<name sortKey="Wang, Xj" uniqKey="Wang X">XJ Wang</name>
</author>
<author>
<name sortKey="Li, Zl" uniqKey="Li Z">ZL Li</name>
</author>
<author>
<name sortKey="Kang, Zs" uniqKey="Kang Z">ZS Kang</name>
</author>
<author>
<name sortKey="Huang, Ll" uniqKey="Huang L">LL Huang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ecol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Ecol Evol</journal-id>
<journal-id journal-id-type="publisher-id">ece3</journal-id>
<journal-title-group>
<journal-title>Ecology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="ppub">2045-7758</issn>
<issn pub-type="epub">2045-7758</issn>
<publisher>
<publisher-name>Blackwell Publishing Inc</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24834333</article-id>
<article-id pub-id-type="pmc">4020696</article-id>
<article-id pub-id-type="doi">10.1002/ece3.1030</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Xuli</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zang</surname>
<given-names>Rui</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yin</surname>
<given-names>Zhiyuan</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kang</surname>
<given-names>Zhensheng</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Lili</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University</institution>
<addr-line>Yangling, 712100, China</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences</institution>
<addr-line>Beijing, 100193, China</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<bold>Correspondence</bold>
Lili Huang, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China. Tel/Fax: +86 29 87091312; E-mail:
<email>huanglili1@hotmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>4</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>19</day>
<month>3</month>
<year>2014</year>
</pub-date>
<volume>4</volume>
<issue>8</issue>
<fpage>1369</fpage>
<lpage>1380</lpage>
<history>
<date date-type="received">
<day>09</day>
<month>1</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>13</day>
<month>2</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>2</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 The Authors.
<italic>Ecology and Evolution</italic>
published by John Wiley & Sons Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Fungal diseases are posing tremendous threats to global economy and food safety. Among them, Valsa canker, caused by fungi of
<italic>Valsa</italic>
and their
<italic>Cytospora</italic>
anamorphs, has been a serious threat to fruit and forest trees and is one of the most destructive diseases of apple in East Asia, particularly. Accurate and robust delimitation of pathogen species is not only essential for the development of effective disease control programs, but also will advance our understanding of the emergence of plant diseases. However, species delimitation is especially difficult in
<italic>Valsa</italic>
because of the high variability of morphological traits and in many cases the lack of the teleomorph. In this study, we delimitated species boundary for pathogens causing apple Valsa canker with a multifaceted approach. Based on three independent loci, the internal transcribed spacer (ITS),
<italic>β</italic>
-tubulin (Btu), and translation elongation factor-1 alpha (EF1
<italic>α</italic>
), we inferred gene trees with both maximum likelihood and Bayesian methods, estimated species tree with Bayesian multispecies coalescent approaches, and validated species tree with Bayesian species delimitation. Through divergence time estimation and ancestral host reconstruction, we tested the possible underlying mechanisms for fungal speciation and host-range change. Our results proved that two varieties of the former morphological species
<italic>V. mali</italic>
represented two distinct species,
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
, which diverged about 5 million years ago, much later than the divergence of their preferred hosts, excluding a scenario of fungi–host co-speciation. The marked different thermal preferences and contrasting pathogenicity in cross-inoculation suggest ecological divergences between the two species. Apple was the most likely ancestral host for both
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
. Host-range expansion led to the occurrence of
<italic>V. pyri</italic>
on both pear and apple. Our results also represent an example in which ITS data might underestimate species diversity.</p>
</abstract>
<kwd-group>
<kwd>Valsa</kwd>
<kwd>species delimitation</kwd>
<kwd>host-range expansion</kwd>
<kwd>molecular dating</kwd>
<kwd>ancestral host reconstruction</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Species are a fundamental unit of biodiversity (Hull
<xref rid="b31" ref-type="bibr">1977</xref>
; Sites and Crandall
<xref rid="b55" ref-type="bibr">1997</xref>
; Bacon et al.
<xref rid="b4" ref-type="bibr">2012</xref>
), and robust species delimitations are of critical importance in many areas of biology. For fungi, delimitation of species even has tangible consequences for the society, especially for those groups causing infectious plant diseases that pose serious threat to food safety and ecosystem health (Fisher et al.
<xref rid="b20" ref-type="bibr">2012</xref>
). There are many cases where closely related species, even morphologically indistinguishable, can differ greatly in their virulence and host specificity, and thus the level of threat they pose to agriculture and forestry. Specific and precise species delimitation of these pathogens is essential for effective disease control and quarantine regulations, and for sustainable management practices in agriculture and forestry (Rintoul et al.
<xref rid="b51" ref-type="bibr">2012</xref>
). However, methods for species delimitation are very limited in many groups, often relying on very limited morphological and cultural characteristics that vary widely during life history and can be easily influenced by nonheritable factors such as environmental conditions and sexual forms. The invention of dual nominal system is inadequate compromise for fungi that have contrasting morphology between sexual (teleomorphic) and asexual (anamorphic) forms. Although some theoretical and methodological innovations have been achieved in recent years, species delimitation still remains a major challenge facing biodiversity conservation and disease management.</p>
<p>Molecular genetics has revolutionized our ability for robust species delimitation (Lumbsch and Leavitt
<xref rid="b43" ref-type="bibr">2011</xref>
; Leavitt et al.
<xref rid="b39" ref-type="bibr">2012</xref>
). Genetic materials, providing highly variable and stable characters, have been extensively used in fungi systematics since its introduction. With ever-increasing availability of genetic data and improvement of analytical methodologies, DNA-based approaches play increasing role in the recognition of diversity of fungi, especially in groups that would otherwise hardly be recognized using classical phenotypic characteristics (Leavitt et al.
<xref rid="b39" ref-type="bibr">2012</xref>
and refs therein). The discovery of cryptic diversity has been particularly prevalent in those groups. Recent biodiversity studies witnessed a surge of interest in identifying species using DNA sequence data, for example, DNA barcoding (Schoch et al.
<xref rid="b54" ref-type="bibr">2012</xref>
). DNA barcoding, which identifies species based on single-locus genealogy and assumes the existence of “barcoding gap” between inter- and intraspecific divergences, does have facilitated biodiversity inventory, but it also becomes increasingly apparent that single-locus data represent the history of a single gene that might not be representative of organismal history (Rosenberg
<xref rid="b53" ref-type="bibr">2002</xref>
). In addition, it is subjective to place the species boundaries in single-gene genealogies, which will create uncertainty on species' limits (Taylor et al.
<xref rid="b61" ref-type="bibr">2000</xref>
). Especially, due to stochastic lineage sorting across genomes and ongoing gene flow during speciation, for closely related fungi, one marker is definitely not enough (Dupuis et al.
<xref rid="b19" ref-type="bibr">2012</xref>
). As a consequence, multiple independent loci are required for reliable species delimitation (Rintoul et al.
<xref rid="b51" ref-type="bibr">2012</xref>
). Multilocus data have been successfully applied to delimitate several closely related plant pathogenic ascomycete fungi, for example, in
<italic>Neurospora</italic>
(Dettman et al.
<xref rid="b16" ref-type="bibr">2003</xref>
),
<italic>Fusarium</italic>
(O'Donnell et al.
<xref rid="b48" ref-type="bibr">2004</xref>
) and
<italic>Septoria</italic>
(Verkley et al.
<xref rid="b64" ref-type="bibr">2013</xref>
). In addition, using recently developed theoretical models that combine species phylogenies and gene genealogies via ancestral coalescent processes, multilocus sequence data can provide support for different species delimitations (Yang and Rannala
<xref rid="b69" ref-type="bibr">2010</xref>
).</p>
<p>Species of
<italic>Valsa</italic>
and their
<italic>Cytospora</italic>
anamorphs affect more than 70 species of woody shrubs and trees and cause serious threats to fruit and forest trees through the perennial canker worldwide (Agrios
<xref rid="b3" ref-type="bibr">1997</xref>
). In particular, valsa canker is one of the most destructive diseases of apple (
<italic>Malus</italic>
sp.) in East Asia (Chen et al.
<xref rid="b10" ref-type="bibr">1987</xref>
; Uhm and Sohn
<xref rid="b63" ref-type="bibr">1995</xref>
; Wang et al.
<xref rid="b65" ref-type="bibr">2005</xref>
; Lee et al.
<xref rid="b40" ref-type="bibr">2006</xref>
; Abe et al.
<xref rid="b1" ref-type="bibr">2007</xref>
), seriously impacting tree productivity through developing cankers on trunks and scaffold limbs or causing diebacks of twigs (Fig. 
<xref ref-type="fig" rid="fig01">1</xref>
). As the pathogen penetrates extensively into the host phloem and xylem (Tamura and Saito
<xref rid="b59" ref-type="bibr">1982</xref>
), this disease cannot be controlled effectively through chemical treatments (Abe et al.
<xref rid="b1" ref-type="bibr">2007</xref>
). It is pivotal to accurately delimitate pathogen species for the development of effective disease control methods and sustainable management strategies. However, species delimitation is notoriously difficult in
<italic>Valsa</italic>
because of the high variability of morphological traits and in many cases the lack of the teleomorph (Adams et al.
