Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range

Identifieur interne : 000154 ( Pmc/Corpus ); précédent : 000153; suivant : 000155

Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range

Auteurs : Cecilia H. Deng ; Kim M. Plummer ; Darcy A. B. Jones ; Carl H. Mesarich ; Jason Shiller ; Adam P. Taranto ; Andrew J. Robinson ; Patrick Kastner ; Nathan E. Hall ; Matthew D. Templeton ; Joanna K. Bowen

Source :

RBID : PMC:5412055

Abstract

Background

Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity.

Results

Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes.

Conclusions

Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-017-3699-1) contains supplementary material, which is available to authorized users.


Url:
DOI: 10.1186/s12864-017-3699-1
PubMed: 28464870
PubMed Central: 5412055

Links to Exploration step

PMC:5412055

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of the predicted secretomes of Rosaceae scab pathogens
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
reveals expanded effector families and putative determinants of host range</title>
<author>
<name sortKey="Deng, Cecilia H" sort="Deng, Cecilia H" uniqKey="Deng C" first="Cecilia H." last="Deng">Cecilia H. Deng</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Plummer, Kim M" sort="Plummer, Kim M" uniqKey="Plummer K" first="Kim M." last="Plummer">Kim M. Plummer</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jones, Darcy A B" sort="Jones, Darcy A B" uniqKey="Jones D" first="Darcy A. B." last="Jones">Darcy A. B. Jones</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff7">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0375 4078</institution-id>
<institution-id institution-id-type="GRID">grid.1032.0</institution-id>
<institution>Present Address: The Centre for Crop and Disease Management,</institution>
<institution>Curtin University,</institution>
</institution-wrap>
Bentley, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mesarich, Carl H" sort="Mesarich, Carl H" uniqKey="Mesarich C" first="Carl H." last="Mesarich">Carl H. Mesarich</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0372 3343</institution-id>
<institution-id institution-id-type="GRID">grid.9654.e</institution-id>
<institution>The School of Biological Sciences,</institution>
<institution>University of Auckland,</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff8">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.148374.d</institution-id>
<institution>Present Address: Institute of Agriculture & Environment,</institution>
<institution>Massey University,</institution>
</institution-wrap>
Palmerston North, New Zealand</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shiller, Jason" sort="Shiller, Jason" uniqKey="Shiller J" first="Jason" last="Shiller">Jason Shiller</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff9">Present Address: INRA-Angers, Beaucouzé, Cedex, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taranto, Adam P" sort="Taranto, Adam P" uniqKey="Taranto A" first="Adam P." last="Taranto">Adam P. Taranto</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Plant Sciences Division,</institution>
<institution>Research School of Biology, The Australian National University,</institution>
</institution-wrap>
Canberra, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Andrew J" sort="Robinson, Andrew J" uniqKey="Robinson A" first="Andrew J." last="Robinson">Andrew J. Robinson</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.452643.2</institution-id>
<institution></institution>
<institution>Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI),</institution>
</institution-wrap>
Victoria, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kastner, Patrick" sort="Kastner, Patrick" uniqKey="Kastner P" first="Patrick" last="Kastner">Patrick Kastner</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hall, Nathan E" sort="Hall, Nathan E" uniqKey="Hall N" first="Nathan E." last="Hall">Nathan E. Hall</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.452643.2</institution-id>
<institution></institution>
<institution>Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI),</institution>
</institution-wrap>
Victoria, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D." last="Templeton">Matthew D. Templeton</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0372 3343</institution-id>
<institution-id institution-id-type="GRID">grid.9654.e</institution-id>
<institution>The School of Biological Sciences,</institution>
<institution>University of Auckland,</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K." last="Bowen">Joanna K. Bowen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28464870</idno>
<idno type="pmc">5412055</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412055</idno>
<idno type="RBID">PMC:5412055</idno>
<idno type="doi">10.1186/s12864-017-3699-1</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000154</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000154</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparative analysis of the predicted secretomes of Rosaceae scab pathogens
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
reveals expanded effector families and putative determinants of host range</title>
<author>
<name sortKey="Deng, Cecilia H" sort="Deng, Cecilia H" uniqKey="Deng C" first="Cecilia H." last="Deng">Cecilia H. Deng</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Plummer, Kim M" sort="Plummer, Kim M" uniqKey="Plummer K" first="Kim M." last="Plummer">Kim M. Plummer</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jones, Darcy A B" sort="Jones, Darcy A B" uniqKey="Jones D" first="Darcy A. B." last="Jones">Darcy A. B. Jones</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff7">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0375 4078</institution-id>
<institution-id institution-id-type="GRID">grid.1032.0</institution-id>
<institution>Present Address: The Centre for Crop and Disease Management,</institution>
<institution>Curtin University,</institution>
</institution-wrap>
Bentley, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mesarich, Carl H" sort="Mesarich, Carl H" uniqKey="Mesarich C" first="Carl H." last="Mesarich">Carl H. Mesarich</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0372 3343</institution-id>
<institution-id institution-id-type="GRID">grid.9654.e</institution-id>
<institution>The School of Biological Sciences,</institution>
<institution>University of Auckland,</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff8">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.148374.d</institution-id>
<institution>Present Address: Institute of Agriculture & Environment,</institution>
<institution>Massey University,</institution>
</institution-wrap>
Palmerston North, New Zealand</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shiller, Jason" sort="Shiller, Jason" uniqKey="Shiller J" first="Jason" last="Shiller">Jason Shiller</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff9">Present Address: INRA-Angers, Beaucouzé, Cedex, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taranto, Adam P" sort="Taranto, Adam P" uniqKey="Taranto A" first="Adam P." last="Taranto">Adam P. Taranto</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Plant Sciences Division,</institution>
<institution>Research School of Biology, The Australian National University,</institution>
</institution-wrap>
