Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0005660 ( Pmc/Corpus ); précédent : 0005659; suivant : 0005661 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies</title>
<author>
<name sortKey="Orians, Colin M" sort="Orians, Colin M" uniqKey="Orians C" first="Colin M." last="Orians">Colin M. Orians</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Biology, Tufts University, Medford, MA 02155, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fritz, Robert S" sort="Fritz, Robert S" uniqKey="Fritz R" first="Robert S." last="Fritz">Robert S. Fritz</name>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hochwender, Cris G" sort="Hochwender, Cris G" uniqKey="Hochwender C" first="Cris G." last="Hochwender">Cris G. Hochwender</name>
<affiliation>
<nlm:aff id="af3">
<addr-line>Department of Biology, University of Evansville, Evansville, IN 47722, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R." last="Albrectsen">Benedicte R. Albrectsen</name>
<affiliation>
<nlm:aff id="af4">
<addr-line>Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Czesak, Mary Ellen" sort="Czesak, Mary Ellen" uniqKey="Czesak M" first="Mary Ellen" last="Czesak">Mary Ellen Czesak</name>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23475954</idno>
<idno type="pmc">3736762</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736762</idno>
<idno type="RBID">PMC:3736762</idno>
<idno type="doi">10.1093/aob/mct002</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000566</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000566</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies</title>
<author>
<name sortKey="Orians, Colin M" sort="Orians, Colin M" uniqKey="Orians C" first="Colin M." last="Orians">Colin M. Orians</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Biology, Tufts University, Medford, MA 02155, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fritz, Robert S" sort="Fritz, Robert S" uniqKey="Fritz R" first="Robert S." last="Fritz">Robert S. Fritz</name>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hochwender, Cris G" sort="Hochwender, Cris G" uniqKey="Hochwender C" first="Cris G." last="Hochwender">Cris G. Hochwender</name>
<affiliation>
<nlm:aff id="af3">
<addr-line>Department of Biology, University of Evansville, Evansville, IN 47722, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R." last="Albrectsen">Benedicte R. Albrectsen</name>
<affiliation>
<nlm:aff id="af4">
<addr-line>Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Czesak, Mary Ellen" sort="Czesak, Mary Ellen" uniqKey="Czesak M" first="Mary Ellen" last="Czesak">Mary Ellen Czesak</name>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of Botany</title>
<idno type="ISSN">0305-7364</idno>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background and Aims</title>
<p>Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug,
<italic>Arion subfuscus</italic>
, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.</p>
</sec>
<sec>
<title>Methods</title>
<p>Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), ‘selected’ and undamaged ‘control’ trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.</p>
</sec>
<sec>
<title>Key Results</title>
<p>The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (
<italic>Melampsora epitea</italic>
), a native herbivorous beetle (
<italic>Chrysomela knabi</italic>
) and an exotic willow leaf beetle (
<italic>Plagiodera versicolora</italic>
).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>This exotic slug changed the population structure of
<italic>F</italic>
<sub>2</sub>
hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrectsen, Br" uniqKey="Albrectsen B">BR Albrectsen</name>
</author>
<author>
<name sortKey="Gardfjell, H" uniqKey="Gardfjell H">H Gardfjell</name>
</author>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
<author>
<name sortKey="Murray, B" uniqKey="Murray B">B Murray</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrectsen, Br" uniqKey="Albrectsen B">BR Albrectsen</name>
</author>
<author>
<name sortKey="Gutierrez, L" uniqKey="Gutierrez L">L Gutierrez</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
<author>
<name sortKey="Fritz, Rd" uniqKey="Fritz R">RD Fritz</name>
</author>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersen, Dc" uniqKey="Andersen D">DC Andersen</name>
</author>
<author>
<name sortKey="Nelson, Sm" uniqKey="Nelson S">SM Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, E" uniqKey="Anderson E">E Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, E" uniqKey="Anderson E">E Anderson</name>
</author>
<author>
<name sortKey="Hubricht, L" uniqKey="Hubricht L">L Hubricht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Argus, Gw" uniqKey="Argus G">GW Argus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, Ml" uniqKey="Arnold M">ML Arnold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, Ml" uniqKey="Arnold M">ML Arnold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennington, Cc" uniqKey="Bennington C">CC Bennington</name>
</author>
<author>
<name sortKey="Mcgraw, Jb" uniqKey="Mcgraw J">JB McGraw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruelheide, H" uniqKey="Bruelheide H">H Bruelheide</name>
</author>
<author>
<name sortKey="Scheidel, U" uniqKey="Scheidel U">U Scheidel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chichester, Lf" uniqKey="Chichester L">LF Chichester</name>
</author>
<author>
<name sortKey="Getz, Ll" uniqKey="Getz L">LL Getz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coustau, C" uniqKey="Coustau C">C Coustau</name>
</author>
<author>
<name sortKey="Renaud, F" uniqKey="Renaud F">F Renaud</name>
</author>
<author>
<name sortKey="Maillard, C" uniqKey="Maillard C">C Maillard</name>
</author>
<author>
<name sortKey="Pasteur, N" uniqKey="Pasteur N">N Pasteur</name>
</author>
<author>
<name sortKey="Delay, B" uniqKey="Delay B">B Delay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desprez Loustau, Ml" uniqKey="Desprez Loustau M">ML Desprez-Loustau</name>
</author>
<author>
<name sortKey="Wagner, K" uniqKey="Wagner K">K Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elger, A" uniqKey="Elger A">A Elger</name>
</author>
<author>
<name sortKey="Lemoine, Dg" uniqKey="Lemoine D">DG Lemoine</name>
</author>
<author>
<name sortKey="Fenner, M" uniqKey="Fenner M">M Fenner</name>
</author>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emms, Sk" uniqKey="Emms S">SK Emms</name>
</author>
<author>
<name sortKey="Arnold, Ml" uniqKey="Arnold M">ML Arnold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenner, M" uniqKey="Fenner M">M Fenner</name>
</author>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
<author>
<name sortKey="Lawrence, R" uniqKey="Lawrence R">R Lawrence</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fields, M" uniqKey="Fields M">M Fields</name>
</author>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
<author>
<name sortKey="Hochwender, Cg" uniqKey="Hochwender C">CG Hochwender</name>
</author>
<author>
<name sortKey="Lewkiewicz, Da" uniqKey="Lewkiewicz D">DA Lewkiewicz</name>
</author>
<author>
<name sortKey="Bothwell, S" uniqKey="Bothwell S">S Bothwell</name>
</author>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
<author>
<name sortKey="Hochwender, Cg" uniqKey="Hochwender C">CG Hochwender</name>
</author>
<author>
<name sortKey="Brunsfeld, Sj" uniqKey="Brunsfeld S">SJ Brunsfeld</name>
</author>
<author>
<name sortKey="Roche, Bm" uniqKey="Roche B">BM Roche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geber, Ma" uniqKey="Geber M">MA Geber</name>
</author>
<author>
<name sortKey="Griffen, Lr" uniqKey="Griffen L">LR Griffen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glen, Dm" uniqKey="Glen D">DM Glen</name>
</author>
<author>
<name sortKey="Jones, H" uniqKey="Jones H">H Jones</name>
</author>
<author>
<name sortKey="Fieldsend, Jk" uniqKey="Fieldsend J">JK Fieldsend</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodger, Jqd" uniqKey="Goodger J">JQD Goodger</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Woodrow, Ie" uniqKey="Woodrow I">IE Woodrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagerman, Ae" uniqKey="Hagerman A">AE Hagerman</name>
</author>
<author>
<name sortKey="Butler, Lg" uniqKey="Butler L">LG Butler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
<author>
<name sortKey="Sykes, Rj" uniqKey="Sykes R">RJ Sykes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
<author>
<name sortKey="Fenner, M" uniqKey="Fenner M">M Fenner</name>
</author>
<author>
<name sortKey="Edwards, Pj" uniqKey="Edwards P">PJ Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
<author>
<name sortKey="Fenner, M" uniqKey="Fenner M">M Fenner</name>
</author>
<author>
<name sortKey="Edwards, Pj" uniqKey="Edwards P">PJ Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
<author>
<name sortKey="Collins, Sa" uniqKey="Collins S">SA Collins</name>
</author>
<author>
<name sortKey="Swann, C" uniqKey="Swann C">C Swann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanley, Me" uniqKey="Hanley M">ME Hanley</name>
</author>
<author>
<name sortKey="Girling, Rd" uniqKey="Girling R">RD Girling</name>
</author>
<author>
<name sortKey="Felix, Ae" uniqKey="Felix A">AE Felix</name>
</author>
<author>
<name sortKey="Olliff, Ed" uniqKey="Olliff E">ED Olliff</name>
</author>
<author>
<name sortKey="Newland, Pl" uniqKey="Newland P">PL Newland</name>
</author>
<author>
<name sortKey="Poppy, Gm" uniqKey="Poppy G">GM Poppy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardig, Tm" uniqKey="Hardig T">TM Hardig</name>
</author>
<author>
<name sortKey="Brunsfeld, Sj" uniqKey="Brunsfeld S">SJ Brunsfeld</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
<author>
<name sortKey="Morgan, M" uniqKey="Morgan M">M Morgan</name>
</author>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heiser, Cb" uniqKey="Heiser C">CB Heiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hochwender, Cg" uniqKey="Hochwender C">CG Hochwender</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horrill, Jc" uniqKey="Horrill J">JC Horrill</name>
</author>
<author>
<name sortKey="Richards, Aj" uniqKey="Richards A">AJ Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunter, Md" uniqKey="Hunter M">MD Hunter</name>
</author>
<author>
<name sortKey="Forkner, Re" uniqKey="Forkner R">RE Forkner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimball, S" uniqKey="Kimball S">S Kimball</name>
</author>
<author>
<name sortKey="Campbell, Dr" uniqKey="Campbell D">DR Campbell</name>
</author>
<author>
<name sortKey="Lessin, C" uniqKey="Lessin C">C Lessin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lexer, C" uniqKey="Lexer C">C Lexer</name>
</author>
<author>
<name sortKey="Randell, Ra" uniqKey="Randell R">RA Randell</name>
</author>
<author>
<name sortKey="Rieseberg, Lh" uniqKey="Rieseberg L">LH Rieseberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindroth, Rl" uniqKey="Lindroth R">RL Lindroth</name>
</author>
<author>