<xref rid="b2" ref-type="bibr">2002</xref>
). This is exemplified by a hundred years of debates about the association of pathogens causing Valsa canker on apple in East Asia (see Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
for historical review therein).</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Infection of apple (
<italic>Malus sp</italic>
.) by
<italic>Valsa mali</italic>
(A) with conidiomata (C) and, in rare occasions, the ascostromata (B) formed in the canker.</p>
</caption>
<graphic xlink:href="ece30004-1369-f1"></graphic>
</fig>
<p>Our earlier studies of isolates from cankered apple trees based on the internal transcribed spacers and 5.8S region (ITS) of the nuclear ribosomal repeat unit revealed two lineages within isolates of
<italic>V. mali</italic>
. Due to failing to find stable morphological differences and considering high stochastic nature of singe-locus genealogy, we putatively recognized these two lineages as varieties, although some differences in pathogenicity and cultural characteristics have been observed in experimental conditions (Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
). However, given the seven fixed differences observed in ITS sequences between two lineages (suggesting cessation of gene flow for prolonged times) and differential pathogenicity manifested on apple and pear (implying host specificity), it is reasonable to hypothesize that these two lineages might represent distinct evolutionary units, that is, species.</p>
<p>So the goal of this study is to test this hypothesis from multilocus perspective and delimitation species boundary for pathogens causing apple Valsa canker with a multifaceted approach, integrating evidence from multilocus phylogenetics, Bayesian species delimitation, and phenotypes (cultural characteristics, thermal preferences, and pathogenicity) under experimental conditions. Specifically, based on three independent nuclear loci, the internal transcribed spacer (ITS),
<italic>β</italic>
-tubulin (Btu), and translation elongation factor-1 alpha (EF1
<italic>α</italic>
), we (1) test whether two lineages recognized with earlier ITS sequence data are supported by other genomic loci; (2) delimitate species by integrating all evidences we have obtained; (3) infer the evolutionary scenario giving rise to current fungi–host relationship; and (4) evaluate the performance of ITS sequence for
<italic>Valsa</italic>
diversity estimation.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Pathogen sampling, DNA extraction, amplification, and sequencing</title>
<p>Pathogen sampling and isolation, DNA extraction, and amplification and sequencing ITS have been detailed in Wang et al. (
<xref rid="b67" ref-type="bibr">2011</xref>
) and Zang et al. (
<xref rid="b71" ref-type="bibr">2012</xref>
). A total of 150 single-spore isolates were obtained from apple (
<italic>Malus</italic>
sp.), and additional nine isolates were obtained from pear (
<italic>Pyrus</italic>
sp.). Based on ITS sequence data, 145 isolates from apple were recognized as
<italic>V. mali</italic>
var.
<italic>mali</italic>
, and the remained five isolates and all nine isolates from pear were
<italic>V. mali</italic>
var.
<italic>pyri</italic>
. All herbarium specimens and isolates studied were deposited at the College of Plant Protection, Northwest A&F University, and State Key Laboratory of Crop Stress Biology for Arid Areas, China. In this study, a subsample that included 20 isolates from apple, of which 16 isolates were
<italic>V. mali</italic>
var.
<italic>mali</italic>
and four isolates, were
<italic>V. mali</italic>
var.
<italic>pyri</italic>
, and five isolates (all were
<italic>V. mali</italic>
var.
<italic>pyri</italic>
) from pear were subjected to analyses of two additional loci, translation elongation factor-1 alpha (EF1
<italic>α</italic>
), and the
<italic>β</italic>
-tubulin (Btu). We also sequenced five isolates of
<italic>V. malicola</italic>
as close outgroups and one isolate of
<italic>V. leucostoma</italic>
(together with two sequences from GenBank) as more distant outgroups. The partial sequence of EF1
<italic>α</italic>
gene was amplified with primers EF1-728F (5′- CAT CGA GAA GTT CGA GAA GG-3′) and EF1-986R (5′-TAC TTG AAG GAA CCC TTA CC-3′) (Carbone et al.
<xref rid="b9" ref-type="bibr">1999</xref>
). A partial Btu gene sequence was amplified using primers Bt2a (5′-GGT AAC CAA ATC GGT GCT GCT TTC-3′) and Bt2b (5′-ACC CTC AGT GTA GTG ACC CTT GGC-3′) (Glass and Donaldson
<xref rid="b24" ref-type="bibr">1995</xref>
). All reactions were carried out in 25 mL volumes composed of 1X reaction buffer, 1.5 mmol/L MgCl
<sub>2</sub>
, 2.5 mmol/L of each dNTPs, 5 pmol/L each primer, 0.6 unit Taq DNA polymerase (Promega, Shanghai, China), and 30–50 ng genomic DNA. The following thermal profile for PCR was applied: An initial denaturation at 94°C for 4 min was followed by 38 cycles of 30 s at 94°C, 30 s at 55°C (EF1
<italic>α</italic>
) or 61°C (Btu) and 30 s at 72°C, and a final extension at 72°C for 5 min. The PCR products were purified with the QIAquickH PCR Purification Kit (QIAGEN, Valencia, CA) and directly sequenced with the ABI PRISM BigDye Terminator V3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA). The sequences were resolved on an ABI 3130XL automated sequencer. All sequences have been deposited in GenBank under accession numbers listed in Table S1.</p>
</sec>
<sec>
<title>Sequence analyses</title>
<p>All raw sequences were checked with Sequencing Analysis 5.2 (Applied Biosystems), and the unresolved sites of both ends were removed. The trimmed sequences were aligned using Clustal X 1.83 (Thompson et al.
<xref rid="b62" ref-type="bibr">1997</xref>
) and further inspected manually. Summary statistics, including gene diversity (Hd) and nucleotide diversity (
<italic>π</italic>
), were determined using DnaSP version 5.10.01 (Librado and Rozas
<xref rid="b41" ref-type="bibr">2009</xref>
). Genetic distances between groups were calculated with MEGA 5.05 (Tamura et al.
<xref rid="b60" ref-type="bibr">2011</xref>
). Rough relationships between unique sequences were inspected through media-joining networks (Bandelt et al.
<xref rid="b5" ref-type="bibr">1999</xref>
) using the Network 4.6 (
<ext-link ext-link-type="uri" xlink:href="http://www.fluxus-engineering.com/">http://www.fluxus-engineering.com/</ext-link>
). A NeighborNet network based on p-distance was constructed for the concatenated alignment using SplitsTree4 version 4.12.3 (Huson and Bryant
<xref rid="b32" ref-type="bibr">2006</xref>
).</p>
</sec>
<sec>
<title>Phylogenetic analyses and molecular dating</title>
<p>The appropriate models of DNA evolution for the data were inferred using ModelTest 3.7 program (Posada and Crandall
<xref rid="b49" ref-type="bibr">1998</xref>
). According to the Akaike information criterion, the best-fit model is TrNef+I for ITS, K81uf+I for EF1
<italic>α,</italic>
and HKY+I for Btu. A TIMef+I model was selected for the concatenated sequences of three loci. Phylogenetic analyses were performed using both maximum likelihood (ML) and Bayesian methods for each singe-locus data and for concatenated data. No significant conflict has been detected between three loci in incongruence length difference test (Huelsenbeck et al.
<xref rid="b30" ref-type="bibr">1996</xref>
; ITS vs. Btu,
<italic></italic>
=
<italic> </italic>
1.00; ITS vs. Ef1
<italic>α</italic>
,
<italic></italic>
=
<italic> </italic>
1.00; Btu vs. Ef1
<italic>α</italic>
,
<italic></italic>
=
<italic> </italic>
0.11). We also run the Bayesian analysis under partitions with each locus assigned a specific best-fit substitution model selected by ModelTest. ML analysis was carried out using PHYML 3.0 (Guindon and Gascuel
<xref rid="b25" ref-type="bibr">2003</xref>
). Topological robustness was assessed through 1000 bootstrapping replicates. Bayesian analysis was conducted with MrBayes version 3.1.2 (Ronquist and Huelsenbeck
<xref rid="b52" ref-type="bibr">2003</xref>
). Analyses were initiated with random starting trees. Each analysis ran for 10
<sup>6</sup>
generations with four Markov chains employed. Trees were sampled every 100 generations, and the “temperature” parameter was set to 0.2. The first 25% trees were discarded as burn-in after a careful inspection of the stationary state and the convergence of the chains with TRACER 1.5 (Rambaut and Drummond
<xref rid="b50" ref-type="bibr">2007</xref>
).</p>
<p>To get insights into the temporal scale for speciation, the divergence times were estimated using BEAST 1.7.4 (Drummond and Rambaut
<xref rid="b18" ref-type="bibr">2007</xref>
) with a relaxed molecular clock approach, as the molecular clock model was rejected by likelihood ratio tests for all single-gene data and the concatenated data (
<italic></italic>
<
<italic> </italic>
0.0001, Table S2). The rate change was explicitly modeled using uncorrelated lognormal distribution across trees. We ran the analyses with three different tree prior, one speciation prior, a Yule process (pure birth process), and two coalescent prior, a constant size and an extended Bayesian skyline. Tree topology and age were simultaneously estimated with branch length and substitution model parameters. Two million Markov chain Monte Carlo (MCMC) searches were performed and sampled every 2000 generations. Convergence of the MCMC chains was checked with TRACER 1.5 (Rambaut and Drummond
<xref rid="b50" ref-type="bibr">2007</xref>
). Maximum clade credibility (MCC) tree, posteriors, means, and 95% highest posterior densities (HPDs) for ages of nodes were indentified and annotated using TreeAnnotator 1.6.2 (Drummond and Rambaut
<xref rid="b18" ref-type="bibr">2007</xref>
). In the absence of relevant fossil and other evidence for calibration, we used the substitution rates reported for the ITS sequences (2.52 × 10
<sup>−9</sup>
per site per year) (Takamatsu and Matsuda
<xref rid="b58" ref-type="bibr">2004</xref>
) to estimate the time to the most recent common ancestor for all clades. This substitution rate for ITS sequences is comparable with that reported in other group of Ascomycota, for example, 2.43 × 10
<sup>−9</sup>
for Parmeliaceae (Leavitt et al.