Canberra, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Andrew J" sort="Robinson, Andrew J" uniqKey="Robinson A" first="Andrew J." last="Robinson">Andrew J. Robinson</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.452643.2</institution-id>
<institution></institution>
<institution>Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI),</institution>
</institution-wrap>
Victoria, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kastner, Patrick" sort="Kastner, Patrick" uniqKey="Kastner P" first="Patrick" last="Kastner">Patrick Kastner</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hall, Nathan E" sort="Hall, Nathan E" uniqKey="Hall N" first="Nathan E." last="Hall">Nathan E. Hall</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.452643.2</institution-id>
<institution></institution>
<institution>Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI),</institution>
</institution-wrap>
Victoria, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D." last="Templeton">Matthew D. Templeton</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0372 3343</institution-id>
<institution-id institution-id-type="GRID">grid.9654.e</institution-id>
<institution>The School of Biological Sciences,</institution>
<institution>University of Auckland,</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K." last="Bowen">Joanna K. Bowen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Fungal plant pathogens belonging to the genus
<italic>Venturia</italic>
cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are
<italic>V. inaequalis</italic>
, which infects apple, and
<italic>V. pirina</italic>
, which is a pathogen of European pear. Given that
<italic>Venturia</italic>
fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of
<italic>Venturia</italic>
with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity.</p>
</sec>
<sec>
<title>Results</title>
<p>Genomes of
<italic>Venturia pirina</italic>
(one European pear scab isolate) and
<italic>Venturia inaequalis</italic>
(three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific
<italic>V. inaequalis</italic>
isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to
<italic>Venturia</italic>
, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to
<italic>Leptosphaeria maculans AvrLm6</italic>
and the
<italic>Verticillium</italic>
spp.
<italic>Ave1</italic>
were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Comparative secretomics has revealed candidate effectors from
<italic>Venturia</italic>
fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-017-3699-1) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Chisholm, St" uniqKey="Chisholm S">ST Chisholm</name>
</author>
<author>
<name sortKey="Coaker, G" uniqKey="Coaker G">G Coaker</name>
</author>
<author>
<name sortKey="Day, B" uniqKey="Day B">B Day</name>
</author>
<author>
<name sortKey="Staskawicz, Bj" uniqKey="Staskawicz B">BJ Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Jd" uniqKey="Jones J">JD Jones</name>
</author>
<author>
<name sortKey="Dangl, Jl" uniqKey="Dangl J">JL Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze Lefert, P" uniqKey="Schulze Lefert P">P Schulze-Lefert</name>
</author>
<author>
<name sortKey="Panstruga, R" uniqKey="Panstruga R">R Panstruga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I Stergiopoulos</name>
</author>
<author>
<name sortKey="De Wit, P" uniqKey="De Wit P">P de Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Crous, Pw" uniqKey="Crous P">PW Crous</name>
</author>
<author>
<name sortKey="Schoch, Cl" uniqKey="Schoch C">CL Schoch</name>
</author>
<author>
<name sortKey="Bahkali, Ah" uniqKey="Bahkali A">AH Bahkali</name>
</author>
<author>
<name sortKey="Guo, Ld" uniqKey="Guo L">LD Guo</name>
</author>
<author>
<name sortKey="Hyde, Kd" uniqKey="Hyde K">KD Hyde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Machardy, We" uniqKey="Machardy W">WE MacHardy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowen, Jk" uniqKey="Bowen J">JK Bowen</name>
</author>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
<author>
<name sortKey="Bus, Vgm" uniqKey="Bus V">VGM Bus</name>
</author>
<author>
<name sortKey="Beresford, R" uniqKey="Beresford R">R Beresford</name>
</author>
<author>
<name sortKey="Plummer, Km" uniqKey="Plummer K">KM Plummer</name>
</author>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivanesan, A" uniqKey="Sivanesan A">A Sivanesan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivanesan, A" uniqKey="Sivanesan A">A Sivanesan</name>
</author>
<author>
<name sortKey="Holliday, P" uniqKey="Holliday P">P Holliday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivanesan, A" uniqKey="Sivanesan A">A Sivanesan</name>
</author>
<author>
<name sortKey="Waller, Jm" uniqKey="Waller J">JM Waller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishii, H" uniqKey="Ishii H">H Ishii</name>
</author>
<author>
<name sortKey="Yanase, H" uniqKey="Yanase H">H Yanase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Cam, B" uniqKey="Le Cam B">B Le Cam</name>
</author>
<author>
<name sortKey="Parisi, L" uniqKey="Parisi L">L Parisi</name>
</author>
<author>
<name sortKey="Arene, L" uniqKey="Arene L">L Arene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gladieux, P" uniqKey="Gladieux P">P Gladieux</name>
</author>
<author>
<name sortKey="Caffier, V" uniqKey="Caffier V">V Caffier</name>
</author>
<author>
<name sortKey="Devaux, M" uniqKey="Devaux M">M Devaux</name>
</author>
<author>
<name sortKey="Le Cam, B" uniqKey="Le Cam B">B Le Cam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bus, Vgm" uniqKey="Bus V">VGM Bus</name>
</author>
<author>
<name sortKey="Rikkerink, Eha" uniqKey="Rikkerink E">EHA Rikkerink</name>
</author>
<author>
<name sortKey="Caffier, V" uniqKey="Caffier V">V Caffier</name>
</author>
<author>
<name sortKey="Durel, Ce" uniqKey="Durel C">CE Durel</name>
</author>
<author>
<name sortKey="Plummer, Km" uniqKey="Plummer K">KM Plummer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belfanti, E" uniqKey="Belfanti E">E Belfanti</name>
</author>
<author>
<name sortKey="Silfverberg Dilworth, E" uniqKey="Silfverberg Dilworth E">E Silfverberg-Dilworth</name>
</author>
<author>
<name sortKey="Tartarini, S" uniqKey="Tartarini S">S Tartarini</name>
</author>
<author>
<name sortKey="Patocchi, A" uniqKey="Patocchi A">A Patocchi</name>
</author>
<author>
<name sortKey="Barbieri, M" uniqKey="Barbieri M">M Barbieri</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joshi, Sg" uniqKey="Joshi S">SG Joshi</name>
</author>
<author>
<name sortKey="Schaart, Jg" uniqKey="Schaart J">JG Schaart</name>
</author>
<author>
<name sortKey="Groenwold, R" uniqKey="Groenwold R">R Groenwold</name>
</author>
<author>
<name sortKey="Jacobsen, E" uniqKey="Jacobsen E">E Jacobsen</name>
</author>
<author>
<name sortKey="Schouten, Hj" uniqKey="Schouten H">HJ Schouten</name>
</author>
<author>
<name sortKey="Krens, Fa" uniqKey="Krens F">FA Krens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schouten, Hj" uniqKey="Schouten H">HJ Schouten</name>
</author>
<author>
<name sortKey="Brinkhuis, J" uniqKey="Brinkhuis J">J Brinkhuis</name>
</author>
<author>
<name sortKey="Van Der Burgh, A" uniqKey="Van Der Burgh A">A van der Burgh</name>
</author>
<author>
<name sortKey="Schaart, Jg" uniqKey="Schaart J">JG Schaart</name>
</author>
<author>
<name sortKey="Groenwold, R" uniqKey="Groenwold R">R Groenwold</name>
</author>
<author>
<name sortKey="Broggini, Gal" uniqKey="Broggini G">GAL Broggini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinatzer, Ba" uniqKey="Vinatzer B">BA Vinatzer</name>
</author>
<author>
<name sortKey="Patocchi, A" uniqKey="Patocchi A">A Patocchi</name>