<name sortKey="Koss, Pa" uniqKey="Koss P">PA Koss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linhart, Yb" uniqKey="Linhart Y">YB Linhart</name>
</author>
<author>
<name sortKey="Grant, Mc" uniqKey="Grant M">MC Grant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manley, Sam" uniqKey="Manley S">SAM Manley</name>
</author>
<author>
<name sortKey="Fowler, Dp" uniqKey="Fowler D">DP Fowler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mosseler, A" uniqKey="Mosseler A">A Mosseler</name>
</author>
<author>
<name sortKey="Papadopol, Cs" uniqKey="Papadopol C">CS Papadopol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagy, Es" uniqKey="Nagy E">ES Nagy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
<author>
<name sortKey="Ward, D" uniqKey="Ward D">D Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Wild, A" uniqKey="Wild A">A Wild</name>
</author>
<author>
<name sortKey="Dorfman, Ka" uniqKey="Dorfman K">KA Dorfman</name>
</author>
<author>
<name sortKey="Zee, P" uniqKey="Zee P">P Zee</name>
</author>
<author>
<name sortKey="Dao, Mtt" uniqKey="Dao M">MTT Dao</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orians, Cm" uniqKey="Orians C">CM Orians</name>
</author>
<author>
<name sortKey="Hochwender, Cg" uniqKey="Hochwender C">CG Hochwender</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
<author>
<name sortKey="Sn Ll, T" uniqKey="Sn Ll T">T Snäll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prittinen, K" uniqKey="Prittinen K">K Prittinen</name>
</author>
<author>
<name sortKey="Pusenius, J" uniqKey="Pusenius J">J Pusenius</name>
</author>
<author>
<name sortKey="Koivunoro, K" uniqKey="Koivunoro K">K Koivunoro</name>
</author>
<author>
<name sortKey="Roininen, H" uniqKey="Roininen H">H Roininen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rieseberg, Lh" uniqKey="Rieseberg L">LH Rieseberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rieseberg, Lh" uniqKey="Rieseberg L">LH Rieseberg</name>
</author>
<author>
<name sortKey="Wendel, Jf" uniqKey="Wendel J">JF Wendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rieseberg, Lh" uniqKey="Rieseberg L">LH Rieseberg</name>
</author>
<author>
<name sortKey="Sinervo, B" uniqKey="Sinervo B">B Sinervo</name>
</author>
<author>
<name sortKey="Linder, Cr" uniqKey="Linder C">CR Linder</name>
</author>
<author>
<name sortKey="Ungerer, Mc" uniqKey="Ungerer M">MC Ungerer</name>
</author>
<author>
<name sortKey="Arias, Dm" uniqKey="Arias D">DM Arias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, Dg" uniqKey="Robinson D">DG Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roche, Bm" uniqKey="Roche B">BM Roche</name>
</author>
<author>
<name sortKey="Fritz, Rs" uniqKey="Fritz R">RS Fritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, Ma" uniqKey="Rodriguez M">MA Rodriguez</name>
</author>
<author>
<name sortKey="Brown, Vk" uniqKey="Brown V">VK Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenthal, Ga" uniqKey="Rosenthal G">GA Rosenthal</name>
</author>
<author>
<name sortKey="Janzen, Dj" uniqKey="Janzen D">DJ Janzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakai, Ak" uniqKey="Sakai A">AK Sakai</name>
</author>
<author>
<name sortKey="Allendorf, Fw" uniqKey="Allendorf F">FW Allendorf</name>
</author>
<author>
<name sortKey="Holt, Js" uniqKey="Holt J">JS Holt</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stowe, Ka" uniqKey="Stowe K">KA Stowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stratton, Da" uniqKey="Stratton D">DA Stratton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strauss, Sy" uniqKey="Strauss S">SY Strauss</name>
</author>
<author>
<name sortKey="Rudgers, Ja" uniqKey="Rudgers J">JA Rudgers</name>
</author>
<author>
<name sortKey="Lau, Ja" uniqKey="Lau J">JA Lau</name>
</author>
<author>
<name sortKey="Irwin, Re" uniqKey="Irwin R">RE Irwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stutz, Hc" uniqKey="Stutz H">HC Stutz</name>
</author>
<author>
<name sortKey="Thomas, Lk" uniqKey="Thomas L">LK Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wait, Da" uniqKey="Wait D">DA Wait</name>
</author>
<author>
<name sortKey="Jones, Cg" uniqKey="Jones C">CG Jones</name>
</author>
<author>
<name sortKey="Coleman, Js" uniqKey="Coleman J">JS Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westerbergh, A" uniqKey="Westerbergh A">A Westerbergh</name>
</author>
<author>
<name sortKey="Nyberg, Ab" uniqKey="Nyberg A">AB Nyberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whelan, Rj" uniqKey="Whelan R">RJ Whelan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Hx" uniqKey="Wu H">HX Wu</name>
</author>
<author>
<name sortKey="Ying, Cc" uniqKey="Ying C">CC Ying</name>
</author>
<author>
<name sortKey="Muir, Ja" uniqKey="Muir J">JA Muir</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ann Bot</journal-id>
<journal-id journal-id-type="iso-abbrev">Ann. Bot</journal-id>
<journal-id journal-id-type="publisher-id">annbot</journal-id>
<journal-id journal-id-type="hwp">annbot</journal-id>
<journal-title-group>
<journal-title>Annals of Botany</journal-title>
</journal-title-group>
<issn pub-type="ppub">0305-7364</issn>
<issn pub-type="epub">1095-8290</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23475954</article-id>
<article-id pub-id-type="pmc">3736762</article-id>
<article-id pub-id-type="doi">10.1093/aob/mct002</article-id>
<article-id pub-id-type="publisher-id">mct002</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Articles</subject>
</subj-group>
<subj-group subj-group-type="hwp-journal-coll">
<subject>1002</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Orians</surname>
<given-names>Colin M.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fritz</surname>
<given-names>Robert S.</given-names>
</name>
<xref ref-type="aff" rid="af2">2</xref>
<xref ref-type="author-notes" rid="AN1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hochwender</surname>
<given-names>Cris G.</given-names>
</name>
<xref ref-type="aff" rid="af3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Albrectsen</surname>
<given-names>Benedicte R.</given-names>
</name>
<xref ref-type="aff" rid="af4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Czesak</surname>
<given-names>Mary Ellen</given-names>
</name>
<xref ref-type="aff" rid="af2">2</xref>
</contrib>
</contrib-group>
<aff id="af1">
<label>1</label>
<addr-line>Department of Biology, Tufts University, Medford, MA 02155, USA</addr-line>
</aff>
<aff id="af2">
<label>2</label>
<addr-line>Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA</addr-line>
</aff>
<aff id="af3">
<label>3</label>
<addr-line>Department of Biology, University of Evansville, Evansville, IN 47722, USA</addr-line>
</aff>
<aff id="af4">
<label>4</label>
<addr-line>Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden</addr-line>
</aff>
<author-notes>
<fn id="AN1">
<label></label>
<p>Present address:1570 E. Chisholm Lane, Oro Valley, AZ 85755, USA.</p>
</fn>
<corresp id="cor1">
<label>*</label>
For correspondence. E-mail
<email>colin.orians@tufts.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>3</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>7</day>
<month>3</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>112</volume>
<issue>4</issue>
<issue-title>Special Issue: Seedling Herbivory</issue-title>
<fpage>757</fpage>
<lpage>765</lpage>
<history>
<date date-type="received">
<day>1</day>
<month>8</month>
<year>2012</year>
</date>
<date date-type="rev-request">
<day>16</day>
<month>10</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>5</day>
<month>12</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</ext-link>
), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="mct002.pdf"></self-uri>
<abstract>
<sec>
<title>Background and Aims</title>
<p>Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug,
<italic>Arion subfuscus</italic>
, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.</p>
</sec>
<sec>
<title>Methods</title>
<p>Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), ‘selected’ and undamaged ‘control’ trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.</p>
</sec>
<sec>
<title>Key Results</title>
<p>The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (
<italic>Melampsora epitea</italic>
), a native herbivorous beetle (
<italic>Chrysomela knabi</italic>
) and an exotic willow leaf beetle (
<italic>Plagiodera versicolora</italic>
).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>This exotic slug changed the population structure of
<italic>F</italic>
<sub>2</sub>
hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Exotic species</kwd>
<kwd>herbivory</kwd>
<kwd>hybridization</kwd>
<kwd>slug</kwd>
<kwd>
<italic>Arion subfuscus</italic>
</kwd>
<kwd>trade-offs</kwd>
<kwd>willow</kwd>
<kwd>
<italic>Salix</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s1">
<title>INTRODUCTION</title>
<p>It is well established that herbivores are important agents of mortality, that plant secondary metabolites often determine patterns of susceptibility and that differential survival leads to differential chemical expression in plants (
<xref ref-type="bibr" rid="MCT002C56">Rosenthal and Janzen, 1979</xref>
;
<xref ref-type="bibr" rid="MCT002C46">Orians and Ward, 2010</xref>
). One important source of chemical variation in plants is generated via hybridization (
<xref ref-type="bibr" rid="MCT002C43">Orians, 2000</xref>
). Overall, natural hybridization is increasingly being recognized as a creative process that produces greater genetic variation and potentially novel genotypes and may ultimately lead to the origin of new species, subspecies or local races (
<xref ref-type="bibr" rid="MCT002C7">Arnold, 1992</xref>
;
<xref ref-type="bibr" rid="MCT002C50">Rieseberg, 1995</xref>
;
<xref ref-type="bibr" rid="MCT002C52">Rieseberg
<italic>et al.</italic>
, 1996</xref>
;
<xref ref-type="bibr" rid="MCT002C8">Arnold, 1997</xref>
;
<xref ref-type="bibr" rid="MCT002C41">Nagy, 1997</xref>
;
<xref ref-type="bibr" rid="MCT002C43">Orians, 2000</xref>
). Whether hybridization provides novel genetic combinations for new adaptations or produces only evolutionary dead-ends depends upon the fitness of hybrids (
<xref ref-type="bibr" rid="MCT002C16">Emms and Arnold, 1997</xref>
;
<xref ref-type="bibr" rid="MCT002C35">Kimball
<italic>et al.</italic>
, 2008</xref>
). Exogenous selective agents, such as pathogens and herbivores, are important determinants of fitness and thus have the potential to shape patterns of resistance and subsequent evolutionary dynamics (
<xref ref-type="bibr" rid="MCT002C5">Anderson and Hubricht, 1938</xref>
;
<xref ref-type="bibr" rid="MCT002C4">Anderson, 1949</xref>
;
<xref ref-type="bibr" rid="MCT002C31">Heiser, 1973</xref>
;
<xref ref-type="bibr" rid="MCT002C51">Rieseberg and Wendel, 1993</xref>
).
<xref ref-type="bibr" rid="MCT002C12">Coustau
<italic>et al.</italic>
(1991)</xref>
showed that high parasitism by the trematode,
<italic>Prosorhynchus squamatus</italic>
, causes intense selection, via castration, favouring the spread of
<italic>Mytilus galloproveinialis</italic>
genes into
<italic>M. edulis</italic>
populations.