<xref rid="b39" ref-type="bibr">2012</xref>
) and 1.46 ± 1.3 × 10
<sup>−9</sup>
for Eurotiomycete (Kasuga et al.
<xref rid="b35" ref-type="bibr">2002</xref>
).</p>
</sec>
<sec>
<title>Species tree estimation and validation</title>
<p>Establishing a preliminary hypothesis of species boundaries using individual locus and concatenated sequence data provides a reasonable starting point for species delimitation. However, inferring a species tree using these results has been shown to be misleading under certain divergence scenarios (Degnan and Rosenberg
<xref rid="b13" ref-type="bibr">2006</xref>
,
<xref rid="b14" ref-type="bibr">2009</xref>
; Leaché
<xref rid="b38" ref-type="bibr">2009</xref>
; Leavitt et al.
<xref rid="b39" ref-type="bibr">2012</xref>
). We employed a Bayesian Markov Chain Monte Carlo (MCMC) method (
<sup></sup>
BEAST) to jointly estimate multiple gene trees embedded in a shared species tree under the multispecies coalescent (Heled and Drummond
<xref rid="b28" ref-type="bibr">2010</xref>
).
<sup></sup>
BEAST estimates the species tree that is most probably given the multiindividual multilocus sequence data and incorporates uncertainty associated with the coalescent process and gene genealogies. This method is considerably more accurate than supermatrix approaches (Heled and Drummond
<xref rid="b28" ref-type="bibr">2010</xref>
). We conducted
<sup></sup>
BEAST analyses on all three datasets with species defined a priori according to the results of phylogenetic analyses. Analyses were partitioned by locus, and all parameters were unlinked across loci with an uncorrelated lognormal model of rate variation assumed for each locus. A Yule process prior was used for species tree, and the population size model was set to piecewise linear and constant root. Three independent runs were executed in BEAST version 1.7.4 (Drummond and Rambaut
<xref rid="b18" ref-type="bibr">2007</xref>
) with each run consisting of 100 million generations sampling every 5000 generations. Convergence of parameter values was assessed by plotting the marginal probabilities using the program TRACER version 1.5 (Rambaut and Drummond
<xref rid="b50" ref-type="bibr">2007</xref>
).</p>
<p>We used the program Bayesian Phylogenetics and Phylogeography (BPP v2.2) (Yang and Rannala
<xref rid="b69" ref-type="bibr">2010</xref>
) to delimit species using the reversible-jump Markov chain Monte Carlo (rjMCMC) method. This method infers the joint posterior distribution of species delimitation and species tree and yields a posterior probability associated with the existence of each species. Using all the three loci, we infer the joint posterior distribution for the hypothetical guide tree. The species tree estimated by *BEAST was used as guide tree. The program assesses the probability of the node separating the two species exist under a general lineage species concept while accounting for lineage sorting due to time since divergence and population size. We used algorithm 0 with and parameterized both ancestral population size (
<italic>Θ</italic>
) and root age (
<italic>τ</italic>
<sub>o</sub>
) using a gamma distribution,
<italic>Γ</italic>
(2, 1000). Three independent analyses were run with different starting seeds for 100,000 generations with a burn-in of 20,000 and thinning every five generations.</p>
<p>The taxonomic distinctiveness of delimited species was also assessed using the genealogical sorting index (
<italic>gsi</italic>
; Cummings et al.
<xref rid="b12" ref-type="bibr">2008</xref>
), a quantitative measure of the degree to which ancestry of delimited species is exclusive.
<italic>gsi</italic>
is on a scale from 0 to 1, where 1 indicates complete monophyly. We calculated
<italic>gsi</italic>
for each delimited species from each locus using the Genealogical Sorting Index web server (
<ext-link ext-link-type="uri" xlink:href="http://www.genealogicalsorting.org">http://www.genealogicalsorting.org</ext-link>
). The 50% majority-rule consensus gene trees inferred by MrBayes were used as input trees. The null hypothesis that the degree of exclusive ancestry is observed by chance alone (i.e., no divergence) was evaluated by estimating a
<italic>P</italic>
value using 10,000 permutations.</p>
</sec>
<sec>
<title>Ancestral host reconstruction</title>
<p>The historical host of the hypothetical ancestors (internal nodes) was reconstructed using Bayes-DIVA implemented in RASP 2.0 Beta (Yu et al.
<xref rid="b70" ref-type="bibr">2010</xref>
). Bayes-DIVA determines the probability of ancestral state for each node averaged over all sampled trees derived from MCMC and thus accounts for phylogenetic uncertainty in inference (Nylander et al.
<xref rid="b47" ref-type="bibr">2008</xref>
). We sampled 10,000 trees from MCMC in *BEAST with concatenated data and generated maximum clade credibility tree from the sampled trees using TreeAnnotator 1.6.2 (Drummond and Rambaut
<xref rid="b18" ref-type="bibr">2007</xref>
). These trees were used as inputs for ancestral state reconstruction. The analysis was run for 50,000 cycles using 10 chains. Hosts for each isolate were recorded during collection. Three kinds of hosts (including for outgroups) were observed: (1) apple,
<italic>Malus</italic>
sp., (2) pear,
<italic>Pyri</italic>
sp., and (3) peach,
<italic>Prunus</italic>
sp. The maximum number of areas in ancestral ranges was constrained to three.</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Sequence variability and genetic diversity</title>
<p>The sequences variability and genetic diversity were summarized in Table 
<xref ref-type="table" rid="tbl1">1</xref>
. For ITS, we reported statistics basing on the subsampled 30 isolates (which have been sequenced for EF1
<italic>α</italic>
and Btu in this study) in order to make cross-locus comparisons more meaningful. In general, EF1
<italic>α</italic>
and Btu are much more polymorphic than ITS sequences, with 26.0% (77/296) and 16.4% (84/512) of sites been variable, six or four times more than that of ITS (3.91%, 23/588). The mean genetic distances (p-distance) between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
(recognized in this study) are 5% for Btu and 8% for EF1
<italic>α</italic>
, more than fourfold for ITS (1.2%). The genetic distances between
<italic>V. mali</italic>
and
<italic>V. malicola</italic>
are similar to that between
<italic>V. pyri</italic>
and
<italic>V. malicola</italic>
, with 13% for Btu and 25% for EF1
<italic>α</italic>
. Similarly, there are much more intraspecific variations in EF1
<italic>α</italic>
and Btu than in ITS (Table 
<xref ref-type="table" rid="tbl2">2</xref>
). Gene diversity and nucleotide diversity are comparable in
<italic>V. mali</italic>
and
<italic>V. pyri,</italic>
while
<italic>V. malicola</italic>
harbors slightly more diversity in EF1
<italic>α</italic>
and Btu. The mutation that occurs between unique sequences for each locus is shown by network in Fig. 
<xref ref-type="fig" rid="fig03">3</xref>
A–C. The NeighborNet network (Fig. 
<xref ref-type="fig" rid="fig03">3</xref>
D) shows that there is essentially no reticulation between two groups of isolates in the former
<italic>V. mali</italic>
, which correspond to the two subclades revealed in later phylogenetic analyses (Fig. 
<xref ref-type="fig" rid="fig02">2</xref>
).</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Estimates of genetic distances between species. Means and standard errors of the number of base differences per site (p-distance) from averaging over all sequence pairs between groups are shown. Standard errors were obtained by 1000 bootstrapping replicates. Ambiguous sites were removed before distance calculation</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Locus</th>
<th align="left" rowspan="1" colspan="1">Length</th>
<th align="left" rowspan="1" colspan="1">S</th>
<th align="left" rowspan="1" colspan="1">
<italic>V. mali</italic>
vs.
<italic>V. pyri</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>V. mali</italic>
vs.
<italic>V. malicola</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>V. pyri</italic>
vs.