</author>
<author>
<name sortKey="Gianfranceschi, L" uniqKey="Gianfranceschi L">L Gianfranceschi</name>
</author>
<author>
<name sortKey="Tartarini, S" uniqKey="Tartarini S">S Tartarini</name>
</author>
<author>
<name sortKey="Zhang, Hb" uniqKey="Zhang H">HB Zhang</name>
</author>
<author>
<name sortKey="Gessler, C" uniqKey="Gessler C">C Gessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Celton, Jm" uniqKey="Celton J">JM Celton</name>
</author>
<author>
<name sortKey="Christoffels, A" uniqKey="Christoffels A">A Christoffels</name>
</author>
<author>
<name sortKey="Sargent, D" uniqKey="Sargent D">D Sargent</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
<author>
<name sortKey="Rees, Dj" uniqKey="Rees D">DJ Rees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broggini, Gal" uniqKey="Broggini G">GAL Broggini</name>
</author>
<author>
<name sortKey="Le Cam, B" uniqKey="Le Cam B">B Le Cam</name>
</author>
<author>
<name sortKey="Parisi, L" uniqKey="Parisi L">L Parisi</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C Wu</name>
</author>
<author>
<name sortKey="Zhang, H B" uniqKey="Zhang H">H-B Zhang</name>
</author>
<author>
<name sortKey="Gessler, C" uniqKey="Gessler C">C Gessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thakur, K" uniqKey="Thakur K">K Thakur</name>
</author>
<author>
<name sortKey="Chawla, V" uniqKey="Chawla V">V Chawla</name>
</author>
<author>
<name sortKey="Bhatti, S" uniqKey="Bhatti S">S Bhatti</name>
</author>
<author>
<name sortKey="Swarnkar, M" uniqKey="Swarnkar M">M Swarnkar</name>
</author>
<author>
<name sortKey="Kaur, J" uniqKey="Kaur J">J Kaur</name>
</author>
<author>
<name sortKey="Shankar, R" uniqKey="Shankar R">R Shankar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooke, Ir" uniqKey="Cooke I">IR Cooke</name>
</author>
<author>
<name sortKey="Jones, Da" uniqKey="Jones D">DA Jones</name>
</author>
<author>
<name sortKey="Bowen, Jk" uniqKey="Bowen J">JK Bowen</name>
</author>
<author>
<name sortKey="Deng, C" uniqKey="Deng C">C Deng</name>
</author>
<author>
<name sortKey="Faou, P" uniqKey="Faou P">P Faou</name>
</author>
<author>
<name sortKey="Hall, Ne" uniqKey="Hall N">NE Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanke, M" uniqKey="Stanke M">M Stanke</name>
</author>
<author>
<name sortKey="Schoffmann, O" uniqKey="Schoffmann O">O Schöffmann</name>
</author>
<author>
<name sortKey="Morgenstern, B" uniqKey="Morgenstern B">B Morgenstern</name>
</author>
<author>
<name sortKey="Waack, S" uniqKey="Waack S">S Waack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, O" uniqKey="Keller O">O Keller</name>
</author>
<author>
<name sortKey="Kollmar, M" uniqKey="Kollmar M">M Kollmar</name>
</author>
<author>
<name sortKey="Stanke, M" uniqKey="Stanke M">M Stanke</name>
</author>
<author>
<name sortKey="Waack, S" uniqKey="Waack S">S Waack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parra, G" uniqKey="Parra G">G Parra</name>
</author>
<author>
<name sortKey="Bradnam, K" uniqKey="Bradnam K">K Bradnam</name>
</author>
<author>
<name sortKey="Korf, I" uniqKey="Korf I">I Korf</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Bh" uniqKey="Park B">BH Park</name>
</author>
<author>
<name sortKey="Karpinets, Tv" uniqKey="Karpinets T">TV Karpinets</name>
</author>
<author>
<name sortKey="Syed, Mh" uniqKey="Syed M">MH Syed</name>
</author>
<author>
<name sortKey="Leuze, Mr" uniqKey="Leuze M">MR Leuze</name>
</author>
<author>
<name sortKey="Uberbacher, Ec" uniqKey="Uberbacher E">EC Uberbacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Gish, W" uniqKey="Gish W">W Gish</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Lipman, Dj" uniqKey="Lipman D">DJ Lipman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sayers, Ew" uniqKey="Sayers E">EW Sayers</name>
</author>
<author>
<name sortKey="Barrett, T" uniqKey="Barrett T">T Barrett</name>
</author>
<author>
<name sortKey="Benson, Da" uniqKey="Benson D">DA Benson</name>
</author>
<author>
<name sortKey="Bolton, E" uniqKey="Bolton E">E Bolton</name>
</author>
<author>
<name sortKey="Bryant, Sh" uniqKey="Bryant S">SH Bryant</name>
</author>
<author>
<name sortKey="Canese, K" uniqKey="Canese K">K Canese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Stoeckert, Cj" uniqKey="Stoeckert C">CJ Stoeckert</name>
</author>
<author>
<name sortKey="Roos, Ds" uniqKey="Roos D">DS Roos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lombard, V" uniqKey="Lombard V">V Lombard</name>
</author>
<author>
<name sortKey="Golaconda Ramulu, H" uniqKey="Golaconda Ramulu H">H Golaconda Ramulu</name>
</author>
<author>
<name sortKey="Drula, E" uniqKey="Drula E">E Drula</name>
</author>
<author>
<name sortKey="Coutinho, Pm" uniqKey="Coutinho P">PM Coutinho</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B Henrissat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z Zhao</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Xu, J R" uniqKey="Xu J">J-R Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orbach, Mj" uniqKey="Orbach M">MJ Orbach</name>
</author>
<author>
<name sortKey="Farrall, L" uniqKey="Farrall L">L Farrall</name>
</author>
<author>
<name sortKey="Sweigard, Ja" uniqKey="Sweigard J">JA Sweigard</name>
</author>
<author>
<name sortKey="Chumley, Fg" uniqKey="Chumley F">FG Chumley</name>
</author>
<author>
<name sortKey="Valent, B" uniqKey="Valent B">B Valent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bryan, Gt" uniqKey="Bryan G">GT Bryan</name>
</author>
<author>
<name sortKey="Wu, K S" uniqKey="Wu K">K-S Wu</name>
</author>
<author>
<name sortKey="Farrall, L" uniqKey="Farrall L">L Farrall</name>
</author>
<author>
<name sortKey="Jia, Y" uniqKey="Jia Y">Y Jia</name>
</author>
<author>
<name sortKey="Hershey, Hp" uniqKey="Hershey H">HP Hershey</name>
</author>
<author>
<name sortKey="Mcadams, Sa" uniqKey="Mcadams S">SA McAdams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urban, M" uniqKey="Urban M">M Urban</name>
</author>
<author>
<name sortKey="Pant, R" uniqKey="Pant R">R Pant</name>
</author>
<author>
<name sortKey="Raghunath, A" uniqKey="Raghunath A">A Raghunath</name>
</author>
<author>
<name sortKey="Irvine, Ag" uniqKey="Irvine A">AG Irvine</name>
</author>
<author>
<name sortKey="Pedro, H" uniqKey="Pedro H">H Pedro</name>
</author>
<author>
<name sortKey="Hammond Kosack, K" uniqKey="Hammond Kosack K">K Hammond-Kosack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finn, Rd" uniqKey="Finn R">RD Finn</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A Bateman</name>
</author>
<author>
<name sortKey="Clements, J" uniqKey="Clements J">J Clements</name>
</author>
<author>
<name sortKey="Coggill, P" uniqKey="Coggill P">P Coggill</name>
</author>
<author>
<name sortKey="Eberhardt, Ry" uniqKey="Eberhardt R">RY Eberhardt</name>
</author>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mistry, J" uniqKey="Mistry J">J Mistry</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A Bateman</name>
</author>
<author>
<name sortKey="Finn, Rd" uniqKey="Finn R">RD Finn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Cowley, A" uniqKey="Cowley A">A Cowley</name>
</author>
<author>
<name sortKey="Uludag, M" uniqKey="Uludag M">M Uludag</name>
</author>
<author>
<name sortKey="Gur, T" uniqKey="Gur T">T Gur</name>
</author>
<author>
<name sortKey="Mcwilliam, H" uniqKey="Mcwilliam H">H McWilliam</name>
</author>
<author>
<name sortKey="Squizzato, S" uniqKey="Squizzato S">S Squizzato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunde, M" uniqKey="Sunde M">M Sunde</name>
</author>
<author>