<xref ref-type="bibr" rid="MCT002C62">Stutz and Thomas (1964)</xref>
suggested that selection by grazers favoured introgression of defensive traits from unpalatable
<italic>Cowania stansburiana</italic>
into populations of
<italic>Purshia tridentata</italic>
(bitterbrush), a heavily grazed plant in the western USA. In addition, introgression of jack pine resistance traits appears to explain the geographical variation in susceptibility of lodgepole pine to several insects and diseases (
<xref ref-type="bibr" rid="MCT002C66">Wu
<italic>et al.</italic>
, 1996</xref>
), and introgression of red spruce into black spruce resulted in reduced susceptibility to spruce budworm (
<xref ref-type="bibr" rid="MCT002C39">Manley and Fowler, 1969</xref>
).</p>
<p>While native herbivores can select for changes in resistance traits in hybrids, the ever-increasing abundance of invasive herbivores is expected to exert strong effects on native plant populations. In this study a selection experiment was undertaken to determine if herbivory by an exotic slug,
<italic>Arion subfuscus</italic>
(Mollusca: Arionidae), would lead to (1) greater survival of F
<sub>2</sub>
hybrid willows with high concentrations of defensive chemicals; and (2) altered susceptibility to other enemies. Selection experiments are powerful tools to aid in determining the course of selection and its consequences on other traits. One approach to performing selection experiments is to apply artificial selection favouring an increase or a decrease in one or a suite of traits in a population, and then examine the fitness of the resulting population in relation to a non-selected population for the expression of the evolved trait and correlated traits (e.g.
<xref ref-type="bibr" rid="MCT002C59">Stowe, 1998</xref>
). The strength of this approach is that selected traits can be specifically identified. An alternative approach is to generate genetically variable progeny, subject these progeny to phenotypic selection for a period of time and then compare selected phenotypes with a non-selected population. For example, using F
<sub>2</sub>
crosses of subspecies of
<italic>Gilia capitata</italic>
,
<xref ref-type="bibr" rid="MCT002C41">Nagy (1997)</xref>
found that selection favoured multiple traits of the native subspecies in their native habitats. The strength of this approach is that it demonstrates the strength and direction of natural selection. This second approach was used in our study.</p>
<p>Natural selection may be particularly important at the seedling or juvenile stages because they are more susceptible to herbivores than are older plants (
<xref ref-type="bibr" rid="MCT002C17">Fenner
<italic>et al.</italic>
, 1999</xref>
). If natural selection by a herbivore alters genetic variation in a seedling population, then traits expressed in the adult population may also be altered (
<xref ref-type="bibr" rid="MCT002C60">Stratton, 1992</xref>
). Terrestrial molluscs are major herbivores in many plant communities, and herbivory by slugs often affects plant productivity, plant distribution and community composition (
<xref ref-type="bibr" rid="MCT002C26">Hanley
<italic>et al.</italic>
, 1995
<italic>a</italic>
</xref>
;
<xref ref-type="bibr" rid="MCT002C55">Rodriguez and Brown, 1998</xref>
;
<xref ref-type="bibr" rid="MCT002C10">Bruelheide and Scheidel, 1999</xref>
;
<xref ref-type="bibr" rid="MCT002C25">Hanley and Sykes, 2009</xref>
). Importantly, slugs typically completely consume small plants and thus alter recruitment into plant communities (
<xref ref-type="bibr" rid="MCT002C27">Hanley
<italic>et al.</italic>
, 1995
<italic>b</italic>
</xref>
;
<xref ref-type="bibr" rid="MCT002C55">Rodriguez and Brown, 1998</xref>
). Slugs often exhibit strong feeding preferences among plant genotypes and among species (
<xref ref-type="bibr" rid="MCT002C17">Fenner
<italic>et al.</italic>
, 1999</xref>
); olfactory cues (
<xref ref-type="bibr" rid="MCT002C28">Hanley
<italic>et al.</italic>
, 2011</xref>
), plant chemistry (e.g.
<xref ref-type="bibr" rid="MCT002C22">Glen
<italic>et al.</italic>
, 1990</xref>
) and growth rate (
<xref ref-type="bibr" rid="MCT002C1">Albrectsen
<italic>et al.</italic>
, 2004</xref>
) play an important role in plant acceptability. Thus slugs and snails are suspected to have influenced the evolution of defences in several plant species (
<xref ref-type="bibr" rid="MCT002C33">Horrill and Richards, 1986</xref>
;
<xref ref-type="bibr" rid="MCT002C64">Westerbergh and Nyberg, 1995</xref>
). Provided that heritable genetic variation exists, differential survival may cause trait evolution within a single generation (reviewed in
<xref ref-type="bibr" rid="MCT002C21">Geber and Griffen, 2003</xref>
).</p>
<p>
<italic>Arion subfuscus</italic>
(Mollusca: Arionidae) is an exotic slug species in North America that causes seedling mortality in two native willow species (
<italic>Salix eriocephala</italic>
and
<italic>S. sericea</italic>
) and their hybrids (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
).
<italic>Arion subfuscus</italic>
preferentially feeds on young plants of
<italic>S. eriocephala</italic>
(a species with high concentrations of condensed tannin in adult plants and older juveniles) over those of
<italic>S. sericea</italic>
(a species with high levels of phenolic glycosides in adult plants and older juveniles), and has an intermediate preference for F
<sub>1</sub>
hybrid plants (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
). Phenolic glycosides, defensive compounds found in leaves of
<italic>S. sericea</italic>
(but not in the leaves of
<italic>S. eriocephala</italic>
), appear to be responsible for resistance of young
<italic>S. sericea</italic>
seedlings to slugs. Condensed tannins, which occur in high concentrations in the leaves of
<italic>S. eriocephala</italic>
, also appear to deter slug damage in older juveniles (
<xref ref-type="bibr" rid="MCT002C44">Orians and Fritz, 1995</xref>
;
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
;
<xref ref-type="bibr" rid="MCT002C1">Albrectsen
<italic>et al.</italic>
, 2004</xref>
). As seedlings grow, their levels of defensive chemicals in leaves increase, and this increase is correlated with a reduction in damage caused by slugs (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
;
<xref ref-type="bibr" rid="MCT002C48">Orians
<italic>et al.</italic>
, 2010</xref>
). Based on these findings, herbivory by
<italic>A. subfuscus</italic>
was expected to cause a selection differential favouring plants with higher concentrations of defensive chemicals. More specifically, F
<sub>2</sub>
hybrid plants that survived slug herbivory were predicted: (1) to have higher phenolic glycoside and condensed tannin concentrations compared with control plants; (2) to express reduced growth and nutrient chemistry because of expected trade-offs between growth and defensive chemistry; (3) to have decreased susceptibility to
<italic>A. subfuscus</italic>
; and (4) to have decreased susceptibility to other phytophages because of increased levels of chemical defences.
<xref ref-type="bibr" rid="MCT002C30">Hardig
<italic>et al.</italic>
(2000)</xref>
found that plants phenotypically similar to pure
<italic>S. eriocephala</italic>
had genetic markers of
<italic>S. sericea</italic>
and expressed phenolic glycosides in their leaves, concurring with the prediction that the above pattern of introgression of secondary chemicals was likely.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>MATERIALS AND METHODS</title>
<sec id="s2a">
<title>Study species</title>
<p>This study was performed at our field site 3 km west of Milford, New York, USA (42°31′N, 75°41′W) where the willow species
<italic>Salix sericea</italic>
,
<italic>S. eriocephala</italic>
and hybrids (
<italic>F</italic>
<sub>1</sub>
,
<italic>F</italic>
<sub>2</sub>
and backcrosses) occur naturally.
<italic>Salix sericea</italic>
Marshall is a 0·5–4 m high shrub, while
<italic>S. eriocephala</italic>
Michx. reaches 6 m in height. These two willow species are broadly sympatric, co-occurring in swamps and along streams throughout their range. These species commonly hybridize at sites where they co-occur (
<xref ref-type="bibr" rid="MCT002C6">Argus, 1986</xref>
) and have a history of hybridization (
<xref ref-type="bibr" rid="MCT002C30">Hardig
<italic>et al.</italic>
, 2000</xref>
).</p>
<p>
<italic>Arion subfuscus</italic>
is one of 15 species of slugs that have been introduced to North America from Europe since 1840 (
<xref ref-type="bibr" rid="MCT002C11">Chichester and Getz, 1969</xref>
).
<italic>Arion subfuscus</italic>
, which is most common in wooded areas, was first reported in the USA in Massachusetts in 1842. Since that initial record, this species has been found in Pensylvania since 1940, in New York since 1941, in New Hampshire since 1962 and in Maine, Vermont and Connecticut since 1969. Now,
<italic>A. subfuscus</italic>
has become widespread and very abundant in eastern North America, causing significant damage in native habitats, as well as disturbed areas and agricultural fields (
<xref ref-type="bibr" rid="MCT002C11">Chichester and Getz, 1969</xref>
;
<xref ref-type="bibr" rid="MCT002C53">Robinson, 1999</xref>
). This species is virtually the only slug present at the field site, with rare occurrences of
<italic>Deroceras laeve</italic>
.</p>
</sec>
<sec id="s2b">
<title>Selection experiment</title>
<p>An experimental population of
<italic>F</italic>
<sub>2</sub>
hybrids was used for the phenotypic selection experiment. This hybrid class represents the most common type of adult hybrid willows at our field site (
<xref ref-type="bibr" rid="MCT002C30">Hardig
<italic>et al.</italic>
, 2000</xref>
), and our experimental
<italic>F</italic>
<sub>2</sub>
population has, as expected, increased genetic variation (
<xref ref-type="bibr" rid="MCT002C32">Hochwender
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="MCT002C36">Lexer
<italic>et al.</italic>
, 2003</xref>
;
<xref ref-type="bibr" rid="MCT002C48">Orians
<italic>et al.</italic>
, 2010</xref>
). Fifteen different full-sib
<italic>F</italic>
<sub>2</sub>
families were created in June 2000 using unrelated
<italic>F</italic>
<sub>1</sub>
male and female plants.
<italic>F</italic>
<sub>1</sub>
hybrids had been created by crossing male
<italic>S. eriocephala</italic>
with female
<italic>S. sericea</italic>
– the reciprocal cross does not produce viable seeds (
<xref ref-type="bibr" rid="MCT002C40">Mosseler and Papadopal, 1989</xref>
).