<italic>V. malicola</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">ITS</td>
<td align="left" rowspan="1" colspan="1">588 bp</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">0.012 ± 0.004</td>
<td align="left" rowspan="1" colspan="1">0.033 ± 0.007</td>
<td align="left" rowspan="1" colspan="1">0.035 ± 0.007</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Btu</td>
<td align="left" rowspan="1" colspan="1">512 bp</td>
<td align="left" rowspan="1" colspan="1">84</td>
<td align="left" rowspan="1" colspan="1">0.051 ± 0.009</td>
<td align="left" rowspan="1" colspan="1">0.132 ± 0.014</td>
<td align="left" rowspan="1" colspan="1">0.130 ± 0.015</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">EF1
<italic>α</italic>
</td>
<td align="left" rowspan="1" colspan="1">296 bp</td>
<td align="left" rowspan="1" colspan="1">77</td>
<td align="left" rowspan="1" colspan="1">0.080 ± 0.015</td>
<td align="left" rowspan="1" colspan="1">0.252 ± 0.026</td>
<td align="left" rowspan="1" colspan="1">0.252 ± 0.025</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>S, number of segregating sites.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<p>Summary of genetic statistics of three loci (in the order of ITS/Btu/EF1
<italic>α</italic>
) for three Valsa species on apple</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Species</th>
<th align="left" rowspan="1" colspan="1">
<italic>N</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>S</italic>
</th>
<th align="left" rowspan="1" colspan="1">Hd</th>
<th align="left" rowspan="1" colspan="1">
<italic>π</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. mali</italic>
</td>
<td align="left" rowspan="1" colspan="1">16/16/16</td>
<td align="left" rowspan="1" colspan="1">1/8/8</td>
<td align="left" rowspan="1" colspan="1">0.233/0.817/0.767</td>
<td align="left" rowspan="1" colspan="1">0.0004/0.0039/0.0092</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. pyri</italic>
</td>
<td align="left" rowspan="1" colspan="1">9/9/9</td>
<td align="left" rowspan="1" colspan="1">0/1/1</td>
<td align="left" rowspan="1" colspan="1">0/0.222/0.389</td>
<td align="left" rowspan="1" colspan="1">0/0.0005/0.0014</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. malicola</italic>
</td>
<td align="left" rowspan="1" colspan="1">5/5/5</td>
<td align="left" rowspan="1" colspan="1">0/10/8</td>
<td align="left" rowspan="1" colspan="1">0/0.700/0.900</td>
<td align="left" rowspan="1" colspan="1">0/0.0089/0.0148</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<italic>N</italic>
, number of isolates;
<italic>S</italic>
, number of segregating sites; Hd, gene diversity;
<italic>π</italic>
, nucleotide diversity.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Time-calibrated phylogeny and reconstructed ancestral hosts. Shown here is the maximum clade credibility tree inferred from concatenated data using the Bayesian relaxed phylogenetic approach implemented in BEAST. Shown above the branches are bootstrap support values (%) from 1000 replicates (maximum likelihood analysis)/posterior probabilities (Bayesian inference). Ancestral hosts reconstructed from Bayes-DIVA analysis were mapped on the nodes as colored pie charts, with the relevant colors proportional to the mean probability of the ancestral host. The mean probability of the ancestral host being apple,
<italic>P</italic>
<sub>apple</sub>
, was shown under by the nodes. Host states color codes: red, apple (
<italic>Malus</italic>
); yellow, pear (
<italic>Pyrus</italic>
); and green, both apple and pear (
<italic>Malus </italic>
<italic>Pyrus</italic>
).</p>
</caption>
<graphic xlink:href="ece30004-1369-f2"></graphic>
</fig>
</sec>
<sec>
<title>Phylogenetic inferences and species tree estimation</title>
<p>In all single-gene analyses, ML and the Bayesian inferences obtained largely congruent results differing only in arrangements within major clades (Fig. S1). Phylogenetic analyses of the concatenated alignment with single overall model and with each locus assigned a specific best-fit substitution model obtained the identical tree topology. These tree topologies are identical to that of MCC tree obtained in BEAST (Fig. 
<xref ref-type="fig" rid="fig02">2</xref>
). In general, all phylogenetic analyses revealed two reciprocal monophyletic clades within the former morphological species
<italic>V. mali</italic>
, which we have found in our early study with only ITS sequences (Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
). These clades were strongly supported in the concatenated analysis by bootstrap values and Bayesian posterior probabilities of 100/1.00. We assigned these two clades
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
, respectively (see Discussion).</p>
<p>The species trees estimated by
<sup></sup>
BEAST are presented in Figure 
<xref ref-type="fig" rid="fig04">4</xref>
A. Speciation between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
is strongly supported (speciation probabilities 1.00). This species tree is also strongly supported by Bayesian species delimitation in BPP. Values of
<italic>gsi</italic>
indicate a high degree of exclusive ancestry within delimited species for the all loci (Table 
<xref ref-type="table" rid="tbl3">3</xref>
).</p>
<table-wrap id="tbl3" position="float">
<label>Table 3</label>
<caption>
<p>Genealogical sorting index (
<italic>gsi</italic>
) of three delimited Valsa species for gene trees. All
<italic>P</italic>
values based on 10,000 permutations are <0.0001</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Locus</th>
<th align="left" rowspan="1" colspan="1">ITS</th>
<th align="left" rowspan="1" colspan="1">Btu</th>
<th align="left" rowspan="1" colspan="1">EF1
<italic>α</italic>
</th>
<th align="left" rowspan="1" colspan="1">All combined</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. mali</italic>
</td>
<td align="left" rowspan="1" colspan="1">0.87</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. pyri</italic>
</td>
<td align="left" rowspan="1" colspan="1">0.85</td>
<td align="left" rowspan="1" colspan="1">0.85</td>
<td align="left" rowspan="1" colspan="1">0.85</td>
<td align="left" rowspan="1" colspan="1">0.85</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. malicola</italic>
</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec>
<title>Divergence times and ancestral hosts</title>
<p>Divergence times for major nodes, estimated with Bayesian relaxed clock method, were summarized in Table 
<xref ref-type="table" rid="tbl4">4</xref>
and also shown in Figure 
<xref ref-type="fig" rid="fig02">2</xref>
. Running BEAST with different tree priors obtained similar results, with very close means and overlapping 95% HPDs. Both
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
coalescented very recently, with mean dates less than one million years ago (Ma). Divergence between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
occurred around 5 Ma (95% HPDs, 2.46–8.14 Ma with different tree priors), and the common ancestor of
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
diverged with
<italic>V. malicola</italic>
about 15–18 Ma (95% HPDs, 7.13–26.54).</p>
<table-wrap id="tbl4" position="float">
<label>Table 4</label>
<caption>
<p>Means and 95% HPDs (in brackets) for divergence dates estimates using different tree priors with relaxed molecular clock method implemented in BEAST1.7.4</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">MRCA</th>
<th align="center" rowspan="1" colspan="1">Coalescent: constant size</th>
<th align="center" rowspan="1" colspan="1">Coalescent: EBSP</th>
<th align="center" rowspan="1" colspan="1">Speciation: Yule process</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. mali</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.89 [0.38, 1.45]</td>
<td align="center" rowspan="1" colspan="1">0.78 [0.32, 1.32]</td>
<td align="center" rowspan="1" colspan="1">1.08 [0.47, 1.80]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>V. pyri</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.30 [0.08, 0.56]</td>
<td align="center" rowspan="1" colspan="1">0.21 [0.04, 0.42]</td>
<td align="center" rowspan="1" colspan="1">0.43 [0.11, 0.82]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">(
<italic>V. mali</italic>
,
<italic>V. pyri</italic>
)</td>
<td align="center" rowspan="1" colspan="1">5.16 [2.78, 7.79]</td>
<td align="center" rowspan="1" colspan="1">5.27 [2.86, 8.14]</td>
<td align="center" rowspan="1" colspan="1">5.12 [2.46, 7.94]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">(
<italic>V. mali</italic>
,
<italic>V. malicola</italic>
)</td>
<td align="center" rowspan="1" colspan="1">16.98 [9.97, 24.86]</td>
<td align="center" rowspan="1" colspan="1">17.92 [10.50, 26.54]</td>
<td align="center" rowspan="1" colspan="1">14.77 [7.13, 22.93]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>MRCA, most recent common ancestor; EBSP, extended Bayesian skyline plot. Dates are given in million years ago.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The reconstructed historical hosts of the hypothetical ancestors were depicted with pie charts on the respective nodes in the MCC tree (Fig. 
<xref ref-type="fig" rid="fig02">2</xref>
). As indicated by the colored pie charts in Figure 
<xref ref-type="fig" rid="fig02">2</xref>
, Bayes-DIVA analysis indicated that apple (
<italic>Malus</italic>
) was the ancestral host for
<italic>V. mali</italic>
(
<italic></italic>
=
<italic> </italic>
99.86%), and the ancestral host of
<italic>V. pyri</italic>
was most probably apple (
<italic></italic>
=
<italic> </italic>
90.91%). Apple was also the ancestral host for the common ancestor of
<italic>V. malicola</italic>
and
<italic>V. mali</italic>
(
<italic></italic>
=
<italic> </italic>
99.60%).</p>
</sec>
</sec>
<sec>
<title>Discussions</title>
<sec>
<title>Cryptic species and host-range expansion</title>
<p>Fungal diseases evoke tremendous threats on a wide range of host plants at an increasing rate (Jones et al.
<xref rid="b34" ref-type="bibr">2008</xref>
). Specific and precise delimitation of fungal species is not only essential for the development of effective disease control program, but also will advance our understanding of the emergence of plant diseases. However, species delimitation in fungi still remains a challenging task. This is in part due to the paucity of reliable morphological characters in some groups, but lacking of consensus on a definition of the term “species” aggravates the situation. With theoretical and methodological advances, most biologists agree that the “species phenomenon” is real, which is expressed by consistent discontinuities along morphological, genetic, and/or ecological axes (Dobzhansky
<xref rid="b17" ref-type="bibr">1937</xref>
; Sterelny
<xref rid="b56" ref-type="bibr">1999</xref>
; Coyne and Orr
<xref rid="b11" ref-type="bibr">2004</xref>
; Hausdorf
<xref rid="b27" ref-type="bibr">2011</xref>
).</p>
<p>Our multilocus phylogenetic analyses consistently revealed two strongly supported monophyletic clades with the former morphologically indistinguishable species
<italic>V. mali</italic>
(Fig. 