<name sortKey="Kwan, Ahy" uniqKey="Kwan A">AHY Kwan</name>
</author>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
<author>
<name sortKey="Beever, Re" uniqKey="Beever R">RE Beever</name>
</author>
<author>
<name sortKey="Mackay, Jp" uniqKey="Mackay J">JP Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kershaw, Mj" uniqKey="Kershaw M">MJ Kershaw</name>
</author>
<author>
<name sortKey="Talbot, Nj" uniqKey="Talbot N">NJ Talbot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bayry, J" uniqKey="Bayry J">J Bayry</name>
</author>
<author>
<name sortKey="Aimanianda, V" uniqKey="Aimanianda V">V Aimanianda</name>
</author>
<author>
<name sortKey="Guijarro, Ji" uniqKey="Guijarro J">JI Guijarro</name>
</author>
<author>
<name sortKey="Sunde, M" uniqKey="Sunde M">M Sunde</name>
</author>
<author>
<name sortKey="Latge, J P" uniqKey="Latge J">J-P Latgé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolton, Md" uniqKey="Bolton M">MD Bolton</name>
</author>
<author>
<name sortKey="Van Esse, Hp" uniqKey="Van Esse H">HP van Esse</name>
</author>
<author>
<name sortKey="Vossen, Jh" uniqKey="Vossen J">JH Vossen</name>
</author>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R de Jonge</name>
</author>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I Stergiopoulos</name>
</author>
<author>
<name sortKey="Stulemeijer, Ije" uniqKey="Stulemeijer I">IJE Stulemeijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fudal, I" uniqKey="Fudal I">I Fudal</name>
</author>
<author>
<name sortKey="Ross, S" uniqKey="Ross S">S Ross</name>
</author>
<author>
<name sortKey="Gout, L" uniqKey="Gout L">L Gout</name>
</author>
<author>
<name sortKey="Blaise, F" uniqKey="Blaise F">F Blaise</name>
</author>
<author>
<name sortKey="Kuhn, Ml" uniqKey="Kuhn M">ML Kuhn</name>
</author>
<author>
<name sortKey="Eckert, Mr" uniqKey="Eckert M">MR Eckert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R de Jonge</name>
</author>
<author>
<name sortKey="Peter Van Esse, H" uniqKey="Peter Van Esse H">H Peter van Esse</name>
</author>
<author>
<name sortKey="Maruthachalam, K" uniqKey="Maruthachalam K">K Maruthachalam</name>
</author>
<author>
<name sortKey="Bolton, M" uniqKey="Bolton M">M Bolton</name>
</author>
<author>
<name sortKey="Santhanam, P" uniqKey="Santhanam P">P Santhanam</name>
</author>
<author>
<name sortKey="Saber, M" uniqKey="Saber M">M Saber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiller, J" uniqKey="Shiller J">J Shiller</name>
</author>
<author>
<name sortKey="Van De Wouw, Ap" uniqKey="Van De Wouw A">AP Van de Wouw</name>
</author>
<author>
<name sortKey="Taranto, A" uniqKey="Taranto A">A Taranto</name>
</author>
<author>
<name sortKey="Bowen, Jk" uniqKey="Bowen J">JK Bowen</name>
</author>
<author>
<name sortKey="Dubois, D" uniqKey="Dubois D">D Dubois</name>
</author>
<author>
<name sortKey="Robinson, A" uniqKey="Robinson A">A Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowen, Jk" uniqKey="Bowen J">JK Bowen</name>
</author>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
<author>
<name sortKey="Rees George, J" uniqKey="Rees George J">J Rees-George</name>
</author>
<author>
<name sortKey="Cui, W" uniqKey="Cui W">W Cui</name>
</author>
<author>
<name sortKey="Fitzgerald, A" uniqKey="Fitzgerald A">A Fitzgerald</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J Win</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucheryava, N" uniqKey="Kucheryava N">N Kucheryava</name>
</author>
<author>
<name sortKey="Bowen, Jk" uniqKey="Bowen J">JK Bowen</name>
</author>
<author>
<name sortKey="Sutherland, Pw" uniqKey="Sutherland P">PW Sutherland</name>
</author>
<author>
<name sortKey="Conolly, Jj" uniqKey="Conolly J">JJ Conolly</name>
</author>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
<author>
<name sortKey="Rikkerink, Eha" uniqKey="Rikkerink E">EHA Rikkerink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
<author>
<name sortKey="Schmitz, M" uniqKey="Schmitz M">M Schmitz</name>
</author>
<author>
<name sortKey="Tremouihac, P" uniqKey="Tremouihac P">P Tremouihac</name>
</author>
<author>
<name sortKey="Mcgillivray, Dj" uniqKey="Mcgillivray D">DJ McGillivray</name>
</author>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
<author>
<name sortKey="Dingley, Aj" uniqKey="Dingley A">AJ Dingley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S Kim</name>
</author>
<author>
<name sortKey="Ahn, I P" uniqKey="Ahn I">I-P Ahn</name>
</author>
<author>
<name sortKey="Rho, H S" uniqKey="Rho H">H-S Rho</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y-H Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fellbrich, G" uniqKey="Fellbrich G">G Fellbrich</name>
</author>
<author>
<name sortKey="Romanski, A" uniqKey="Romanski A">A Romanski</name>
</author>
<author>
<name sortKey="Varet, A" uniqKey="Varet A">A Varet</name>
</author>
<author>
<name sortKey="Blume, B" uniqKey="Blume B">B Blume</name>
</author>
<author>
<name sortKey="Brunner, F" uniqKey="Brunner F">F Brunner</name>
</author>
<author>
<name sortKey="Engelhardt, S" uniqKey="Engelhardt S">S Engelhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cabral, A" uniqKey="Cabral A">A Cabral</name>
</author>
<author>
<name sortKey="Oome, S" uniqKey="Oome S">S Oome</name>
</author>
<author>
<name sortKey="Sander, N" uniqKey="Sander N">N Sander</name>
</author>
<author>
<name sortKey="Kufner, I" uniqKey="Kufner I">I Kufner</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T Nurnberger</name>
</author>
<author>
<name sortKey="Van Den Ackerveken, G" uniqKey="Van Den Ackerveken G">G Van den Ackerveken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oome, S" uniqKey="Oome S">S Oome</name>
</author>
<author>
<name sortKey="Raaymakers, Tm" uniqKey="Raaymakers T">TM Raaymakers</name>
</author>
<author>
<name sortKey="Cabral, A" uniqKey="Cabral A">A Cabral</name>
</author>
<author>
<name sortKey="Samwel, S" uniqKey="Samwel S">S Samwel</name>
</author>
<author>
<name sortKey="Bohm, H" uniqKey="Bohm H">H Böhm</name>
</author>
<author>
<name sortKey="Albert, I" uniqKey="Albert I">I Albert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, C" uniqKey="Xue C">C Xue</name>
</author>
<author>
<name sortKey="Park, G" uniqKey="Park G">G Park</name>
</author>
<author>
<name sortKey="Choi, W" uniqKey="Choi W">W Choi</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L Zheng</name>
</author>
<author>
<name sortKey="Dean, Ra" uniqKey="Dean R">RA Dean</name>
</author>
<author>
<name sortKey="Xu, J R" uniqKey="Xu J">J-R Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pliego, C" uniqKey="Pliego C">C Pliego</name>
</author>
<author>
<name sortKey="Nowara, D" uniqKey="Nowara D">D Nowara</name>
</author>
<author>
<name sortKey="Bonciani, G" uniqKey="Bonciani G">G Bonciani</name>
</author>
<author>
<name sortKey="Gheorghe, Dm" uniqKey="Gheorghe D">DM Gheorghe</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R Xu</name>
</author>
<author>
<name sortKey="Surana, P" uniqKey="Surana P">P Surana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whigham, E" uniqKey="Whigham E">E Whigham</name>
</author>
<author>
<name sortKey="Qi, S" uniqKey="Qi S">S Qi</name>
</author>
<author>
<name sortKey="Mistry, D" uniqKey="Mistry D">D Mistry</name>
</author>
<author>
<name sortKey="Surana, P" uniqKey="Surana P">P Surana</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R Xu</name>
</author>
<author>
<name sortKey="Fuerst, Gs" uniqKey="Fuerst G">GS Fuerst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nepusz, T" uniqKey="Nepusz T">T Nepusz</name>
</author>
<author>