<italic>F</italic>
<sub>1</sub>
hybrid plants had been growing in a breeding garden for at least 2 years before
<italic>F</italic>
<sub>2</sub>
crosses were created. Seeds of all
<italic>F</italic>
<sub>2</sub>
crosses were mixed, germinated in Scott's Metromix 360
<sup>®</sup>
potting soil and transplanted to individual cells in 72-cell trays after 10 d.</p>
<p>Seedlings were maintained with water and nutrients (6 g L
<sup>−1</sup>
Peter's Professional NPK 20:20:20) in open-ended greenhouses until they reached the 4–5-leaf stage (i.e. until 5 weeks of age). At this early developmental stage, willow seedlings are highly susceptible to slug herbivory, and variation in secondary chemistry is likely to result in non-random susceptibility to slugs (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
). Sixty trays (4320
<italic>F</italic>
<sub>2</sub>
seedlings in total) were placed in the field among naturally occurring willows in areas where slugs were abundant. Five additional control trays of
<italic>F</italic>
<sub>2</sub>
seedlings were placed in the field and kept free of slugs by placing trays on inverted plastic pots in trays filled with water, thereby creating a moat. Five additional control trays were kept in the greenhouse to ensure that we had control plants available in case the control trays in the field experienced herbivory or unexpected mortality.</p>
<p>Slug herbivory occurs primarily at night when humidity is high (R.S.F. and C.G.H. pers. obs.). Herbivory on seedlings in each tray was monitored daily. Each tray was removed from the field when ≤10 seedlings remained (i.e. when mortality reached approx. 85 %). This level was chosen because it provided a very intensive level of potential phenotypic selection but still left enough surviving seedlings for subsequent studies. All trays were removed from the field within 7 d. Of the 408 seedlings that survived slug herbivory, many lost some leaf tissue, suggesting that slugs sampled and rejected them. Surviving seedlings from slug-selected trays were combined into full trays of 72 seedlings. Both control and slug-selected (those exposed to herbivory by slugs where the surviving plants were avoided) seedlings were allowed to continue growing in the greenhouse for 5 weeks. All seedlings were transplanted to 3·7 L pots in a mixture of topsoil, vermiculite and peat moss (4:1:1) and allowed to overwinter within a fenced-in plot at the field site. In the spring of 2001, overwintered plants were transplanted into 7·8 L pots with the same soil mixture and fertilized with 13 g of Osmocote
<sup>®</sup>
N:P:K 10:10:10 per pot. Some plants were used to evaluate susceptibility to differing phytophages (see below), while other plants continued to grow in our fenced area with irrigation and periodic fertilization.</p>
</sec>
<sec id="s2c">
<title>Chemical analyses</title>
<p>Leaf samples for chemical analyses were collected from seedlings before the experiment, 5 weeks following the experiment (August 2000) and in the following year (June 2001). Induction in willows tends to be weak (
<xref ref-type="bibr" rid="MCT002C18">Fields and Orians, 2006</xref>
), and thus herbivores cannot cause a plant that produces low phenolic glycoside to produce high concentrations. Moreover, sampling across 2 years allows us to determine if the relative differences between the two populations were able to be evaluated for consistency over time. Samples were returned to the laboratory, vacuum dried, and ground into powder using a Wiley Mill with size 30 mesh. The concentrations of tannins, phenolic glycosides and protein were measured for all samples. Additionally, carbon and nitrogen were measured using samples from June 2001.</p>
<p>Condensed tannins were analysed using standard techniques (
<xref ref-type="bibr" rid="MCT002C42">Orians, 1995</xref>
;
<xref ref-type="bibr" rid="MCT002C34">Hunter and Forkner, 1999</xref>
;
<xref ref-type="bibr" rid="MCT002C1">Albrectsen
<italic>et al.</italic>
, 2004</xref>
). Briefly, tannins were extracted from ground leaf material (approx. 10 mg), and then analysed using the
<italic>n</italic>
-butanol assay for proanthocyanidins (
<xref ref-type="bibr" rid="MCT002C24">Hagerman and Butler, 1989</xref>
) using purified tannin standards (0·2–2·0 mg mL
<sup>−1</sup>
). Tannin concentration was calculated as mg g
<sup>−1</sup>
dry leaf weight. Phenolic glycosides were analysed using standard methods (
<xref ref-type="bibr" rid="MCT002C37">Lindroth and Koss, 1996</xref>
;
<xref ref-type="bibr" rid="MCT002C2">Albrectsen
<italic>et al.</italic>
, 2007</xref>
). Briefly, the phenolic glycosides salicortin and 2'-cinnamoylsalicortin were extracted from ground leaf material (approx. 15 mg) and analyzed by high-performance thin-layer chromatography (HPTLC).</p>
<p>A standard curve for salicortin (0·2–4·0 mg mL
<sup>−1</sup>
) and 2′-cinnamoylsalicortin (0·05–1·0 mg mL
<sup>−1</sup>
) was also spotted onto each plate. Chromatograms were analysed with Camag TLC software (CATS 3·11). Salicortin and 2′-cinnamoylsalicortin concentrations were calculated as mg g
<sup>−1</sup>
dry leaf weight and the two were summed to give a single value for phenolic glycosides. These compounds are the only phenolic glycosides found in
<italic>S. sericea</italic>
or their interspecific hybrids with
<italic>S. eriocephala</italic>
(
<xref ref-type="bibr" rid="MCT002C43">Orians, 2000</xref>
).</p>
<p>Standard techniques were also used for analysis of protein concentration (
<xref ref-type="bibr" rid="MCT002C2">Albrectsen
<italic>et al.</italic>
, 2007</xref>
). Briefly, ground dry leaf material (0–0·2 mg) was extracted in 1·5 mL of 0·1
<sc>m</sc>
NaOH for 2 h at 100 °C. The protein extracts were combined with the BioRad reagent (Coomassie Brilliant Blue) in 96-well microtitre plates and their absorbances measured at 595 nm. Bovine serum albumin (BSA) was used as a standard to calculate %BSA equivalents per mg dry leaf mass.</p>
<p>Carbon and nitrogen concentrations were determined using a CE Elantech NC 2500 Element Analyzer. For each plant, 12–15 mg of leaf powder was weighed into a 8 × 5 mm tin weighing capsule (EMAL Tech, Inc.). Samples were then combusted at 1000 °C with helium as the carrier gas. Total C and N were measured as released CO
<sub>2</sub>
and N
<sub>2</sub>
.</p>
</sec>
<sec id="s2d">
<title>Quantification of biomass</title>
<p>In early March 2002, ramets were created from cuttings of 112 slug-selected plants and 108 control plants. Ramets were planted in Cone-tainers
<sup>®</sup>
in the greenhouse (
<xref ref-type="bibr" rid="MCT002C20">Fritz
<italic>et al.</italic>
, 2003</xref>
). Prior to planting, cuttings were weighed to provide a covariate in statistical analyses. After about 6 weeks of growth, plants were transplanted into 7·8 L pots with standard soil mixture. Potted plants were placed randomly in a common garden (1 × 1 m spacing), irrigated, and sprayed with both fungicide (PlantVax PlantVAX75W; Uniroyal Chemical Company, Inc., Middlebury, CT, USA) and carbaryl, a non-systemic insecticide, to prevent rust and insect damage. In August 2002, we harvested and dried (48 h at 60 °C) the above- and below-ground parts of these plants to determine shoot and root biomass. To determine whether selection treatment affected shoot biomass, root biomass or the shoot/root ratio, data were analysed using analysis of covariance (ANCOVA), with initial cutting size included as a covariate. All statistical tests here and below were performed using JMP
<sup>®</sup>
3·2·2 (
<xref ref-type="bibr" rid="MCT002C58">SAS Institute, 1997</xref>
). All data were tested for equality of variances and normality of errors, and statistical tests were performed on untransformed data if these assumptions were met. Otherwise, non-parametric statistics were used.</p>
</sec>
<sec id="s2e">
<title>Susceptibility to phytophages</title>
<p>A common garden experiment (2001) and controlled Petri dish assays (2002) were used to compare the susceptibility of selected and control populations to diverse phytophages (slugs, rust fungi and beetles).</p>
<sec id="s2e1">
<title>Field experiment: rust fungi</title>
<p>The incidence of leaf rust,
<italic>Melampsora epitea</italic>
, which forms orange uredinia on the leaves of willows (
<xref ref-type="bibr" rid="MCT002C54">Roche and Fritz, 1998</xref>
), was quantified on 60 slug-selected and 60 control plants randomly arranged in a common garden. Five long shoots (>10 cm long) were randomly chosen on each plant and scored for infection level. These shoots were scored repeatedly on five dates (29 June, and 3, 6, 12 and 18 July). For each shoot, each of four leaves was scored for level of infection using a modified Schreiner scoring system (0, 1, 5, 10, >25 uredinea per leaf) (
<xref ref-type="bibr" rid="MCT002C54">Roche and Fritz, 1998</xref>
); scores were summed for each shoot and averaged across the five shoots. Mean scores for the five shoots per plant were also used to test for significant differences between slug-selected and control plants using repeated measures ANOVA.</p>
</sec>
<sec id="s2e2">
<title>Petri dish assays: slugs and beetles</title>
<p>Slugs (
<italic>A. subfuscus</italic>
) (>2·5 cm long) were collected at night when active and kept in groups of ten in 470 mL plastic containers lined with moist paper towels and fed with an artificial diet (
<xref ref-type="bibr" rid="MCT002C65">Whelan, 1982</xref>
;
<xref ref-type="bibr" rid="MCT002C1">Albrectsen
<italic>et al.</italic>
, 2004</xref>
). One leaf disc (area = 2·2 cm
<sup>2</sup>
) from the first fully expanded leaf was obtained from haphazardly chosen pairs of slug-selected and control plants. Leaf discs from one slug-selected plant and from one control plant were placed in a Petri dish lined with moist filter paper (14·5 cm diameter). A slug was added to the centre of each Petri dish perpendicular to the axis between the leaf discs, with the direction alternated as dishes were prepared. Petri dishes were kept on tables in an open-ended greenhouse overnight. The following morning (about 8 h later), leaf discs were scored for area removed by slugs using a transparent grid cut to the shape of a leaf disc. We predicted that slugs would prefer control plants over slug-selected plants (i.e. plants that had previously undergone phenotypic selection by slugs 2 years prior to this experiment), so a one-tailed paired
<italic>t</italic>
-test was used to evaluate whether differences were significantly different from zero.</p>
<p>To test the susceptibility of slug-selected and control plants to beetles, two leaf discs were cut from the first fully expanded leaf from each slug-selected and control plant (area = 1·6 cm
<sup>2</sup>
). From these two leaf discs per plant, we made two replicates, such that one Petri dish (10 cm diameter) contained one leaf disc from a slug-selected plant and one leaf disc from a control plant; a second Petri dish contained the remaining leaf disc from each leaf. Adult
<italic>Plagiodera versicolora</italic>
beetles, an exotic species (
<italic>n</italic>
= 90), were collected from willow plants at the field site. One beetle was added to the centre of each Petri dish. Plates were placed on tables in a shaded, open-ended greenhouse. Beetles were allowed to feed for 24 h, and damage was scored using a transparent grid. To evaluate beetle preference, we analysed the differences in damage between the two discs in each Petri dish for the two replicate sets of leaf discs. Data were non-normally distributed, so a two-tailed, Wilcoxon matched-pairs, signed-rank test was used to analyse the data. Using the same methods described for
<italic>P. versicolora</italic>
, we collected 90 adult
<italic>Chrysomela knabi</italic>
beetles, a native species, from willow plants at the field site and evaluated their preference for slug-selected vs. control leaves
<italic>.</italic>
Data were normally distributed in this second analysis, so data were analysed using a two-tailed, paired
<italic>t</italic>
-test to determine whether beetle feeding preference occurred.</p>
</sec>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>RESULTS</title>
<sec id="s3a">
<title>Secondary chemistry</title>
<p>Before phenotypic selection occurred,
<italic>F</italic>
<sub>2</sub>
hybrid plants were variable in chemical defences. They displayed a 2- to 3-fold difference in phenolic glycoside and condensed tannin concentrations. In a sample of plants, phenolic glycoside concentration ranged from 40 to 120 mg g
<sup>−1</sup>
and condensed tannin concentration ranged from 58 to 132 mg g
<sup>−1</sup>
. The mean concentration of phenolic glycosides was 78·64 ± 6·13 mg g
<sup>−1</sup>
(± s.e.;
<italic>n</italic>
= 17), while the mean concentration of condensed tannin was 86·92 ± 4·92 mg g
<sup>−1</sup>
(
<italic>n</italic>
= 17).</p>
<p>Slugs did not select for higher concentrations of constitutive chemical defensives. Five weeks after phenotypic selection had taken place, slug-selected and control plants did not differ significantly in phenolic glycoside concentrations. Also, no differences occurred for either salicortin or 2'-cinnamoylsalicortin when tested alone (data not shown). Slug-selected plants had a mean concentration of 79·8 ± 4·7 mg g
<sup>−1</sup>
(
<italic>n</italic>
= 75), while control plants had a mean concentration of 81·1 ± 4·8 mg g
<sup>−1</sup>
(
<italic>n</italic>
= 75;
<italic>t</italic>
= 0·20,
<italic>P</italic>
= 0·84). For tannin concentrations, slug-selected plants had a mean concentration of 146·2 ± 12·0 mg g
<sup>−1</sup>
(
<italic>n</italic>
= 28), while control plants had a mean concentration of 145·1 ± 11·5 mg g
<sup>−1</sup>
(
<italic>n</italic>
= 28;
<italic>t</italic>
= 0·07,
<italic>P</italic>
= 0·94).</p>
<p>Similarly, 1 year following phenotypic selection by slugs, no significant differences between selected and control plants were observed for either tannins or phenolic glycosides (Table 
<xref ref-type="table" rid="MCT002TB1">1</xref>
). Overall, variation in concentrations of phenolic glycoside and condensed tannin spanned the range between the means of the parental species in the case of both treatments (Fig. 