<xref ref-type="fig" rid="fig02">2</xref>
). These monophyletic clades, resulting from nearly complete lineage sorting (
<italic>gsi </italic>
≥ 0.85, Table 
<xref ref-type="table" rid="tbl3">3</xref>
) in all three loci, imply cessation of gene flow for very prolonged time period and thus represent a clear genetic discontinuity. This genetic discontinuity is also clearly reflected in Bayesian species tree estimation, in which the common ancestral node was supported by a speciation probability of 1.00 (
<sup></sup>
BEAST and BPP, Fig. 
<xref ref-type="fig" rid="fig04">4</xref>
A). Although we failed to capture any stable morphological difference, different thermal preferences and contrasting pathogenicity in cross-inoculation on apple and pear (implying hosts preferences, Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
) suggest the differential niche occupation between isolates belonging to these two clades. These evidences suggest a clear discontinuity along ecological axes (Fig. 
<xref ref-type="fig" rid="fig04">4</xref>
B–D). Taken all these evidences together, although being morphologically cryptic, it is reasonable and adequate to recognize the two clades (varieties in earlier study, Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
) as two distinct species,
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
.</p>
<p>Genetically, there are 7, 23, and 19 fixed differences, respectively, that have been observed in ITS, Btu and EF1
<italic>α</italic>
between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
(Fig. 
<xref ref-type="fig" rid="fig03">3</xref>
). Culturing on the PDA medium, the colony color of
<italic>V. mali</italic>
changed from white at first to light brown in the later period, but that of
<italic>V. pyri</italic>
remained milk white throughout the cultural period (with one exception out of 14 isolates that changed to dark gray in the later period). On 20% ABA, many smaller conidiomata were produced by isolates of
<italic>V. mali</italic>
, while a few larger conidiomata were produced by the isolates of
<italic>V. pyri</italic>
(Wang et al.
<xref rid="b66" ref-type="bibr">2007</xref>
,
<xref rid="b67" ref-type="bibr">2011</xref>
). There were significant differences in the growth rate at high temperatures (Fig. 
<xref ref-type="fig" rid="fig04">4</xref>
B). Culturing on PDA at 32°C for 3 days, the colony diameter of
<italic>V. mali</italic>
was more than twice compared with
<italic>V. pyri</italic>
, while at 37°C
<italic>V. mali</italic>
ceased to grow but
<italic>V. pyri</italic>
could develop normal colonies (Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
). Artificial cross-inoculations on apple and pear revealed contrasting patterns of pathogenicity (Fig. 
<xref ref-type="fig" rid="fig04">4</xref>
C).
<italic>V. mali</italic>
was significantly more aggressive on apple than on pear, with canker length more than twofold on apple twigs than on pear twigs (MCL: 5.85 vs. 2.50 cm). On the contrary,
<italic>V. pyri</italic>
was consistently more pathogenic on pear than on apple, developing cankers on apple twigs only 2/3 the length of that on pear twigs (MCL: 3.02 vs. 4.41 cm). Geographic distributions of these two species need to be investigated in future. Current known occurrences of
<italic>V. mali</italic>
include North China, Japan and Russia, and
<italic>V. pyri</italic>
include China and Italy (Wang et al.
<xref rid="b67" ref-type="bibr">2011</xref>
). In nature,
<italic>V. mali</italic>
exclusively occurs on apple, while
<italic>V. pyri</italic>
can be found both on apple and pear (Table S1).</p>
<fig id="fig03" position="float">
<label>Figure 3</label>
<caption>
<p>Genetic divergences between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
were shown by media-joining networks for each locus (A–C),and by NeighborNet based on p-distances for the concatenated data (D). In (A–C) branch lengths are proportional to the number of substitutions occurred except for the long branches linking haplotypes of
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
, which were shortened and given in numbers. Circle sizes are proportional to the number of isolates sharing the haplotypes. Isolates from apple were depicted in red and from pear in yellow. Note: For ITS, network (A) was constructed based on 150 isolates from apple and nine isolates from pear.</p>
</caption>
<graphic xlink:href="ece30004-1369-f3"></graphic>
</fig>
<fig id="fig04" position="float">
<label>Figure 4</label>
<caption>
<p>Summary of evidences supporting two distinct species
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
. (A) Species tree jointly estimated using
<sup></sup>
BEAST. The consensus tree was overlaid on postburnin trees sampled in MCMC analysis. The time scale is in unit of million years (Ma). (B) Histograms show colony diameters for the isolates of three species cultured on PDA medium for 3 days at 32°C and 37°C. (C) Bar charts show the maximum canker length (cm) developed by
<italic>V. mali</italic>
,
<italic>V. pyri,</italic>
and
<italic>V. malicola</italic>
after 10 days of inoculation during cross-pathogencity test. (D) Pictures of fungal infection on 2-year-old apple twigs during artificial inoculation. Clear difference in canker sizes was observed between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
. Data for generating (B and C) are from Wang et al. (
<xref rid="b67" ref-type="bibr">2011</xref>
).</p>
</caption>
<graphic xlink:href="ece30004-1369-f4"></graphic>
</fig>
<p>The estimated divergence times between two species occurred around 5 million years ago (95% HPDs, 2.46–8.14; Table 
<xref ref-type="table" rid="tbl4">4</xref>
). This divergence time was much later than that of apple (
<italic>Malus</italic>
) and pear (
<italic>Pyrus</italic>
) occurring about 45–59 Ma (Lo and Donoghue
<xref rid="b42" ref-type="bibr">2012</xref>
). This evidence disfavors the fungi–host co-speciation scenario and suggests that speciation of
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
might involve other forces. The results of ancestral host reconstruction revealed that apple was the most likely host for most common ancestors both of
<italic>V. mali</italic>
and of
<italic>V. pyri</italic>
(Fig. 
<xref ref-type="fig" rid="fig02">2</xref>
). This result implies that
<italic>V. pyri</italic>
colonized pear through host-range expansion (i.e., colonization of a new host species while remaining pathogenic on the ancestral host). Unlike host shift (i.e., colonization of a new host species associated with the loss of the ability to infect the ancestral host), which involves very strong qualitative host specialization, host-range expansion requires nonobligate specialization but quantitative specialization often results in a higher performance on the new host (Lê Van et al.
<xref rid="b37" ref-type="bibr">2012</xref>
). Our observations of cross-inoculation are consistent with this expectation. Isolates of
<italic>V. pyri</italic>
developed significant larger canker on pear (expended host) than on apple twigs (ancestral host) (MCL: 4.41 vs. 3.02 cm). Results of molecular dating and ancestral host reconstruction revealed that host-range expansion occurred very recently. Unfortunately, our current sampling design and molecular information are inadequate to infer the frequency and mechanism of host-range expansion for
<italic>V. pyri</italic>
.</p>
</sec>
<sec>
<title>ITS barcoding underestimates
<italic>Valsa</italic>
diversity</title>
<p>Our results demonstrated that molecular approaches were more powerful to accurately resolve fungal lineages and species. However, our results also indicated that species delimitation using molecular data should be applied under feasible theoretical framework. There is a surge of interest in identifying species using DNA barcoding in biodiversity studies (Schoch et al.
<xref rid="b54" ref-type="bibr">2012</xref>
). For its operational easiness, DNA barcoding will definitely help increasing our steps for biodiversity inventory clarification, but warnings and criticisms never fall behind the use of this method because of uncertainty of the existence of “barcoding gap”.</p>
<p>ITS regions are widely used in fungal diversity studies for several reasons including the available database in GenBank and the ease for amplification among distant fungal lineages (White et al.
<xref rid="b68" ref-type="bibr">1990</xref>
). However, many studies have demonstrated that ITS alone is an insufficient variable to delimitate species predicted by other nuclear loci. There are some cases that ITS alone largely underestimates the species diversity (Gazis et al.
<xref rid="b21" ref-type="bibr">2011</xref>
), especially in rapidly evolving or highly diverse genera or species complexes (Lacap et al.
<xref rid="b36" ref-type="bibr">2003</xref>
; Hoffman and Arnold
<xref rid="b29" ref-type="bibr">2008</xref>
), and in some cases to be unreliable for species identification (Harder et al.
<xref rid="b26" ref-type="bibr">2013</xref>
). Although, there were some studies in which a clear “barcoding gap” was found between inter- and intraspecific genetic distances in ITS, the threshold varied widely. For example, mean interspecific distances range from 6% to 8% in Parmeliaceae, but its minimum can be as low as 1.5% (Del-Prado et al.
<xref rid="b15" ref-type="bibr">2010</xref>
). Most species of
<italic>Tuber</italic>
showed 1–3% intraspecific ITS variability and >4% interspecific ITS sequence variation (Bonito et al.
<xref rid="b6" ref-type="bibr">2010</xref>
). In the case of the
<italic>Tricholoma scalpturatum</italic>
complex, the mean value of intraspecific genetic distances was <0.2%, whereas interspecific divergence estimates ranged from 1.78% to 4.22% (Jargeat et al.