<name sortKey="Sasidharan, R" uniqKey="Sasidharan R">R Sasidharan</name>
</author>
<author>
<name sortKey="Paccanaro, A" uniqKey="Paccanaro A">A Paccanaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigoriev, Iv" uniqKey="Grigoriev I">IV Grigoriev</name>
</author>
<author>
<name sortKey="Nikitin, R" uniqKey="Nikitin R">R Nikitin</name>
</author>
<author>
<name sortKey="Haridas, S" uniqKey="Haridas S">S Haridas</name>
</author>
<author>
<name sortKey="Kuo, A" uniqKey="Kuo A">A Kuo</name>
</author>
<author>
<name sortKey="Ohm, R" uniqKey="Ohm R">R Ohm</name>
</author>
<author>
<name sortKey="Otillar, R" uniqKey="Otillar R">R Otillar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigoriev, Iv" uniqKey="Grigoriev I">IV Grigoriev</name>
</author>
<author>
<name sortKey="Nordberg, H" uniqKey="Nordberg H">H Nordberg</name>
</author>
<author>
<name sortKey="Shabalov, I" uniqKey="Shabalov I">I Shabalov</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A Aerts</name>
</author>
<author>
<name sortKey="Cantor, M" uniqKey="Cantor M">M Cantor</name>
</author>
<author>
<name sortKey="Goodstein, D" uniqKey="Goodstein D">D Goodstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohm, Ra" uniqKey="Ohm R">RA Ohm</name>
</author>
<author>
<name sortKey="Feau, N" uniqKey="Feau N">N Feau</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B Henrissat</name>
</author>
<author>
<name sortKey="Schoch, Cl" uniqKey="Schoch C">CL Schoch</name>
</author>
<author>
<name sortKey="Horwitz, Ba" uniqKey="Horwitz B">BA Horwitz</name>
</author>
<author>
<name sortKey="Barry, Kw" uniqKey="Barry K">KW Barry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zerbino, Dr" uniqKey="Zerbino D">DR Zerbino</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butler, J" uniqKey="Butler J">J Butler</name>
</author>
<author>
<name sortKey="Maccallum, I" uniqKey="Maccallum I">I MacCallum</name>
</author>
<author>
<name sortKey="Kleber, M" uniqKey="Kleber M">M Kleber</name>
</author>
<author>
<name sortKey="Shlyakhter, Ia" uniqKey="Shlyakhter I">IA Shlyakhter</name>
</author>
<author>
<name sortKey="Belmonte, Mk" uniqKey="Belmonte M">MK Belmonte</name>
</author>
<author>
<name sortKey="Lander, Es" uniqKey="Lander E">ES Lander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradnam, Kr" uniqKey="Bradnam K">KR Bradnam</name>
</author>
<author>
<name sortKey="Fass, Jn" uniqKey="Fass J">JN Fass</name>
</author>
<author>
<name sortKey="Alexandrov, A" uniqKey="Alexandrov A">A Alexandrov</name>
</author>
<author>
<name sortKey="Baranay, P" uniqKey="Baranay P">P Baranay</name>
</author>
<author>
<name sortKey="Bechner, M" uniqKey="Bechner M">M Bechner</name>
</author>
<author>
<name sortKey="Birol, I" uniqKey="Birol I">I Birol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maccallum, I" uniqKey="Maccallum I">I MacCallum</name>
</author>
<author>
<name sortKey="Przybylski, D" uniqKey="Przybylski D">D Przybylski</name>
</author>
<author>
<name sortKey="Gnerre, S" uniqKey="Gnerre S">S Gnerre</name>
</author>
<author>
<name sortKey="Burton, J" uniqKey="Burton J">J Burton</name>
</author>
<author>
<name sortKey="Shlyakhter, I" uniqKey="Shlyakhter I">I Shlyakhter</name>
</author>
<author>
<name sortKey="Gnirke, A" uniqKey="Gnirke A">A Gnirke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gnerre, S" uniqKey="Gnerre S">S Gnerre</name>
</author>
<author>
<name sortKey="Maccallum, I" uniqKey="Maccallum I">I MacCallum</name>
</author>
<author>
<name sortKey="Przybylski, D" uniqKey="Przybylski D">D Przybylski</name>
</author>
<author>
<name sortKey="Ribeiro, Fj" uniqKey="Ribeiro F">FJ Ribeiro</name>
</author>
<author>
<name sortKey="Burton, Jn" uniqKey="Burton J">JN Burton</name>
</author>
<author>
<name sortKey="Walker, Bj" uniqKey="Walker B">BJ Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehrabi, R" uniqKey="Mehrabi R">R Mehrabi</name>
</author>
<author>
<name sortKey="Taga, M" uniqKey="Taga M">M Taga</name>
</author>
<author>
<name sortKey="Kema, Ghj" uniqKey="Kema G">GHJ Kema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, J" uniqKey="Ruan J">J Ruan</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
<author>
<name sortKey="Chong, Z" uniqKey="Chong Z">Z Chong</name>
</author>
<author>
<name sortKey="Gong, Q" uniqKey="Gong Q">Q Gong</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Kobert, K" uniqKey="Kobert K">K Kobert</name>
</author>
<author>
<name sortKey="Flouri, T" uniqKey="Flouri T">T Flouri</name>
</author>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, Pjgm" uniqKey="De Wit P">PJGM de Wit</name>
</author>
<author>
<name sortKey="Van Der Burgt, A" uniqKey="Van Der Burgt A">A van der Burgt</name>
</author>
<author>
<name sortKey="Okmen, B" uniqKey="Okmen B">B Ökmen</name>
</author>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I Stergiopoulos</name>
</author>
<author>
<name sortKey="Abd Elsalam, Ka" uniqKey="Abd Elsalam K">KA Abd-Elsalam</name>
</author>
<author>
<name sortKey="Aerts, Al" uniqKey="Aerts A">AL Aerts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, M" uniqKey="Xue M">M Xue</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Hu, S" uniqKey="Hu S">S Hu</name>
</author>
<author>
<name sortKey="Yao, N" uniqKey="Yao N">N Yao</name>
</author>
<author>
<name sortKey="Dean, Ra" uniqKey="Dean R">RA Dean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Condon, Bj" uniqKey="Condon B">BJ Condon</name>
</author>
<author>
<name sortKey="Leng, Y" uniqKey="Leng Y">Y Leng</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
<author>
<name sortKey="Bushley, Ke" uniqKey="Bushley K">KE Bushley</name>
</author>
<author>
<name sortKey="Ohm, Ra" uniqKey="Ohm R">RA Ohm</name>
</author>
<author>
<name sortKey="Otillar, R" uniqKey="Otillar R">R Otillar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elkins, T" uniqKey="Elkins T">T Elkins</name>
</author>
<author>
<name sortKey="Zinn, K" uniqKey="Zinn K">K Zinn</name>
</author>
<author>
<name sortKey="Mcallister, L" uniqKey="Mcallister L">L McAllister</name>
</author>
<author>
<name sortKey="Hoffmann, Fm" uniqKey="Hoffmann F">FM HoffMann</name>
</author>
<author>
<name sortKey="Goodman, Cs" uniqKey="Goodman C">CS Goodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawamoto, T" uniqKey="Kawamoto T">T Kawamoto</name>
</author>
<author>
<name sortKey="Noshiro, M" uniqKey="Noshiro M">M Noshiro</name>
</author>
<author>
<name sortKey="Shen, M" uniqKey="Shen M">M Shen</name>
</author>
<author>
<name sortKey="Nakamasu, K" uniqKey="Nakamasu K">K Nakamasu</name>
</author>
<author>
<name sortKey="Hashimoto, K" uniqKey="Hashimoto K">K Hashimoto</name>
</author>
<author>
<name sortKey="Kawashima Ohya, Y" uniqKey="Kawashima Ohya Y">Y Kawashima-Ohya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaspar, Y" uniqKey="Gaspar Y">Y Gaspar</name>
</author>
<author>
<name sortKey="Johnson, Kl" uniqKey="Johnson K">KL Johnson</name>
</author>
<author>
<name sortKey="Mckenna, Ja" uniqKey="Mckenna J">JA McKenna</name>
</author>
<author>
<name sortKey="Bacic, A" uniqKey="Bacic A">A Bacic</name>
</author>
<author>
<name sortKey="Schultz, Cj" uniqKey="Schultz C">CJ Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carr, M" uniqKey="Carr M">M Carr</name>
</author>
<author>
<name sortKey="Bloemink, M" uniqKey="Bloemink M">M Bloemink</name>
</author>
<author>
<name sortKey="Dentten, E" uniqKey="Dentten E">E Dentten</name>
</author>
<author>
<name sortKey="Whelan, A" uniqKey="Whelan A">A Whelan</name>
</author>
<author>
<name sortKey="Gordon, S" uniqKey="Gordon S">S Gordon</name>
</author>
<author>