<xref ref-type="fig" rid="MCT002F1">1</xref>
A, B). Phenolic glycoside concentration in control
<italic>F</italic>
<sub>2</sub>
plants ranged from 0 mg g
<sup>−1</sup>
(as observed in
<italic>S. eriocephala</italic>
leaves) to 162·8 mg g
<sup>−1</sup>
(nearly the mean concentration found in mature plants of
<italic>S. sericea</italic>
; Fig. 
<xref ref-type="fig" rid="MCT002F1">1</xref>
A). Condensed tannin concentration in control
<italic>F</italic>
<sub>2</sub>
plants ranged from 20·1 mg g
<sup>−1</sup>
(less than the mean concentration found in
<italic>S. sericea</italic>
leaves) to 345·1 mg g
<sup>−1</sup>
(greater than the mean concentration observed in
<italic>S. eriocephala</italic>
leaves; Fig. 
<xref ref-type="fig" rid="MCT002F1">1</xref>
B).
<fig id="MCT002F1" position="float">
<label>Fig. 1.</label>
<caption>
<p>Frequency distributions of (A) phenolic glycosides (salicortin + 2′-cinnamoylsalicortin) and (B) condensed tannins measured on
<italic>F</italic>
<sub>2</sub>
control plants in June 2001 (
<italic>n</italic>
= 62). Arrows in (A) indicate mean constitutive levels of phenolic glycosides in
<italic>S. eriocephala</italic>
(0·0 mg g
<sup>−1</sup>
) and
<italic>S. sericea</italic>
(184 ± 7·3 mg g
<sup>−1</sup>
; ± s.e.). Arrows in (B) indicate mean constitutive levels of condensed tannins in
<italic>S. eriocephala</italic>
(250 ± 11·5 mg g
<sup>−1</sup>
) and
<italic>S. sericea</italic>
(64·9 ± 8·0 mg g
<sup>−1</sup>
).</p>
</caption>
<graphic xlink:href="mct00201"></graphic>
</fig>
<table-wrap id="MCT002TB1" position="float">
<label>Table 1.</label>
<caption>
<p>Comparison of chemical defence, growth and nutrient attributes of selected and control plant populations: mean ± s.e. (
<italic>n</italic>
)</p>
</caption>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="char" char="+" span="1"></col>
<col align="char" char="+" span="1"></col>
<col align="left" span="1"></col>
<col align="char" char="." span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Trait</th>
<th align="left" rowspan="1" colspan="1">Control</th>
<th align="left" rowspan="1" colspan="1">Selected</th>
<th align="left" rowspan="1" colspan="1">Statistic</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
-value</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Phenolic glycosides</td>
<td rowspan="1" colspan="1">57·2 ± 5·2 (62)</td>
<td rowspan="1" colspan="1">59·6 ± 5·3 (62)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
= 0·11</td>
<td rowspan="1" colspan="1">0·74</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Condensed tannin</td>
<td rowspan="1" colspan="1">181·5 ± 20·0 (52)</td>
<td rowspan="1" colspan="1">177·4 ± 17·8 (51)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
= 0·03</td>
<td rowspan="1" colspan="1">0·87</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Protein</td>
<td rowspan="1" colspan="1">138·4 ± 2·33 (62)</td>
<td rowspan="1" colspan="1">150·8 ± 2·44 (62)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
= 13·56</td>
<td rowspan="1" colspan="1"><0·0001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">% Nitrogen</td>
<td rowspan="1" colspan="1">3·24 ± 0·06 (62)</td>
<td rowspan="1" colspan="1">3·51 ± 0·04 (62)</td>
<td rowspan="1" colspan="1">
<italic>t</italic>
= 3·6</td>
<td rowspan="1" colspan="1">0·0004</td>
</tr>
<tr>
<td rowspan="1" colspan="1">% Carbon</td>
<td rowspan="1" colspan="1">47·39 ± 0·12 (62)</td>
<td rowspan="1" colspan="1">48·12 ± 0·11 (62)</td>
<td rowspan="1" colspan="1">
<italic>t</italic>
= 4·5</td>
<td rowspan="1" colspan="1"><0·0001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C/N ratio</td>
<td rowspan="1" colspan="1">14·94 ± 0·29 (62)</td>
<td rowspan="1" colspan="1">13·85 ± 0·17 (62)</td>
<td rowspan="1" colspan="1">
<italic>t</italic>
= 3·3</td>
<td rowspan="1" colspan="1">0·0013</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Shoot biomass</td>
<td rowspan="1" colspan="1">25·16 ± 0·90 (108)</td>
<td rowspan="1" colspan="1">29·45 ± 0·88 (112)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
= 9·11</td>
<td rowspan="1" colspan="1">0·0028</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Root biomass</td>
<td rowspan="1" colspan="1">8·22 ± 0·59 (108)</td>
<td rowspan="1" colspan="1">7·04 ± 0·44 (112)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
= 2·32</td>
<td rowspan="1" colspan="1">0·129</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Shoot/root ratio</td>
<td rowspan="1" colspan="1">5·02 ± 0·43 (108)</td>
<td rowspan="1" colspan="1">6·40 ± 0·51 (112)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
= 10·70</td>
<td rowspan="1" colspan="1">0·0012</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Comparisons of concentrations (mg g
<sup>−1</sup>
) of phenolic glycosides (sum of salicortin and 2'-cinnamoylsalicortin), condensed tannins and protein of selected and control plants 1 year after the two populations were created (June 2001). The percentage of nitrogen (N) and carbon (C) and the C/N ratio of the first fully expanded leaves of selected and control plants sampled in June 2001. Biomass (g) of shoots and roots and the shoot/root ratio of selected and control plants established from cuttings and grown in pots in 2002. Significant differences were tested with ANOVA, with cutting size (g) used as a covariate.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="s3b">
<title>Nutrient chemistry and plant size</title>
<p>Although slugs did not alter defensive chemistry, nutritive chemistry was affected by slug selection. Even 5 weeks after selection (August 2000), protein levels were significantly higher in slug-selected plants (175·4 ± 2·20) than in control plants (165·4 ± 2·79;
<italic>F</italic>
<sub>1,72</sub>
= 7·90,
<italic>P</italic>
= 0·006). In June 2001 (1 year after selection), the concentration of protein was still higher in the selected population (Table 
<xref ref-type="table" rid="MCT002TB1">1</xref>
). Percentage nitrogen and percentage carbon were also higher, while the C/N ratio was lower (Table 
<xref ref-type="table" rid="MCT002TB1">1</xref>
). In addition, for plants measured in 2002, shoot biomass and the shoot/root ratio were significantly greater for slug-selected plants than for control plants (Table 
<xref ref-type="table" rid="MCT002TB1">1</xref>
). However, root biomass did not differ significantly between slug-selected and control plants (Table 
<xref ref-type="table" rid="MCT002TB1">1</xref>
).</p>
</sec>
<sec id="s3c">
<title>Susceptibility to phytophages</title>
<p>Slug-selected plants were more susceptible to naturally dispersed spores of
<italic>M. epitea</italic>
; slug-selected plants had significantly higher infection levels compared with control plants at each of the sampling times (Fig. 
<xref ref-type="fig" rid="MCT002F2">2</xref>
). Although infection levels increased significantly over time for both control and selected plants (
<italic>F</italic>
<sub>4,105</sub>
= 80·1,
<italic>P</italic>
< 0·001), infection levels were significantly higher on selected plants compared with controls (
<italic>F</italic>
<sub>1,108</sub>
= 4·82,
<italic>P</italic>
= 0·03). No significant interaction between treatment and time was detected (
<italic>F</italic>
<sub>4,105</sub>
= 1·689,
<italic>P</italic>
= 0·158).
<fig id="MCT002F2" position="float">
<label>Fig. 2.</label>
<caption>
<p>Infection scores of slug-selected and control plants to
<italic>Melampsora epitea</italic>
leaf pathogen. Measurements on the first four dates increased significantly over time (
<italic>F</italic>
<sub>3,118</sub>
= 28·06,
<italic>P</italic>
< 0·0001) and differed significantly between selected and control plants (
<italic>F</italic>
<sub>1,120</sub>
= 7·73,
<italic>P</italic>
= 0·0063). Data on the last date were collected on a different set of leaves and therefore were not included in the repeated analysis. Asterisks indicate significant differences for each date using t-tests (*
<italic>P</italic>
< 0·05; **
<italic>P</italic>
< 0·01; ***
<italic>P</italic>
< 0·001).</p>
</caption>
<graphic xlink:href="mct00202"></graphic>
</fig>
</p>
<p>Plants that survived the selection experiment in 2000 were still less susceptible to slugs in the 2002 leaf disc choice assay (Fig. 