<xref rid="b33" ref-type="bibr">2010</xref>
). Meta-analysis revealed that the average of intraspecific ITS variability of the kingdom Fungi is 2.51% and that it is lower in Ascomycota, 1.96% (Nilsson et al.
<xref rid="b46" ref-type="bibr">2008</xref>
). All these examples suggest that there is no single unifying yet stringent threshold for inter- and intraspecific variability. In our case, we found an interspecific distance of 1.2% between
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
. This value seems to be intraspecific comparing above examples. However, high divergence in Btu (5%) and EF1
<italic>α</italic>
(8%), results of phylogenetic analyses, Bayesian species delimitation, cross-inoculation test, and difference in high temperature tolerance clearly supported the distinctness of these two species (Fig. 
<xref ref-type="fig" rid="fig04">4</xref>
). Our results suggest that delimitating species based on ITS sequence alone may underestimate
<italic>Valsa</italic>
species diversity. We propose to use an integrated species delimitation procedure, which combines evidences from multiple locus phylogenetic analyses, cultural characteristics, and cross-host preference test, for this species rich fungal genus.</p>
</sec>
<sec>
<title>Perspective on canker disease managements</title>
<p>As the causal agent of Valsa canker penetrates extensively into the plant phloem and xylem, the disease cannot be controlled effectively through chemical treatments (Abe et al.
<xref rid="b1" ref-type="bibr">2007</xref>
). So beforehand prevention is of pivotal importance. In this study, we found two close related but unique species,
<italic>V. mali</italic>
and
<italic>V. pyri</italic>
, on apple and pear. The distinct features of these two pathogen species and their distinct host preferences decided that they should be evaluated independently in the disease assessment and quarantine and consequently should be treated with specific management practices.</p>
<p>There are many examples of interspecific hybridization having been reported (e.g., Brasier et al.
<xref rid="b8" ref-type="bibr">1999</xref>
; Newcombe et al.
<xref rid="b45" ref-type="bibr">2000</xref>
; Moon et al.
<xref rid="b44" ref-type="bibr">2004</xref>
; Brasier and Kirk
<xref rid="b7" ref-type="bibr">2010</xref>
; Stukenbrock et al.
<xref rid="b57" ref-type="bibr">2012</xref>
), and hybridization represents one of the common mode of speciation in fungi (Giraud et al.
<xref rid="b22" ref-type="bibr">2008</xref>
,
<xref rid="b23" ref-type="bibr">2010</xref>
). Interspecific recombination can help to spread pathogenic alleles to cross species boundary and thus conferring improved virulence to less pathogenic species. So an impending concern relevant to two pathogen species is the likelihood for the occurrence of interspecific hybridization. The domestication of their hosts and current grafting practices create such opportunities (mating within the same host), which might not exist in the wild. As grafting between apple and pear is common in horticultural practice, grafting will provide hotbed for interspecific hybridization. Their co-existence in the apple will especially increase the likelihood of interspecific hybridization. Thus, it is important to monitor the occurrence of hybridization between these two species in the fields and carry out a priori pathogen examination before seedling grafting.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We are grateful to Dr. Cheng-Min Shi for help in sample collection and data analyses, and Prof. H. Buchenauer for correcting the grammatical and spelling errors.</p>
</ack>
<sec>
<title>Conflict of Interest</title>
<p>None declared.</p>
</sec>
<sec>
<title>Funding Information</title>
<p>This work was supported by Special Fund for Agro-scientific Research in the Public Interest of China (201203034); Specialized Research Fund for the Doctoral Program of Higher Education of China (20120204110002); National Natural Science Foundation of China (31171796) and the 111project (B07049.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kotoda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Soejima</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Resistance sources to Valsa canker (
<italic>Valsa ceratosperma</italic>
) in a germplasm collection of diverse
<italic>Malus</italic>
species</article-title>
<source>Plant Breeding</source>
<year>2007</year>
<volume>126</volume>
<fpage>449</fpage>
<lpage>453</lpage>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Surve-Iyer</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Iezzoni</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Ribosomal DNA sequence divergence and group I introns within the
<italic>Leucostoma</italic>
species
<italic>L. cinctum L. persoonii</italic>
and
<italic>L. parapersoonii</italic>
sp. nov., ascomycetes that cause Cytospora canker of fruit trees</article-title>
<source>Mycologia</source>
<year>2002</year>
<volume>94</volume>
<issue>6</issue>
<fpage>947</fpage>
<lpage>967</lpage>
<pub-id pub-id-type="pmid">21156569</pub-id>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Agrios</surname>
<given-names>GN</given-names>
</name>
</person-group>
<source>Plant Pathology</source>
<year>1997</year>
<publisher-loc>San Diego, CA</publisher-loc>
<publisher-name>Academic Press</publisher-name>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bacon</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>McKenna</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Simmons</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>WL</given-names>
</name>
</person-group>
<article-title>Evaluating multiple criteria for species delimitation: an empirical example using Hawaiian palms (Arecaceae:
<italic>Pritchardia</italic>
</article-title>
<source>BMC Evol. Biol</source>
<year>2012</year>
<volume>12</volume>
<fpage>23</fpage>
<pub-id pub-id-type="pmid">22353848</pub-id>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bandelt</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Forster</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rohl</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Median-joining networks for inferring intraspecific phylogenies</article-title>
<source>Mol. Biol. Evol</source>
<year>1999</year>
<volume>16</volume>
<fpage>37</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">10331250</pub-id>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonito</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Gryganskyi</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Trappe</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Vilgalys</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal</article-title>
<source>Mol. Ecol</source>
<year>2010</year>
<volume>19</volume>
<fpage>4994</fpage>
<lpage>5008</lpage>
<pub-id pub-id-type="pmid">21040049</pub-id>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brasier</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Kirk</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Rapid emergence of hybrids between the two subspecies of
<italic>Ophiostoma novo-ulmi</italic>
with a high level of pathogenic fitness</article-title>
<source>Plant. Pathol</source>
<year>2010</year>
<volume>59</volume>
<fpage>186</fpage>
<lpage>199</lpage>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brasier</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Cooke</surname>
<given-names>DEL</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Origin of a new
<italic>Phytophthora</italic>
pathogen through interspecific hybridization</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>5878</fpage>
<lpage>5883</lpage>
<pub-id pub-id-type="pmid">10318978</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carbone</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Kohn</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>A method for designing primer sets for speciation studies in filamentous Ascomycetes</article-title>
<source>Mycologia</source>
<year>1999</year>
<volume>91</volume>
<fpage>553</fpage>
<lpage>556</lpage>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Studies on the infection period of
<italic>Valsa mali</italic>
Miyabe et Yamada, the causal agent of apple tree canker</article-title>
<source>Acta Phytopathologica Sinica</source>
<year>1987</year>
<volume>17</volume>
<fpage>65</fpage>
<lpage>68</lpage>
<comment>(in Chinese)</comment>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Coyne</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Orr</surname>
<given-names>HA</given-names>
</name>
</person-group>
<source>Speciation</source>
<year>2004</year>
<publisher-loc>Sunderland, MA</publisher-loc>
<publisher-name>Sinauer Associates Inc</publisher-name>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cummings</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Neel</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>A genealogical approach to quantifying lineage divergence</article-title>
<source>Evolution</source>
<year>2008</year>
<volume>62</volume>
<issue>9</issue>
<fpage>2411</fpage>
<lpage>2422</lpage>
<pub-id pub-id-type="pmid">18564377</pub-id>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degnan</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Rosenberg</surname>
<given-names>NA</given-names>
</name>
</person-group>
<article-title>Discordance of species trees with their most likely gene trees</article-title>
<source>PLoS Genet</source>
<year>2006</year>
<volume>2</volume>
<fpage>e68</fpage>
<pub-id pub-id-type="pmid">16733550</pub-id>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Degnan</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Rosenberg</surname>
<given-names>NA</given-names>
</name>
</person-group>
<article-title>Gene tree discordance, phylogenetic inference and the multispecies coalescent</article-title>
<source>Trends Ecol. Evol</source>
<year>2009</year>
<volume>24</volume>
<fpage>332</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="pmid">19307040</pub-id>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Del-Prado</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cubas</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lumbsch</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Divakar</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>O</given-names>
</name>
<name>
<surname>de Paz</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation</article-title>
<source>Mol. Phylogenet. Evol</source>
<year>2010</year>
<volume>56</volume>
<fpage>125</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="pmid">20399873</pub-id>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dettman</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote
<italic>Neurospora</italic>
</article-title>
<source>Evolution</source>
<year>2003</year>
<volume>57</volume>
<fpage>2703</fpage>
<lpage>2720</lpage>
<pub-id pub-id-type="pmid">14761051</pub-id>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Dobzhansky</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Genetics and the origin of species</source>
<year>1937</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Columbia University Press</publisher-name>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>BEAST: Bayesian evolutionary analysis by sampling trees</article-title>
<source>BMC Evol. Biol</source>
<year>2007</year>
<volume>7</volume>
<fpage>214</fpage>
<pub-id pub-id-type="pmid">17996036</pub-id>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dupuis</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Roe</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Sperling</surname>
<given-names>FAH</given-names>
</name>
</person-group>
<article-title>Multi-locus species delimitation in closely related animals and fungi: one marker is not enough</article-title>
<source>Mol. Ecol</source>
<year>2012</year>
<volume>21</volume>
<fpage>4422</fpage>
<lpage>4436</lpage>
<pub-id pub-id-type="pmid">22891635</pub-id>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fisher</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Henk</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Briggs</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Brownstein</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Madoff</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>McCraw</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Emerging fungal threats to animal, plant and ecosystem health</article-title>