<name sortKey="Kelly, G" uniqKey="Kelly G">G Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T B" uniqKey="Liu T">T-B Liu</name>
</author>
<author>
<name sortKey="Chen, G Q" uniqKey="Chen G">G-Q Chen</name>
</author>
<author>
<name sortKey="Min, H" uniqKey="Min H">H Min</name>
</author>
<author>
<name sortKey="Lin, F C" uniqKey="Lin F">F-C Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
<author>
<name sortKey="Rikkerink, Eha" uniqKey="Rikkerink E">EHA Rikkerink</name>
</author>
<author>
<name sortKey="Beever, Re" uniqKey="Beever R">RE Beever</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wessels, Jgh" uniqKey="Wessels J">JGH Wessels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wosten, Hab" uniqKey="Wosten H">HAB Wösten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernard, M" uniqKey="Bernard M">M Bernard</name>
</author>
<author>
<name sortKey="Latge, J P" uniqKey="Latge J">J-P Latgé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohtaki, S" uniqKey="Ohtaki S">S Ohtaki</name>
</author>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H Maeda</name>
</author>
<author>
<name sortKey="Takahashi, T" uniqKey="Takahashi T">T Takahashi</name>
</author>
<author>
<name sortKey="Yamagata, Y" uniqKey="Yamagata Y">Y Yamagata</name>
</author>
<author>
<name sortKey="Hasegawa, F" uniqKey="Hasegawa F">F Hasegawa</name>
</author>
<author>
<name sortKey="Gomi, K" uniqKey="Gomi K">K Gomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, T" uniqKey="Takahashi T">T Takahashi</name>
</author>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H Maeda</name>
</author>
<author>
<name sortKey="Yoneda, S" uniqKey="Yoneda S">S Yoneda</name>
</author>
<author>
<name sortKey="Ohtaki, S" uniqKey="Ohtaki S">S Ohtaki</name>
</author>
<author>
<name sortKey="Yamagata, Y" uniqKey="Yamagata Y">Y Yamagata</name>
</author>
<author>
<name sortKey="Hasegawa, F" uniqKey="Hasegawa F">F Hasegawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koller, W" uniqKey="Koller W">W Köller</name>
</author>
<author>
<name sortKey="Parker, Dm" uniqKey="Parker D">DM Parker</name>
</author>
<author>
<name sortKey="Becker, Cm" uniqKey="Becker C">CM Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koller, W" uniqKey="Koller W">W Köller</name>
</author>
<author>
<name sortKey="Parker, Dm" uniqKey="Parker D">DM Parker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholson, Rl" uniqKey="Nicholson R">RL Nicholson</name>
</author>
<author>
<name sortKey="Kuc, J" uniqKey="Kuc J">J Kuc</name>
</author>
<author>
<name sortKey="Williams, Eb" uniqKey="Williams E">EB Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nusbaum, Cj" uniqKey="Nusbaum C">CJ Nusbaum</name>
</author>
<author>
<name sortKey="Keitt, Gw" uniqKey="Keitt G">GW Keitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valsangiacomo, C" uniqKey="Valsangiacomo C">C Valsangiacomo</name>
</author>
<author>
<name sortKey="Gessler, C" uniqKey="Gessler C">C Gessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kollar, A" uniqKey="Kollar A">A Kollar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valsangiacomo, C" uniqKey="Valsangiacomo C">C Valsangiacomo</name>
</author>
<author>
<name sortKey="Gessler, C" uniqKey="Gessler C">C Gessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kollar, A" uniqKey="Kollar A">A Kollar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnous, A" uniqKey="Arnous A">A Arnous</name>
</author>
<author>
<name sortKey="Meyer, As" uniqKey="Meyer A">AS Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Almeida, Dpf" uniqKey="Almeida D">DPF Almeida</name>
</author>
<author>
<name sortKey="Gomes, Mh" uniqKey="Gomes M">MH Gomes</name>
</author>
<author>
<name sortKey="Pintado, M" uniqKey="Pintado M">M Pintado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yip, V" uniqKey="Yip V">V Yip</name>
</author>
<author>
<name sortKey="Withers, S" uniqKey="Withers S">S Withers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jashni, Mk" uniqKey="Jashni M">MK Jashni</name>
</author>
<author>
<name sortKey="Mehrabi, R" uniqKey="Mehrabi R">R Mehrabi</name>
</author>
<author>
<name sortKey="Collemare, J" uniqKey="Collemare J">J Collemare</name>
</author>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
<author>
<name sortKey="De Wit, Pjgm" uniqKey="De Wit P">PJGM de Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jashni, Mk" uniqKey="Jashni M">MK Jashni</name>
</author>
<author>
<name sortKey="Dols, Ihm" uniqKey="Dols I">IHM Dols</name>
</author>
<author>
<name sortKey="Iida, Y" uniqKey="Iida Y">Y Iida</name>
</author>
<author>
<name sortKey="Boeren, S" uniqKey="Boeren S">S Boeren</name>
</author>
<author>
<name sortKey="Beenen, Hg" uniqKey="Beenen H">HG Beenen</name>
</author>
<author>
<name sortKey="Mehrabi, R" uniqKey="Mehrabi R">R Mehrabi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Vallet, A" uniqKey="Sanchez Vallet A">A Sánchez-Vallet</name>
</author>
<author>
<name sortKey="Saleem Batcha, R" uniqKey="Saleem Batcha R">R Saleem-Batcha</name>
</author>
<author>
<name sortKey="Kombrink, A" uniqKey="Kombrink A">A Kombrink</name>
</author>
<author>
<name sortKey="Hansen, G" uniqKey="Hansen G">G Hansen</name>
</author>
<author>
<name sortKey="Valkenburg, D J" uniqKey="Valkenburg D">D-J Valkenburg</name>
</author>
<author>
<name sortKey="Thomma, Bp" uniqKey="Thomma B">BP Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marshall, R" uniqKey="Marshall R">R Marshall</name>
</author>
<author>
<name sortKey="Kombrink, A" uniqKey="Kombrink A">A Kombrink</name>
</author>
<author>
<name sortKey="Motteram, J" uniqKey="Motteram J">J Motteram</name>
</author>
<author>
<name sortKey="Loza Reyes, E" uniqKey="Loza Reyes E">E Loza-Reyes</name>
</author>
<author>
<name sortKey="Lucas, J" uniqKey="Lucas J">J Lucas</name>
</author>
<author>
<name sortKey="Hammond Kosack, Ke" uniqKey="Hammond Kosack K">KE Hammond-Kosack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, W S" uniqKey="Lee W">W-S Lee</name>
</author>
<author>
<name sortKey="Rudd, Jj" uniqKey="Rudd J">JJ Rudd</name>
</author>
<author>
<name sortKey="Hammond Kosack, Ke" uniqKey="Hammond Kosack K">KE Hammond-Kosack</name>
</author>
<author>
<name sortKey="Kanyuka, K" uniqKey="Kanyuka K">K Kanyuka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gijzen, M" uniqKey="Gijzen M">M Gijzen</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T Nürnberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oome, S" uniqKey="Oome S">S Oome</name>
</author>
<author>
<name sortKey="Van Den Ackerveken, G" uniqKey="Van Den Ackerveken G">G Van den Ackerveken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, B J" uniqKey="Zhou B">B-J Zhou</name>
</author>
<author>
<name sortKey="Jia, P S" uniqKey="Jia P">P-S Jia</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F Gao</name>
</author>
<author>
<name sortKey="Guo, H S" uniqKey="Guo H">H-S Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ottmann, C" uniqKey="Ottmann C">C Ottmann</name>
</author>
<author>
<name sortKey="Luberacki, B" uniqKey="Luberacki B">B Luberacki</name>
</author>
<author>
<name sortKey="Kufner, I" uniqKey="Kufner I">I Kufner</name>
</author>
<author>
<name sortKey="Koch, W" uniqKey="Koch W">W Koch</name>
</author>
<author>
<name sortKey="Brunner, F" uniqKey="Brunner F">F Brunner</name>
</author>
<author>
<name sortKey="Weyand, M" uniqKey="Weyand M">M Weyand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitoh, H" uniqKey="Saitoh H">H Saitoh</name>
</author>
<author>
<name sortKey="Fujisawa, S" uniqKey="Fujisawa S">S Fujisawa</name>
</author>
<author>