<xref ref-type="fig" rid="MCT002F3">3</xref>
A). In contrast, susceptibility to the two beetle species was greater for slug-selected plants than for control plants; using leaf discs, both the native
<italic>C. knabi</italic>
(Fig. 
<xref ref-type="fig" rid="MCT002F3">3</xref>
B) and the exotic
<italic>P. versicolora</italic>
(Fig. 
<xref ref-type="fig" rid="MCT002F3">3</xref>
C) preferred slug-selected plants over control plants. However, for the exotic Japanese beetle. damage scores did not differ significantly between slug-selected plants (0·24 ± 0·03,
<italic>n</italic>
= 61) and control plants (0·21 ± 0·03,
<italic>n</italic>
= 57) grown in a common garden (
<italic>t</italic>
= 0·676,
<italic>P</italic>
= 0·25).
<fig id="MCT002F3" position="float">
<label>Fig. 3.</label>
<caption>
<p>Suitability (mean percentage damage ± s.e.) of leaf discs of control and slug-selected plant to three herbivores. (A)
<italic>Arion subfuscus</italic>
slugs. Damage to control discs was significantly greater than to selected discs (one-tailed
<italic>t</italic>
-test,
<italic>t</italic>
= 1·82; d.f. = 71;
<italic>P</italic>
= 0·04). (B)
<italic>Chrysomela knabi</italic>
beetles. Damage to control was significantly lower than to selected discs (paired
<italic>t</italic>
-test,
<italic>t</italic>
= 2·46; d.f. = 44;
<italic>P</italic>
= 0·02). (C)
<italic>Plagiodera versicolora</italic>
beetles. Damage to control discs was lower than to selected discs (Wilcoxon matched-pairs signed-rank test, S-R value = 225; d.f. = 44;
<italic>P</italic>
= 0·01).</p>
</caption>
<graphic xlink:href="mct00203"></graphic>
</fig>
</p>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>DISCUSSION</title>
<p>Contrary to our hypothesis, the concentrations of phenolic glycosides, a known deterrent of slugs and other herbivores (
<xref ref-type="bibr" rid="MCT002C47">Orians
<italic>et al.</italic>
, 1997</xref>
;
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
), were not higher in the selected population. This is despite that fact that the levels of defences in these plants were such that they could have deterred the slugs (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
). Rather, phytochemical responses involved shifts in plant nutritive and growth traits. Slug-selected plants had higher levels of protein, nitrogen and carbon, and a lower C/N ratio than control plants. Slug-selected plants also produced more shoot biomass and had a higher shoot/root ratio than control plants. Interestingly, selection by the exotic slug,
<italic>A. subfuscus</italic>
, caused changes in susceptibility in an F
<sub>2</sub>
seedling population; the surviving plant population became less palatable to
<italic>A. subfuscus</italic>
. Selection also led to correlated responses; slug-selected plants were more susceptible to three phytophages, i.e. a native pathogen, a native beetle herbivore and an introduced beetle species.</p>
<p>These differences reflect real differences in growth rate; all cuttings were planted synchronously, and shoot and root biomass were corrected for cutting size, so any difference in size was based on differences in the intrinsic growth of control and slug-selected plants. Differences were not due to environmental differences since all plants had been grown from cuttings, had been kept in a common garden and had been sprayed to prevent herbivore damage. Thus, our findings demonstrate that clones of plants that survived phenotypic selection (i.e. plants that survived slug herbivory as seedlings) were physiologically and nutritionally superior compared with control plants.</p>
<p>Overall, we expected plants to be better defended and of lower nutritional value. The fact that surviving plants were nutritionally superior was quite unexpected. Perhaps developmental changes that occur in chemical defence of willow seedlings can help explain why nutritive chemistry changed in response to selection by slugs. Although slugs prefer to feed on willow seedlings with low phenolic glycoside concentrations (
<italic>S. eriocephala</italic>
) over those with high concentrations of phenolic glycosides (
<italic>S. sericea</italic>
), all seedlings are susceptible to slugs when they are small (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
). In this system, as well as for other species, older (and larger) seedlings are less susceptible to herbivores (
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
;
<xref ref-type="bibr" rid="MCT002C1">Albrectsen
<italic>et al.</italic>
, 2004</xref>
; Goodger
<italic>et al.</italic>
, 2007;
<xref ref-type="bibr" rid="MCT002C15">Elger
<italic>et al.</italic>
, 2009</xref>
). Moreover, in our system, fast-growing seedlings often produce higher concentrations of secondary chemicals (
<xref ref-type="bibr" rid="MCT002C1">Albrectsen
<italic>et al.</italic>
, 2004</xref>
;
<xref ref-type="bibr" rid="MCT002C48">Orians
<italic>et al.</italic>
, 2010</xref>
). Therefore, selection during this early window of vulnerability could have been on traits associated with plant growth rate and, indirectly, defence. Specifically, we hypothesize that faster growing hybrid willow seedlings reached a size threshold where they could produce higher concentrations of defences (tannins, phenolic glycosides and other unmeasured traits) or greater concentrations of deterrent volatiles [
<xref ref-type="bibr" rid="MCT002C29">Hanley
<italic>et al.</italic>
(2013)</xref>
report variation in mollusc olfactory selection of plants from different ontogenetic stages]. Importantly, this hypothesis does not require that the final constitutive levels of defence in mature plants differ between the more rapidly maturing seedlings and the more slowly maturing ones. If this hypothesis is correct, the result would be greater consumption of the smaller, slower growing seedlings that had lower levels of defences or less volatile emission. Although still untested, further study in this and other systems to determine whether subtle differences in size can be responsible for the differential seedling survival deserves evaluation.</p>
<p>A consequence of selection favouring higher nutritional quality of surviving plants was that they were more attractive to other herbivores. Although leaves of plants from the selected population were less susceptible to slugs (as might be expected since these were avoided in the selection), they were more susceptible to the rust fungus and the two beetle species. The physiological changes caused by slug selection may explain the increased damage caused by other phytophages. Beetle feeding (
<xref ref-type="bibr" rid="MCT002C63">Wait
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="MCT002C45">Orians and Fritz, 1996</xref>
) and
<italic>Melampsora</italic>
infection (
<xref ref-type="bibr" rid="MCT002C14">Desprez-Loustau and Wagner, 1997</xref>
) are often greater on plants with greater vigour. Because both
<italic>Melampsora</italic>
and
<italic>Chysomela</italic>
beetles can cause reduced fitness in willows and poplars (
<xref ref-type="bibr" rid="MCT002C54">Roche and Fritz, 1998</xref>
, and references therein;
<xref ref-type="bibr" rid="MCT002C3">Andersen and Nelson, 2002</xref>
), changes caused by slug herbivory seems to be detrimental to these plants by increasing their susceptibility to other herbivores.</p>
<p>Taken together, these results are consistent with previous work demonstrating that selection on seedlings can dramatically alter the genetic structure of a population (reviewed by
<xref ref-type="bibr" rid="MCT002C60">Stratton, 1992</xref>
;
<xref ref-type="bibr" rid="MCT002C38">Linhart and Grant, 1996</xref>
). Herbivory has been shown to reduce a seedling's ability to compete, thereby indirectly causing seedling mortality and changing the genetic structure of the population (
<xref ref-type="bibr" rid="MCT002C49">Prittinen
<italic>et al.</italic>
, 2003</xref>
). Although seedlings can experience strong selection (e.g.
<xref ref-type="bibr" rid="MCT002C60">Stratton, 1992</xref>
;
<xref ref-type="bibr" rid="MCT002C26">Hanley
<italic>et al.</italic>
, 1995
<italic>a</italic>
</xref>
;
<xref ref-type="bibr" rid="MCT002C19">Fritz
<italic>et al.</italic>
, 2001</xref>
), seedlings are generally not considered in estimates of selection in plant populations (
<xref ref-type="bibr" rid="MCT002C9">Bennington and McGraw, 1995</xref>
). Provided that physiological changes caused by slug selection are heritable in this willow system, a rapid change in the genetic structure could occur in response to this exotic herbivore species. Selection by this slug at an early stage in plant development may therefore play a significant role in changing the genetic structure of
<italic>F</italic>
<sub>2</sub>
hybrids, ultimately affecting patterns of introgression.</p>
<p>These results also add to the increasing evidence for the importance of exotic herbivores to native plant species. We found that this exotic slug is acting as an important selective force. Moreover, cascading effects are anticipated in response to invasion (
<xref ref-type="bibr" rid="MCT002C57">Sakai
<italic>et al.</italic>
, 2001</xref>
). The extent of the response of these
<italic>F</italic>
<sub>2</sub>
willow seedlings to a single bout of phenotypic selection by an exotic herbivore underscores the potential evolutionary impact exotic species can have on native species. In addition, trade-offs are common in response to specific genetic changes, and can be related to limiting resources, ecological in nature or due to genetic constraints (
<xref ref-type="bibr" rid="MCT002C61">Strauss
<italic>et al.</italic>
, 2002</xref>
;
<xref ref-type="bibr" rid="MCT002C46">Orians and Ward, 2010</xref>
). Selection can, as shown here, increase susceptibility to native phytophages, and can result in changes in physiological adaptation to abiotic environmental factors. Each of these could lead to lower plant fitness and reduced competitive ability in natural communities. Finally, selection by exotic herbivores could reduce the genetic diversity of native species.</p>
<p>In conclusion, the present study shows that the exotic slugs clearly changed the population structure of the
<italic>F</italic>
<sub>2</sub>
hybrid willows. However, the findings were quite unexpected in terms of defence expression. We find it striking that this herbivore changed the nutritional and growth traits of the plant population and caused it to become less well adapted to other herbivores. This result is even more interesting in light of the fact that the herbivore is an invasive exotic species. The potentially maladaptive consequences of a response to selection by an exotic species have not previously been observed. Given the recent increase in species invasions in ecosystems around the world, this detrimental outcome may commonly occur in many natural environments, and this deserves more careful analysis.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENTS</title>
<p>This work has been supported by NSF grants BSR 96-15038 and DEB 99-81406 to R.S.F., DEB 99-81568 to C.M.O. and DEB 01-27369 to C.G.H. We thank Len and Ellie Sosnowski and Marcia Membrino, who have permitted us to conduct research on their property. We received logistical support from Rob Hunt and the Biology Department at Hartwick College. B. Crabb, K. Vandenberg, R. D. Fritz, B. Compton, L. Gedmintas, K. Rule, S. Manee, D. Lewkiewicz, D. Willies, C. Lucas, J. Feldman, S. Bothwell, S. Irwin, B. Richmond and B. Krebel assisted us in the field. C.M.O. was assisted in the lab by B. Brannigan, A. Sutton, M. Zaccherio and A. Finzi.</p>
</ack>
<ref-list>
<title>LITERATURE CITED</title>
<ref id="MCT002C1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrectsen</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Gardfjell</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Slugs, willow seedlings and nutrient fertilization: intrinsic vigor inversely affects palatability</article-title>
<source>Oikos</source>
<year>2004</year>
<volume>105</volume>
<fpage>268</fpage>
<lpage>278</lpage>
</element-citation>
</ref>
<ref id="MCT002C2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrectsen</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Gutierrez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Does differential seedling mortality by slugs alter foliar traits and subsequent susceptibility of hybrid willows to a generalist herbivore?</article-title>
<source>Ecological Entomology</source>
<year>2007</year>
<volume>32</volume>
<fpage>211</fpage>
<lpage>220</lpage>
</element-citation>
</ref>
<ref id="MCT002C3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersen</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Effects of cottonwood leaf beetle
<italic>Chrysomela scripta</italic>
(Coleoptera: Chrysomelidae) on survival and growth of Fremont cottonwood (
<italic>Populus fremontii</italic>
) in nortwest Colorado</article-title>
<source>American Midland Naturalist</source>
<year>2002</year>
<volume>147</volume>
<fpage>189</fpage>
<lpage>203</lpage>
</element-citation>
</ref>
<ref id="MCT002C4">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>E</given-names>
</name>
</person-group>