<source>Nature</source>
<year>2012</year>
<volume>484</volume>
<fpage>186</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="pmid">22498624</pub-id>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gazis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rehner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chaverri</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences</article-title>
<source>Mol. Ecol</source>
<year>2011</year>
<volume>20</volume>
<fpage>3001</fpage>
<lpage>3013</lpage>
<pub-id pub-id-type="pmid">21557783</pub-id>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giraud</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Refrégier</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hood</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Le Gac</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>de Vienne</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Speciation in fungi</article-title>
<source>Fungal Genet. Biol</source>
<year>2008</year>
<volume>45</volume>
<fpage>791</fpage>
<lpage>802</lpage>
<pub-id pub-id-type="pmid">18346919</pub-id>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giraud</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gladieux</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hood</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The origin of species in Fungi</article-title>
<source>Fungi</source>
<year>2010</year>
<volume>3</volume>
<issue>4</issue>
<fpage>23</fpage>
<lpage>27</lpage>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glass</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Donaldson</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes</article-title>
<source>Appl. Environ. Microbiol</source>
<year>1995</year>
<volume>61</volume>
<fpage>1323</fpage>
<lpage>1330</lpage>
<pub-id pub-id-type="pmid">7747954</pub-id>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guindon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gascuel</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood</article-title>
<source>Systems biology</source>
<year>2003</year>
<volume>52</volume>
<fpage>696</fpage>
<lpage>704</lpage>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harder</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>LæssØe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>FrØslev</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Ekelund</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rosendahl</surname>
<given-names>S</given-names>
</name>
<name>
<surname>KjØller</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A three-gene phylogeny of the
<italic>Mycena pura</italic>
complex reveals 11 phylogenetic species and shows ITS to be unreliable for species identification</article-title>
<source>Fungal Biology</source>
<year>2013</year>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.funbio.2013.09.004">http://dx.doi.org/10.1016/j.funbio.2013.09.004</ext-link>
</comment>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hausdorf</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Progress toward a general species concept</article-title>
<source>Evolution</source>
<year>2011</year>
<volume>65</volume>
<fpage>923</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="pmid">21463293</pub-id>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heled</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Bayesian inference of species trees from multilocus data</article-title>
<source>Mol. Biol. Evol</source>
<year>2010</year>
<volume>27</volume>
<fpage>570</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="pmid">19906793</pub-id>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoffman</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>AE</given-names>
</name>
</person-group>
<article-title>Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees</article-title>
<source>Mycol. Res</source>
<year>2008</year>
<volume>112</volume>
<fpage>331</fpage>
<lpage>344</lpage>
<pub-id pub-id-type="pmid">18308531</pub-id>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Bull</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Combining data in phylogenetic analysis</article-title>
<source>Trends Ecol. Evol</source>
<year>1996</year>
<volume>11</volume>
<fpage>152</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">21237790</pub-id>
</element-citation>
</ref>
<ref id="b31">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hull</surname>
<given-names>DL</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Butts</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hintikka</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The ontological status of species as evolutionary units</article-title>
<source>Foundational problems in the special sciences</source>
<year>1977</year>
<publisher-loc>Dordrecht, Holland</publisher-loc>
<publisher-name>Reidel D Publishing Company</publisher-name>
<fpage>91</fpage>
<lpage>102</lpage>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huson</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Application of phylogenetic networks in evolutionary studies</article-title>
<source>Mol. Biol. Evol</source>
<year>2006</year>
<volume>23</volume>
<issue>2</issue>
<fpage>254</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">16221896</pub-id>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jargeat</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Martos</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Carriconde</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gryta</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Moreau</surname>
<given-names>P-A</given-names>
</name>
<name>
<surname>Gardes</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Phylogenetic species delimitation in ectomycorrhizal fungi and implications for barcoding: the case of the
<italic>Tricholoma scalpturatum</italic>
complex (Basidiomycota)</article-title>
<source>Mol. Ecol</source>
<year>2010</year>
<volume>19</volume>
<fpage>5216</fpage>
<lpage>5230</lpage>
<pub-id pub-id-type="pmid">21044190</pub-id>
</element-citation>
</ref>
<ref id="b34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Storeygard</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Balk</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gittleman</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global trends in emerging infectious diseases</article-title>
<source>Nature</source>
<year>2008</year>
<volume>451</volume>
<fpage>990</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">18288193</pub-id>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kasuga</surname>
<given-names>T</given-names>
</name>
<name>
<surname>White</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Estimation of nucleotide substitution rates in Eurotiomycete fungi</article-title>
<source>Mol. Biol. Evol</source>
<year>2002</year>
<volume>19</volume>
<fpage>2318</fpage>
<lpage>2324</lpage>
<pub-id pub-id-type="pmid">12446823</pub-id>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lacap</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Hyde</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Liew</surname>
<given-names>ECY</given-names>
</name>
</person-group>
<article-title>An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences</article-title>
<source>Fungal Diversity</source>
<year>2003</year>
<volume>12</volume>
<fpage>53</fpage>
<lpage>66</lpage>
</element-citation>
</ref>
<ref id="b37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lê Van</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gladieux</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lemaire</surname>
<given-names>CornilleA</given-names>
</name>
<name>
<surname>Giraud</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Durel</surname>
<given-names>C-E</given-names>
</name>
<name>
<surname>Caffier</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host</article-title>
<source>Evol. Appl</source>
<year>2012</year>
<volume>5</volume>
<fpage>694</fpage>
<lpage>704</lpage>
<pub-id pub-id-type="pmid">23144656</pub-id>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leaché</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Species tree discordance traces to phylogeographic clade boundaries in North American fence lizards (
<italic>Sceloporus</italic>
</article-title>
<source>Systems biology</source>
<year>2009</year>
<volume>58</volume>
<fpage>547</fpage>
<lpage>559</lpage>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leavitt</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Esslinger</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Divakar</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Lumbsch</surname>
<given-names>HT</given-names>
</name>
</person-group>
<article-title>Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae)</article-title>
<source>Biol. J. Linn. Soc. Lond</source>
<year>2012</year>
<volume>107</volume>
<fpage>920</fpage>
<lpage>937</lpage>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Uhm</surname>
<given-names>JY</given-names>
</name>
</person-group>
<article-title>Survey on the occurrence of apple disease in Korea from 1992 to 2000</article-title>
<source>Plant pathology journal</source>
<year>2006</year>
<volume>22</volume>
<fpage>375</fpage>
<lpage>380</lpage>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Librado</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rozas</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>DnaSP v5: A software for comprehensive analysis of DNA polymorphism data</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<fpage>1451</fpage>
<lpage>1452</lpage>
<pub-id pub-id-type="pmid">19346325</pub-id>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>WYY</given-names>
</name>
<name>
<surname>Donoghue</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae)</article-title>
<source>Mol. Phylogenet. Evol</source>
<year>2012</year>
<volume>63</volume>
<fpage>230</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="pmid">22293154</pub-id>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lumbsch</surname>
<given-names>HT</given-names>
</name>
<name>
<surname>Leavitt</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi</article-title>
<source>Fungal Diversity</source>
<year>2011</year>
<volume>50</volume>
<fpage>59</fpage>
<lpage>72</lpage>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moon</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Craven</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Leuchtmann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Schardl</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses</article-title>
<source>Mol. Ecol</source>
<year>2004</year>
<volume>13</volume>
<fpage>1455</fpage>
<lpage>1467</lpage>
<pub-id pub-id-type="pmid">15140090</pub-id>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newcombe</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stirling</surname>
<given-names>B</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bradshaw</surname>
<given-names>HD</given-names>
</name>
</person-group>
<article-title>
<italic>Melampsora</italic>
x
<italic>columbiana</italic>
, a natural hybrid of
<italic>M. medusae</italic>
and
<italic>M. occidentalis</italic>
</article-title>
<source>Mycol. Res</source>
<year>2000</year>
<volume>104</volume>
<fpage>261</fpage>
<lpage>274</lpage>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilsson</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Kristiansson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ryberg</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hallbenberg</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Larsson</surname>
<given-names>K-H</given-names>
</name>
</person-group>
<article-title>Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification</article-title>
<source>Evolutionary bioinformatics</source>
<year>2008</year>
<volume>4</volume>
<fpage>193</fpage>
<lpage>201</lpage>
</element-citation>
</ref>
<ref id="b47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nylander</surname>
<given-names>JAA</given-names>
</name>
<name>