<name sortKey="Mitsuoka, C" uniqKey="Mitsuoka C">C Mitsuoka</name>
</author>
<author>
<name sortKey="Ito, A" uniqKey="Ito A">A Ito</name>
</author>
<author>
<name sortKey="Hirabuchi, A" uniqKey="Hirabuchi A">A Hirabuchi</name>
</author>
<author>
<name sortKey="Ikeda, K" uniqKey="Ikeda K">K Ikeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mesarich, Ch" uniqKey="Mesarich C">CH Mesarich</name>
</author>
<author>
<name sortKey="Bowen, Jk" uniqKey="Bowen J">JK Bowen</name>
</author>
<author>
<name sortKey="Hamiaux, C" uniqKey="Hamiaux C">C Hamiaux</name>
</author>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y Han</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Benny, U" uniqKey="Benny U">U Benny</name>
</author>
<author>
<name sortKey="Kistler, Hc" uniqKey="Kistler H">HC Kistler</name>
</author>
<author>
<name sortKey="Vanetten, Hd" uniqKey="Vanetten H">HD VanEtten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Eyy" uniqKey="Lo E">EYY Lo</name>
</author>
<author>
<name sortKey="Donoghue, Mj" uniqKey="Donoghue M">MJ Donoghue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, Y" uniqKey="Dai Y">Y Dai</name>
</author>
<author>
<name sortKey="Winston, E" uniqKey="Winston E">E Winston</name>
</author>
<author>
<name sortKey="Correll, Jc" uniqKey="Correll J">JC Correll</name>
</author>
<author>
<name sortKey="Jia, Y" uniqKey="Jia Y">Y Jia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khang, Ch" uniqKey="Khang C">CH Khang</name>
</author>
<author>
<name sortKey="Park, S Y" uniqKey="Park S">S-Y Park</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y-H Lee</name>
</author>
<author>
<name sortKey="Valent, B" uniqKey="Valent B">B Valent</name>
</author>
<author>
<name sortKey="Kang, S" uniqKey="Kang S">S Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duplessis, S" uniqKey="Duplessis S">S Duplessis</name>
</author>
<author>
<name sortKey="Cuomo, Ca" uniqKey="Cuomo C">CA Cuomo</name>
</author>
<author>
<name sortKey="Lin, Y C" uniqKey="Lin Y">Y-C Lin</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A Aerts</name>
</author>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E Tisserant</name>
</author>
<author>
<name sortKey="Veneault Fourrey, C" uniqKey="Veneault Fourrey C">C Veneault-Fourrey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spanu, Pd" uniqKey="Spanu P">PD Spanu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horbach, R" uniqKey="Horbach R">R Horbach</name>
</author>
<author>
<name sortKey="Navarro Quesada, Ar" uniqKey="Navarro Quesada A">AR Navarro-Quesada</name>
</author>
<author>
<name sortKey="Knogge, W" uniqKey="Knogge W">W Knogge</name>
</author>
<author>
<name sortKey="Deising, Hb" uniqKey="Deising H">HB Deising</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guyon, K" uniqKey="Guyon K">K Guyon</name>
</author>
<author>
<name sortKey="Balague, C" uniqKey="Balague C">C Balagué</name>
</author>
<author>
<name sortKey="Roby, D" uniqKey="Roby D">D Roby</name>
</author>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S Raffaele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedersen, C" uniqKey="Pedersen C">C Pedersen</name>
</author>
<author>
<name sortKey="Van Themaat, E" uniqKey="Van Themaat E">E van Themaat</name>
</author>
<author>
<name sortKey="Mcguffin, L" uniqKey="Mcguffin L">L McGuffin</name>
</author>
<author>
<name sortKey="Abbott, J" uniqKey="Abbott J">J Abbott</name>
</author>
<author>
<name sortKey="Burgis, T" uniqKey="Burgis T">T Burgis</name>
</author>
<author>
<name sortKey="Barton, G" uniqKey="Barton G">G Barton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sperschneider, J" uniqKey="Sperschneider J">J Sperschneider</name>
</author>
<author>
<name sortKey="Dodds, Pn" uniqKey="Dodds P">PN Dodds</name>
</author>
<author>
<name sortKey="Gardiner, Dm" uniqKey="Gardiner D">DM Gardiner</name>
</author>
<author>
<name sortKey="Manners, Jm" uniqKey="Manners J">JM Manners</name>
</author>
<author>
<name sortKey="Singh, Kb" uniqKey="Singh K">KB Singh</name>
</author>
<author>
<name sortKey="Taylor, Jm" uniqKey="Taylor J">JM Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burg, Ef" uniqKey="Burg E">EF Burg</name>
</author>
<author>
<name sortKey="Smith, Lh" uniqKey="Smith L">LH Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bono, Jl" uniqKey="Bono J">JL Bono</name>
</author>
<author>
<name sortKey="Jaber, B" uniqKey="Jaber B">B Jaber</name>
</author>
<author>
<name sortKey="Fisher, Ma" uniqKey="Fisher M">MA Fisher</name>
</author>
<author>
<name sortKey="Abuodeh, Ro" uniqKey="Abuodeh R">RO Abuodeh</name>
</author>
<author>
<name sortKey="O Eary Jepson, E" uniqKey="O Eary Jepson E">E O’Leary-Jepson</name>
</author>
<author>
<name sortKey="Scalarone, Gm" uniqKey="Scalarone G">GM Scalarone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Win, J" uniqKey="Win J">J Win</name>
</author>
<author>
<name sortKey="Greenwood, Dr" uniqKey="Greenwood D">DR Greenwood</name>
</author>
<author>
<name sortKey="Plummer, Km" uniqKey="Plummer K">KM Plummer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chruszcz, M" uniqKey="Chruszcz M">M Chruszcz</name>
</author>
<author>
<name sortKey="Chapman, Md" uniqKey="Chapman M">MD Chapman</name>
</author>
<author>
<name sortKey="Osinski, T" uniqKey="Osinski T">T Osinski</name>
</author>
<author>
<name sortKey="Solberg, R" uniqKey="Solberg R">R Solberg</name>
</author>
<author>
<name sortKey="Demas, M" uniqKey="Demas M">M Demas</name>
</author>
<author>
<name sortKey="Porebski, Pj" uniqKey="Porebski P">PJ Porebski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kloppholz, S" uniqKey="Kloppholz S">S Kloppholz</name>
</author>
<author>
<name sortKey="Kuhn, H" uniqKey="Kuhn H">H Kuhn</name>
</author>
<author>
<name sortKey="Requena, N" uniqKey="Requena N">N Requena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mueller, O" uniqKey="Mueller O">O Mueller</name>
</author>
<author>
<name sortKey="Kahmann, R" uniqKey="Kahmann R">R Kahmann</name>
</author>
<author>
<name sortKey="Aguilar, G" uniqKey="Aguilar G">G Aguilar</name>
</author>
<author>
<name sortKey="Trejo Aguilar, B" uniqKey="Trejo Aguilar B">B Trejo-Aguilar</name>
</author>
<author>
<name sortKey="Wu, A" uniqKey="Wu A">A Wu</name>
</author>
<author>
<name sortKey="De Vries, Rp" uniqKey="De Vries R">RP de Vries</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grandaubert, J" uniqKey="Grandaubert J">J Grandaubert</name>
</author>
<author>
<name sortKey="Lowe, Rg" uniqKey="Lowe R">RG Lowe</name>
</author>
<author>
<name sortKey="Soyer, Jl" uniqKey="Soyer J">JL Soyer</name>
</author>
<author>
<name sortKey="Schoch, Cl" uniqKey="Schoch C">CL Schoch</name>
</author>
<author>
<name sortKey="Van De Wouw, Ap" uniqKey="Van De Wouw A">AP Van de Wouw</name>
</author>
<author>
<name sortKey="Fudal, I" uniqKey="Fudal I">I Fudal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S Raffaele</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S Kamoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourras, S" uniqKey="Bourras S">S Bourras</name>
</author>
<author>
<name sortKey="Mcnally, Ke" uniqKey="Mcnally K">KE McNally</name>
</author>
<author>
<name sortKey="Ben David, R" uniqKey="Ben David R">R Ben-David</name>
</author>
<author>
<name sortKey="Parlange, F" uniqKey="Parlange F">F Parlange</name>
</author>
<author>
<name sortKey="Roffler, S" uniqKey="Roffler S">S Roffler</name>
</author>
<author>
<name sortKey="Praz, Cr" uniqKey="Praz C">CR Praz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sacristan, S" uniqKey="Sacristan S">S Sacristán</name>