<source>Introgressive hybridization</source>
<year>1949</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>John Wiley</publisher-name>
</element-citation>
</ref>
<ref id="MCT002C5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hubricht</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Hybridization in
<italic>Tradescantia</italic>
. III. The evidence for introgressive hybridization</article-title>
<source>American Journal of Botany</source>
<year>1938</year>
<volume>25</volume>
<fpage>396</fpage>
<lpage>402</lpage>
</element-citation>
</ref>
<ref id="MCT002C6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Argus</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>The genus
<italic>Salix</italic>
(Salicaceae) in the southeastern United States</article-title>
<source>Systematic Botany Monographs</source>
<year>1986</year>
<volume>9</volume>
<fpage>1</fpage>
<lpage>170</lpage>
</element-citation>
</ref>
<ref id="MCT002C7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnold</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Natural hybridization as an evolutionary process</article-title>
<source>Annual Review of Ecology and Systematics</source>
<year>1992</year>
<volume>23</volume>
<fpage>237</fpage>
<lpage>261</lpage>
</element-citation>
</ref>
<ref id="MCT002C8">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Arnold</surname>
<given-names>ML</given-names>
</name>
</person-group>
<source>Natural hybridization and evolution</source>
<year>1997</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="MCT002C9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennington</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>McGraw</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Phenotypic selection in an artificial population of
<italic>Impatiens pallida</italic>
: the importance of the invisible fraction</article-title>
<source>Evolution</source>
<year>1995</year>
<volume>49</volume>
<fpage>317</fpage>
<lpage>324</lpage>
</element-citation>
</ref>
<ref id="MCT002C10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruelheide</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Scheidel</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Slug herbivory as a limiting factor for the geographical range of
<italic>Arnica montana</italic>
</article-title>
<source>Journal of Ecology</source>
<year>1999</year>
<volume>87</volume>
<fpage>839</fpage>
<lpage>848</lpage>
</element-citation>
</ref>
<ref id="MCT002C11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chichester</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Getz</surname>
<given-names>LL</given-names>
</name>
</person-group>
<article-title>The zoogeography and ecology of arionid and limacid slugs introduced into northeastern North America</article-title>
<source>Malacologia</source>
<year>1969</year>
<volume>7</volume>
<fpage>313</fpage>
<lpage>346</lpage>
</element-citation>
</ref>
<ref id="MCT002C12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coustau</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Renaud</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maillard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pasteur</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Delay</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Differential susceptibility to a trematode parasite among genotypes of the
<italic>Mytilus edulis/galloprovincialis</italic>
complex</article-title>
<source>Genetical Research</source>
<year>1991</year>
<volume>57</volume>
<fpage>207</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">1889741</pub-id>
</element-citation>
</ref>
<ref id="MCT002C14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desprez-Loustau</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Influence of silvicultural practices on twisting rust infection and damage in maritime pine, as related to growth</article-title>
<source>Forest Ecology and Management</source>
<year>1997</year>
<volume>98</volume>
<fpage>135</fpage>
<lpage>147</lpage>
</element-citation>
</ref>
<ref id="MCT002C15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lemoine</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Fenner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Plant ontogeny and chemical defence: older seedlings are better defended</article-title>
<source>Oikos</source>
<year>2009</year>
<volume>118</volume>
<fpage>767</fpage>
<lpage>773</lpage>
</element-citation>
</ref>
<ref id="MCT002C16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emms</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>The effect of habitat on parental and hybrid fitness: transplant experiments with Louisiana irises</article-title>
<source>Evolution</source>
<year>1997</year>
<volume>51</volume>
<fpage>1112</fpage>
<lpage>1119</lpage>
</element-citation>
</ref>
<ref id="MCT002C17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fenner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Comparison of seedling and adult palatability in annual and perennial plants</article-title>
<source>Functional Ecology</source>
<year>1999</year>
<volume>13</volume>
<fpage>546</fpage>
<lpage>551</lpage>
</element-citation>
</ref>
<ref id="MCT002C18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fields</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Specificity of phenolic glycoside induction in willow seedlings (
<italic>Salix sericea</italic>
) in response to herbivory</article-title>
<source>Journal of Chemical Ecology</source>
<year>2006</year>
<volume>32</volume>
<fpage>2647</fpage>
<lpage>2656</lpage>
<pub-id pub-id-type="pmid">17131187</pub-id>
</element-citation>
</ref>
<ref id="MCT002C19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Hochwender</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Lewkiewicz</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Bothwell</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance</article-title>
<source>Oecologia</source>
<year>2001</year>
<volume>129</volume>
<fpage>87</fpage>
<lpage>97</lpage>
</element-citation>
</ref>
<ref id="MCT002C20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Hochwender</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Brunsfeld</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Roche</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Genetic architecture of susceptibility to herbivores in hybrid willows</article-title>
<source>Journal of Evolutionary Biology</source>
<year>2003</year>
<volume>16</volume>
<fpage>1115</fpage>
<lpage>1126</lpage>
<pub-id pub-id-type="pmid">14640403</pub-id>
</element-citation>
</ref>
<ref id="MCT002C21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geber</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Griffen</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>Inheritance and natural selection on functional traits</article-title>
<source>International Journal of Plant Science</source>
<year>2003</year>
<volume>164</volume>
<fpage>S21</fpage>
<lpage>S42</lpage>
</element-citation>
</ref>
<ref id="MCT002C22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glen</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fieldsend</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Damage to oilseed rape seedlings by the field slug
<italic>Deroceras reticulatum</italic>
in relation to glucosinolate concentration</article-title>
<source>Annals of Applied Biology</source>
<year>1990</year>
<volume>117</volume>
<fpage>197</fpage>
<lpage>207</lpage>
</element-citation>
</ref>
<ref id="MCT002C23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodger</surname>
<given-names>JQD</given-names>
</name>
<name>
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Woodrow</surname>
<given-names>IE</given-names>
</name>
</person-group>
<article-title>Growth cost and ontogenetic expression patterns of defence in cyanogenic
<italic>Eucalyptus</italic>
spp</article-title>
<source>Trees</source>
<year>2006</year>
<volume>20</volume>
<fpage>757</fpage>
<lpage>765</lpage>
</element-citation>
</ref>
<ref id="MCT002C24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hagerman</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>LG</given-names>
</name>
</person-group>
<article-title>Choosing appropriate methods and standards for assaying tannin</article-title>
<source>Journal of Chemical Ecology</source>
<year>1989</year>
<volume>15</volume>
<fpage>1795</fpage>
<lpage>1810</lpage>
</element-citation>
</ref>
<ref id="MCT002C25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Sykes</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Impacts of seedling herbivory on plant competition and implications for species coexistence</article-title>
<source>Annals of Botany</source>
<year>2009</year>
<volume>103</volume>
<fpage>1347</fpage>
<lpage>1353</lpage>
<pub-id pub-id-type="pmid">19351683</pub-id>
</element-citation>
</ref>
<ref id="MCT002C26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Fenner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>An experimental field study of the effects of mollusc grazing on seedling recruitment and survival in grassland</article-title>
<source>Journal of Ecology</source>
<year>1995a</year>
<volume>83</volume>
<fpage>621</fpage>
<lpage>627</lpage>
</element-citation>
</ref>
<ref id="MCT002C27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Fenner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>The effect of seedling age on the likelihood of herbivory by the slug
<italic>Deroceras reticulatum</italic>
</article-title>
<source>Functional Ecology</source>
<year>1995b</year>
<volume>9</volume>
<fpage>754</fpage>
<lpage>759</lpage>
</element-citation>
</ref>
<ref id="MCT002C28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Swann</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Advertising acceptability: is mollusk olfaction important in seedling selection?</article-title>
<source>Plant Ecology</source>
<year>2011</year>
<volume>212</volume>
<fpage>727</fpage>
<lpage>731</lpage>
</element-citation>
</ref>
<ref id="MCT002C29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanley</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Girling</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Felix</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Olliff</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Newland</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Poppy</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Olfactory selection of
<italic>Plantago lanceolata</italic>
by snails declines with seedling age</article-title>
<source>Annals of Botany</source>
<year>2013</year>
<volume>112</volume>
<fpage>671</fpage>
<lpage>676</lpage>
</element-citation>
</ref>
<ref id="MCT002C30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardig</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Brunsfeld</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Morphological and molecular evidence for hybridization and introgression in a willow (
<italic>Salix</italic>
) hybrid zone</article-title>
<source>Molecular Ecology</source>
<year>2000</year>
<volume>9</volume>
<fpage>9</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">10652072</pub-id>
</element-citation>
</ref>
<ref id="MCT002C31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heiser</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Introgression re-examined</article-title>
<source>Botanical Review</source>
<year>1973</year>
<volume>39</volume>
<fpage>347</fpage>
<lpage>366</lpage>
</element-citation>
</ref>
<ref id="MCT002C32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hochwender</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Using hybrid systems to explore the evolution of tolerance to damage</article-title>
<source>Evolutionary Ecology</source>
<year>2000</year>
<volume>14</volume>
<fpage>509</fpage>
<lpage>521</lpage>
</element-citation>
</ref>
<ref id="MCT002C33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horrill</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Differential grazing by the mollusc
<italic>Arion hortensis</italic>
Fér. on cyanogenic and acyanogenic seedlings of the white clover,
<italic>Trifolium repens</italic>
L</article-title>
<source>Heredity</source>
<year>1986</year>
<volume>56</volume>
<fpage>277</fpage>
<lpage>281</lpage>
</element-citation>
</ref>
<ref id="MCT002C34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunter</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Forkner</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Hurricane damage influences foliar polyphenolics and subsequent herbivory on surviving trees</article-title>
<source>Ecology</source>
<year>1999</year>
<volume>80</volume>
<fpage>2676</fpage>
<lpage>2682</lpage>
</element-citation>
</ref>
<ref id="MCT002C35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimball</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Lessin</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Differential performance of reciprocal hybrids in multiple environments</article-title>
<source>Journal of Ecology</source>
<year>2008</year>
<volume>96</volume>
<fpage>1306</fpage>
<lpage>1318</lpage>