<surname>Olsson</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Alström</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sanmartín</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus)</article-title>
<source>Systems biology</source>
<year>2008</year>
<volume>57</volume>
<fpage>257</fpage>
<lpage>268</lpage>
</element-citation>
</ref>
<ref id="b48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Donnell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Geiser</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Corby Kistler</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the
<italic>Fusarium graminearum</italic>
clade</article-title>
<source>Fungal Genet. Biol</source>
<year>2004</year>
<volume>41</volume>
<fpage>600</fpage>
<lpage>623</lpage>
<pub-id pub-id-type="pmid">15121083</pub-id>
</element-citation>
</ref>
<ref id="b49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Modeltest: testing the model of DNA substitution</article-title>
<source>Bioinformatics</source>
<year>1998</year>
<volume>14</volume>
<fpage>817</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="pmid">9918953</pub-id>
</element-citation>
</ref>
<ref id="b50">
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<year>2007</year>
<comment>Tracer v1.4. Available from
<ext-link ext-link-type="uri" xlink:href="http://beast.bio.ed.ac.uk/Tracer">http://beast.bio.ed.ac.uk/Tracer</ext-link>
</comment>
</element-citation>
</ref>
<ref id="b51">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rintoul</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Eggertson</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Lévesque</surname>
<given-names>CA</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Bolton</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>BP</given-names>
</name>
</person-group>
<article-title>Multigene phylogenetic analyses to delimit new species in fungal plant pathogens</article-title>
<source>Plant Fungal Pathogens: Methods and Protocols</source>
<year>2012</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Humana Press</publisher-name>
<fpage>549</fpage>
<lpage>569</lpage>
</element-citation>
</ref>
<ref id="b52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>MRBAYES 3: Bayesian phylogenetic inference under mixed models</article-title>
<source>Bioinformatics</source>
<year>2003</year>
<volume>19</volume>
<fpage>1572</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="pmid">12912839</pub-id>
</element-citation>
</ref>
<ref id="b53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenberg</surname>
<given-names>NA</given-names>
</name>
</person-group>
<article-title>The probability of topological concordance of gene trees and species trees</article-title>
<source>Theor. Popul. Biol</source>
<year>2002</year>
<volume>61</volume>
<fpage>225</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="pmid">11969392</pub-id>
</element-citation>
</ref>
<ref id="b54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schoch</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Seifert</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Huhndorf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Robert</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Spouge</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Levesque</surname>
<given-names>CA</given-names>
</name>
<etal></etal>
</person-group>
<collab>Fungal Barcoding Consortium</collab>
<article-title>Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>6241</fpage>
<lpage>6246</lpage>
<pub-id pub-id-type="pmid">22454494</pub-id>
</element-citation>
</ref>
<ref id="b55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sites</surname>
<given-names>JW</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Testing species boundaries in biodiversity studies</article-title>
<source>Conserv. Biol</source>
<year>1997</year>
<volume>11</volume>
<fpage>1289</fpage>
<lpage>1297</lpage>
</element-citation>
</ref>
<ref id="b56">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sterelny</surname>
<given-names>K</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wilson</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Species as ecological mosaics</article-title>
<source>Species: new interdisciplinary essays</source>
<year>1999</year>
<publisher-loc>Cambridge, MA</publisher-loc>
<publisher-name>MIT Press</publisher-name>
<fpage>119</fpage>
<lpage>138</lpage>
</element-citation>
</ref>
<ref id="b57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stukenbrock</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Christiansen</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Dutheil</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Schierup</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>1054</fpage>
<lpage>1059</lpage>
</element-citation>
</ref>
<ref id="b58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takamatsu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales</article-title>
<source>Mycoscience</source>
<year>2004</year>
<volume>45</volume>
<fpage>340</fpage>
<lpage>344</lpage>
</element-citation>
</ref>
<ref id="b59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Histopathological changes of apple bark infected by Valsa ceratosperma (Tode ex Fr.) Maire during dormant and growing periods</article-title>
<source>Nippon Shokubutsu Byori Gakkaiho</source>
<year>1982</year>
<volume>48</volume>
<fpage>490</fpage>
<lpage>498</lpage>
<comment>(in Japanese with English abstract)</comment>
</element-citation>
</ref>
<ref id="b60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Stecher</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods</article-title>
<source>Mol. Biol. Evol</source>
<year>2011</year>
<volume>28</volume>
<issue>10</issue>
<fpage>2731</fpage>
<lpage>2739</lpage>
<pub-id pub-id-type="pmid">21546353</pub-id>
</element-citation>
</ref>
<ref id="b61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Kroken</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kasuga</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Geiser</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Hibbett</surname>
<given-names>DS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phylogenetic species recognition and species concepts in fungi</article-title>
<source>Fungal Genet. Biol</source>
<year>2000</year>
<volume>31</volume>
<fpage>21</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">11118132</pub-id>
</element-citation>
</ref>
<ref id="b62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Plewniak</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jeanmougin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools</article-title>
<source>Nucleic Acids Res</source>
<year>1997</year>
<volume>24</volume>
<fpage>4876</fpage>
<lpage>4882</lpage>
<pub-id pub-id-type="pmid">9396791</pub-id>
</element-citation>
</ref>
<ref id="b63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uhm</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Sohn</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>Control of apple Valsa canker by localized spraying with neoasozin solution, an arsenic fungicide</article-title>
<source>Korean Journal of Plant Resources</source>
<year>1995</year>
<volume>11</volume>
<fpage>9</fpage>
<lpage>16</lpage>
</element-citation>
</ref>
<ref id="b64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verkley</surname>
<given-names>GJM</given-names>
</name>
<name>
<surname>Quaedvlieg</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>H-D</given-names>
</name>
<name>
<surname>Crous</surname>
<given-names>PW</given-names>
</name>
</person-group>
<article-title>A new approach to species delimitation in
<italic>Septoria</italic>
</article-title>
<source>Stud. Mycol</source>
<year>2013</year>
<volume>75</volume>
<fpage>213</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="pmid">24014901</pub-id>
</element-citation>
</ref>
<ref id="b65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>FQ</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>XN</given-names>
</name>
</person-group>
<article-title>The investigation of apple tree Valsa canker in Guanzhong region of Shaanxi province</article-title>
<source>Journal of Northwest Sci-Tech University of Agriculture and Forestry</source>
<year>2005</year>
<volume>33</volume>
<issue>Suppl</issue>
<fpage>98</fpage>
<lpage>100</lpage>
</element-citation>
</ref>
<ref id="b66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Pathogen identification of Valsa canker on pear tree: evidences from rDNA-ITS sequences and cultural characteristics</article-title>
<source>Mycosystema</source>
<year>2007</year>
<volume>26</volume>
<issue>4</issue>
<fpage>517</fpage>
<lpage>527</lpage>
<comment>(in Chinese with English abstract)</comment>
</element-citation>
</ref>
<ref id="b67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>ZS</given-names>
</name>
</person-group>
<article-title>Re-evaluation of pathogens causing Valsa canker on apple in China</article-title>
<source>Mycologia</source>
<year>2011</year>
<volume>103</volume>
<issue>2</issue>
<fpage>317</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="pmid">21415290</pub-id>
</element-citation>
</ref>
<ref id="b68">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Bruns</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JW</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Innis</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Gelfand</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Sninsky</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>White</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics</article-title>
<source>PCR protocols, a guide to methods and applications</source>
<year>1990</year>
<publisher-loc>San Diego, California</publisher-loc>
<publisher-name>Academic Press</publisher-name>
<fpage>315</fpage>
<lpage>322</lpage>
</element-citation>
</ref>
<ref id="b69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Rannala</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Bayesian species delimitation using multilocus sequence data</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>9264</fpage>
<lpage>9269</lpage>
<pub-id pub-id-type="pmid">20439743</pub-id>
</element-citation>
</ref>
<ref id="b70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories</article-title>
<source>Mol. Phylogenet. Evol</source>
<year>2010</year>
<volume>56</volume>
<fpage>848</fpage>
<lpage>850</lpage>
<pub-id pub-id-type="pmid">20399277</pub-id>
</element-citation>
</ref>
<ref id="b71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ke</surname>
<given-names>XW</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>ZL</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>LL</given-names>
</name>
</person-group>
<article-title>A nested PCR assay for detecting
<italic>Valsa mali</italic>
var.
<italic>mali</italic>
in different tissues of apple trees</article-title>
<source>Plant Dis</source>
<year>2012</year>
<volume>96</volume>
<issue>11</issue>
<fpage>1645</fpage>
<lpage>1652</lpage>
</element-citation>
</ref>
</ref-list>
<sec sec-type="supplementary-material">
<title>Supporting Information</title>
<p>Additional Supporting Information may be found in the online version of this article:</p>
<supplementary-material content-type="local-data" id="sd1">
<caption>
<p>
<bold>Table S1.</bold>
Isolates, host origins, and GenBank accession numbers of isolates of
<italic>Valsa</italic>
species. Sequences for VleucostomaFLN32b were obtained from GenBank.</p>
<p>
<bold>Table S2.</bold>
Results of likelihood ratio test of molecular clock in three loci (ITS, Btu, and EF1α).</p>
</caption>
<media mimetype="jpg" mime-subtype="jpg" xlink:href="ece30004-1369-sd1.docx" xlink:type="simple" id="d35e3880" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="sd2">
<label>Figure S1</label>
<caption>
<p>Maximum likelihood tree inferred from ITS (left), Btu (middle), and EF1α (right). Bootstrapping values are shown together with Bayesian posterior probabilities at the node.</p>
</caption>
<media mimetype="docx" mime-subtype="docx" xlink:href="ece30004-1369-sd2.jpg" xlink:type="simple" id="d35e3887" position="anchor"></media>
</supplementary-material>
</sec>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000760  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000760  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020