</element-citation>
</ref>
<ref id="MCT002C36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lexer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Randell</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Rieseberg</surname>
<given-names>LH</given-names>
</name>
</person-group>
<article-title>Experimental hybridization as a tool for studying selection in the wild</article-title>
<source>Ecology</source>
<year>2003</year>
<volume>84</volume>
<fpage>1688</fpage>
<lpage>1699</lpage>
</element-citation>
</ref>
<ref id="MCT002C37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindroth</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Koss</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Preservation of Salicaceae leaves for phytochemical analyses: further assessment</article-title>
<source>Journal of Chemical Ecology</source>
<year>1996</year>
<volume>22</volume>
<fpage>765</fpage>
<lpage>771</lpage>
</element-citation>
</ref>
<ref id="MCT002C38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linhart</surname>
<given-names>YB</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Evolutionary significance of local genetic differentiation in plants</article-title>
<source>Annual Review of Ecology and Systematics</source>
<year>1996</year>
<volume>27</volume>
<fpage>237</fpage>
<lpage>277</lpage>
</element-citation>
</ref>
<ref id="MCT002C39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manley</surname>
<given-names>SAM</given-names>
</name>
<name>
<surname>Fowler</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>Spruce budworm defoliation in relation to introgression in red and black spruce</article-title>
<source>Forest Science</source>
<year>1969</year>
<volume>15</volume>
<fpage>365</fpage>
<lpage>366</lpage>
</element-citation>
</ref>
<ref id="MCT002C40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mosseler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Papadopol</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>Seasonal isolation: a reproductive barrier among sympatric
<italic>Salix</italic>
species</article-title>
<source>Canadian Journal of Botany</source>
<year>1989</year>
<volume>67</volume>
<fpage>2563</fpage>
<lpage>2570</lpage>
</element-citation>
</ref>
<ref id="MCT002C41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagy</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Selection for native characters in hybrids between two locally adapted plant subspecies</article-title>
<source>Evolution</source>
<year>1997</year>
<volume>51</volume>
<fpage>1469</fpage>
<lpage>1480</lpage>
</element-citation>
</ref>
<ref id="MCT002C42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Preserving leaves for tannin and phenolic glycoside analyses – a comparison of methods using 3 willow taxa</article-title>
<source>Journal of Chemical Ecology</source>
<year>1995</year>
<volume>21</volume>
<fpage>1235</fpage>
<lpage>1243</lpage>
</element-citation>
</ref>
<ref id="MCT002C43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plants and herbivores</article-title>
<source>American Journal of Botany</source>
<year>2000</year>
<volume>87</volume>
<fpage>1749</fpage>
<lpage>1756</lpage>
<pub-id pub-id-type="pmid">11118409</pub-id>
</element-citation>
</ref>
<ref id="MCT002C44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Secondary chemistry of hybrid and parental willows: phenolic glycosides and condensed tannins in
<italic>Salix sericea</italic>
,
<italic>S. eriocephala</italic>
, and their hybrids</article-title>
<source>Journal of Chemical Ecology</source>
<year>1995</year>
<volume>21</volume>
<fpage>1245</fpage>
<lpage>1253</lpage>
</element-citation>
</ref>
<ref id="MCT002C45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Genetic and soil nutrient effects on the abundance of herbivores on willow</article-title>
<source>Oecologia</source>
<year>1996</year>
<volume>105</volume>
<fpage>388</fpage>
<lpage>396</lpage>
</element-citation>
</ref>
<ref id="MCT002C46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Evolution of plant defenses in non-indigenous environments</article-title>
<source>Annual Review of Entomology</source>
<year>2010</year>
<volume>55</volume>
<fpage>439</fpage>
<lpage>459</lpage>
</element-citation>
</ref>
<ref id="MCT002C47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dorfman</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Zee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dao</surname>
<given-names>MTT</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Willow hybridization differentially affects preference and performance of herbivorous beetles</article-title>
<source>Entomologia Experimentalis et Applicata</source>
<year>1997</year>
<volume>83</volume>
<fpage>285</fpage>
<lpage>294</lpage>
</element-citation>
</ref>
<ref id="MCT002C48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orians</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Hochwender</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Snäll</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Growth and defense in willow seedlings: trade-offs are transient</article-title>
<source>Oecologia</source>
<year>2010</year>
<volume>163</volume>
<fpage>283</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="pmid">20012101</pub-id>
</element-citation>
</ref>
<ref id="MCT002C49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prittinen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pusenius</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Koivunoro</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Roininen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Genotypic variation in growth and resistance to insect herbivory in silver birch (
<italic>Betula pendula</italic>
)</article-title>
<source>Oecologia</source>
<year>2003</year>
<volume>137</volume>
<fpage>572</fpage>
<lpage>577</lpage>
<pub-id pub-id-type="pmid">14513349</pub-id>
</element-citation>
</ref>
<ref id="MCT002C50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rieseberg</surname>
<given-names>LH</given-names>
</name>
</person-group>
<article-title>The role of hybridization in evolution: old wine in new skins</article-title>
<source>American Journal of Botany</source>
<year>1995</year>
<volume>82</volume>
<fpage>944</fpage>
<lpage>953</lpage>
</element-citation>
</ref>
<ref id="MCT002C51">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rieseberg</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>JF</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Harrison</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Introgression and its consequences in plants</article-title>
<source>Hybrid zones and the evolutionary process</source>
<year>1993</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
<fpage>70</fpage>
<lpage>109</lpage>
</element-citation>
</ref>
<ref id="MCT002C52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rieseberg</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Sinervo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Ungerer</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Arias</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids</article-title>
<source>Science</source>
<year>1996</year>
<volume>272</volume>
<fpage>741</fpage>
<lpage>745</lpage>
<pub-id pub-id-type="pmid">8662570</pub-id>
</element-citation>
</ref>
<ref id="MCT002C53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Alien invasions: the effects of the global economy on nonmarine gastropod introductions into the United States</article-title>
<source>Malacologia</source>
<year>1999</year>
<volume>41</volume>
<fpage>413</fpage>
<lpage>438</lpage>
</element-citation>
</ref>
<ref id="MCT002C54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roche</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Effects of host plant hybridization on resistance to willow leaf rust caused by
<italic>Melampsora</italic>
sp</article-title>
<source>European Journal of Forest Pathology</source>
<year>1998</year>
<volume>28</volume>
<fpage>259</fpage>
<lpage>270</lpage>
</element-citation>
</ref>
<ref id="MCT002C55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>VK</given-names>
</name>
</person-group>
<article-title>Plant competition and slug herbivory: effects on the yield and biomass allocation pattern of
<italic>Poa annua</italic>
L</article-title>
<source>Acta Oecologia</source>
<year>1998</year>
<volume>19</volume>
<fpage>37</fpage>
<lpage>46</lpage>
</element-citation>
</ref>
<ref id="MCT002C56">
<element-citation publication-type="book">
<person-group person-group-type="editor">
<name>
<surname>Rosenthal</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Janzen</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<source>Herbivores: their interaction with secondary plant metabolites</source>
<year>1979</year>
<publisher-loc>Los Angeles</publisher-loc>
<publisher-name>Academic Press, Inc</publisher-name>
</element-citation>
</ref>
<ref id="MCT002C57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakai</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Allendorf</surname>
<given-names>FW</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The population biology of invasive species</article-title>
<source>Annual Review of Ecology and Systematics</source>
<year>2001</year>
<volume>32</volume>
<fpage>305</fpage>
<lpage>332</lpage>
</element-citation>
</ref>
<ref id="MCT002C58">
<element-citation publication-type="book">
<collab>SAS Institute</collab>
<source>JMP
<sup>®</sup>
3·2·2</source>
<year>1997</year>
<publisher-loc>Cary, NC</publisher-loc>
<comment>
<uri xlink:type="simple" xlink:href="http://www.jmp.com">http://www.jmp.com</uri>
</comment>
</element-citation>
</ref>
<ref id="MCT002C59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stowe</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Experimental evolution of resistance in
<italic>Brassica rapa</italic>
: correlated response of tolerance in lines selected for glucosinolate content</article-title>
<source>Evolution</source>
<year>1998</year>
<volume>52</volume>
<fpage>703</fpage>
<lpage>712</lpage>
</element-citation>
</ref>
<ref id="MCT002C60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stratton</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Life-cycle components of selection in
<italic>Erigeron annuus</italic>
: I. Phenotypic selection</article-title>
<source>Evolution</source>
<year>1992</year>
<volume>46</volume>
<fpage>92</fpage>
<lpage>106</lpage>
</element-citation>
</ref>
<ref id="MCT002C61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strauss</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Rudgers</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Irwin</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Direct and ecological costs of resistance to herbivory</article-title>
<source>Trends in Ecology and Evolution</source>
<year>2002</year>
<volume>17</volume>
<fpage>278</fpage>
<lpage>285</lpage>
</element-citation>
</ref>
<ref id="MCT002C62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stutz</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>LK</given-names>
</name>
</person-group>
<article-title>Hybridization and introgression in
<italic>Cowania</italic>
and
<italic>Purshia</italic>
</article-title>
<source>Evolution</source>
<year>1964</year>
<volume>18</volume>
<fpage>183</fpage>
<lpage>195</lpage>
</element-citation>
</ref>
<ref id="MCT002C63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wait</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Effects of nitrogen fertilization on leaf chemistry and beetle feeding are mediated by leaf development</article-title>
<source>Oikos</source>
<year>1998</year>
<volume>82</volume>
<fpage>502</fpage>
<lpage>514</lpage>
</element-citation>
</ref>
<ref id="MCT002C64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Westerbergh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nyberg</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>Selective grazing of hairless
<italic>Silene dioica</italic>
plants by land gastropods</article-title>
<source>Oikos</source>
<year>1995</year>
<volume>73</volume>
<fpage>289</fpage>
<lpage>298</lpage>
</element-citation>
</ref>
<ref id="MCT002C65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whelan</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>An artificial medium for feeding choice experiments with slugs</article-title>
<source>Journal of Applied Ecology</source>
<year>1982</year>
<volume>19</volume>
<fpage>89</fpage>
<lpage>94</lpage>
</element-citation>
</ref>
<ref id="MCT002C66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>HX</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Muir</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Effect of geographic variation and jack pine introgression on disease and insect resistance in lodgepole pine</article-title>
<source>Canadian Journal of Forest Research</source>
<year>1996</year>
<volume>26</volume>
<fpage>711</fpage>
<lpage>726</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0005660 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0005660 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020