</author>
<author>
<name sortKey="Vigouroux, M" uniqKey="Vigouroux M">M Vigouroux</name>
</author>
<author>
<name sortKey="Pedersen, C" uniqKey="Pedersen C">C Pedersen</name>
</author>
<author>
<name sortKey="Skamnioti, P" uniqKey="Skamnioti P">P Skamnioti</name>
</author>
<author>
<name sortKey="Thordal Christensen, H" uniqKey="Thordal Christensen H">H Thordal-Christensen</name>
</author>
<author>
<name sortKey="Micali, C" uniqKey="Micali C">C Micali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spanu, Pd" uniqKey="Spanu P">PD Spanu</name>
</author>
<author>
<name sortKey="Abbott, Jc" uniqKey="Abbott J">JC Abbott</name>
</author>
<author>
<name sortKey="Amselem, J" uniqKey="Amselem J">J Amselem</name>
</author>
<author>
<name sortKey="Burgis, Ta" uniqKey="Burgis T">TA Burgis</name>
</author>
<author>
<name sortKey="Soanes, Dm" uniqKey="Soanes D">DM Soanes</name>
</author>
<author>
<name sortKey="Stuber, K" uniqKey="Stuber K">K Stüber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Guillen, K" uniqKey="De Guillen K">K de Guillen</name>
</author>
<author>
<name sortKey="Ortiz Vallejo, D" uniqKey="Ortiz Vallejo D">D Ortiz-Vallejo</name>
</author>
<author>
<name sortKey="Gracy, J" uniqKey="Gracy J">J Gracy</name>
</author>
<author>
<name sortKey="Fournier, E" uniqKey="Fournier E">E Fournier</name>
</author>
<author>
<name sortKey="Kroj, T" uniqKey="Kroj T">T Kroj</name>
</author>
<author>
<name sortKey="Padilla, A" uniqKey="Padilla A">A Padilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kubicek, Cp" uniqKey="Kubicek C">CP Kubicek</name>
</author>
<author>
<name sortKey="Baker, S" uniqKey="Baker S">S Baker</name>
</author>
<author>
<name sortKey="Gamauf, C" uniqKey="Gamauf C">C Gamauf</name>
</author>
<author>
<name sortKey="Kenerley, Cm" uniqKey="Kenerley C">CM Kenerley</name>
</author>
<author>
<name sortKey="Druzhinina, Is" uniqKey="Druzhinina I">IS Druzhinina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwan, Hy" uniqKey="Kwan H">HY Kwan</name>
</author>
<author>
<name sortKey="Winefield, Rd" uniqKey="Winefield R">RD Winefield</name>
</author>
<author>
<name sortKey="Sunde, M" uniqKey="Sunde M">M Sunde</name>
</author>
<author>
<name sortKey="Matthews, Jm" uniqKey="Matthews J">JM Matthews</name>
</author>
<author>
<name sortKey="Haverkamp, Rg" uniqKey="Haverkamp R">RG Haverkamp</name>
</author>
<author>
<name sortKey="Templeton, Md" uniqKey="Templeton M">MD Templeton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohno, S" uniqKey="Ohno S">S Ohno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, S" uniqKey="Schmidt S">S Schmidt</name>
</author>
<author>
<name sortKey="Houterman, P" uniqKey="Houterman P">P Houterman</name>
</author>
<author>
<name sortKey="Schreiver, I" uniqKey="Schreiver I">I Schreiver</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L Ma</name>
</author>
<author>
<name sortKey="Amyotte, S" uniqKey="Amyotte S">S Amyotte</name>
</author>
<author>
<name sortKey="Chellappan, B" uniqKey="Chellappan B">B Chellappan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaack, S" uniqKey="Schaack S">S Schaack</name>
</author>
<author>
<name sortKey="Gilbert, C" uniqKey="Gilbert C">C Gilbert</name>
</author>
<author>
<name sortKey="Feschotte, C" uniqKey="Feschotte C">C Feschotte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliver, R" uniqKey="Oliver R">R Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chuma, I" uniqKey="Chuma I">I Chuma</name>
</author>
<author>
<name sortKey="Isobe, C" uniqKey="Isobe C">C Isobe</name>
</author>
<author>
<name sortKey="Hotta, Y" uniqKey="Hotta Y">Y Hotta</name>
</author>
<author>
<name sortKey="Ibaragi, K" uniqKey="Ibaragi K">K Ibaragi</name>
</author>
<author>
<name sortKey="Futamata, N" uniqKey="Futamata N">N Futamata</name>
</author>
<author>
<name sortKey="Kusaba, M" uniqKey="Kusaba M">M Kusaba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foss, Ej" uniqKey="Foss E">EJ Foss</name>
</author>
<author>
<name sortKey="Garrett, Pw" uniqKey="Garrett P">PW Garrett</name>
</author>
<author>
<name sortKey="Kinsey, Ja" uniqKey="Kinsey J">JA Kinsey</name>
</author>
<author>
<name sortKey="Selker, Eu" uniqKey="Selker E">EU Selker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hane, Jk" uniqKey="Hane J">JK Hane</name>
</author>
<author>
<name sortKey="Williams, Ah" uniqKey="Williams A">AH Williams</name>
</author>
<author>
<name sortKey="Taranto, Ap" uniqKey="Taranto A">AP Taranto</name>
</author>
<author>
<name sortKey="Solomon, Ps" uniqKey="Solomon P">PS Solomon</name>
</author>
<author>
<name sortKey="Oliver, Rp" uniqKey="Oliver R">RP Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broggini, Gal" uniqKey="Broggini G">GAL Broggini</name>
</author>
<author>
<name sortKey="Bus, Vgm" uniqKey="Bus V">VGM Bus</name>
</author>
<author>
<name sortKey="Parravicini, G" uniqKey="Parravicini G">G Parravicini</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Groenwold, R" uniqKey="Groenwold R">R Groenwold</name>
</author>
<author>
<name sortKey="Gessler, C" uniqKey="Gessler C">C Gessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stehmann, C" uniqKey="Stehmann C">C Stehmann</name>
</author>
<author>
<name sortKey="Pennycook, S" uniqKey="Pennycook S">S Pennycook</name>
</author>
<author>
<name sortKey="Plummer, Km" uniqKey="Plummer K">KM Plummer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parker, Dm" uniqKey="Parker D">DM Parker</name>
</author>
<author>
<name sortKey="Hilber, Uw" uniqKey="Hilber U">UW Hilber</name>
</author>
<author>
<name sortKey="Bodmer, M" uniqKey="Bodmer M">M Bodmer</name>
</author>
<author>
<name sortKey="Smith, Fd" uniqKey="Smith F">FD Smith</name>
</author>
<author>
<name sortKey="Yao, C" uniqKey="Yao C">C Yao</name>
</author>
<author>
<name sortKey="Koller, W" uniqKey="Koller W">W Köller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, S" uniqKey="Chang S">S Chang</name>
</author>
<author>
<name sortKey="Puryear, J" uniqKey="Puryear J">J Puryear</name>
</author>
<author>
<name sortKey="Cairney, J" uniqKey="Cairney J">J Cairney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Alcantara, A" uniqKey="Martinez Alcantara A">A Martínez-Alcántara</name>
</author>
<author>
<name sortKey="Ballesteros, E" uniqKey="Ballesteros E">E Ballesteros</name>
</author>
<author>
<name sortKey="Feng, C" uniqKey="Feng C">C Feng</name>
</author>
<author>
<name sortKey="Rojas, M" uniqKey="Rojas M">M Rojas</name>
</author>
<author>
<name sortKey="Koshinsky, H" uniqKey="Koshinsky H">H Koshinsky</name>
</author>
<author>
<name sortKey="Fofanov, Vy" uniqKey="Fofanov V">VY Fofanov</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
<author>
<name sortKey="Ruan, J" uniqKey="Ruan J">J Ruan</name>
</author>
<author>
<name sortKey="Qian, W" uniqKey="Qian W">W Qian</name>
</author>
<author>
<name sortKey="Fang, X" uniqKey="Fang X">X Fang</name>
</author>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boetzer, M" uniqKey="Boetzer M">M Boetzer</name>
</author>
<author>
<name sortKey="Henkel, Cv" uniqKey="Henkel C">CV Henkel</name>
</author>
<author>
<name sortKey="Jansen, Hj" uniqKey="Jansen H">HJ Jansen</name>
</author>
<author>
<name sortKey="Butler, D" uniqKey="Butler D">D Butler</name>
</author>
<author>
<name sortKey="Pirovano, W" uniqKey="Pirovano W">W Pirovano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurka, J" uniqKey="Jurka J">J Jurka</name>
</author>
<author>
<name sortKey="Kapitonov, Vv" uniqKey="Kapitonov V">VV Kapitonov</name>
</author>
<author>
<name sortKey="Pavlicek, A" uniqKey="Pavlicek A">A Pavlicek</name>
</author>
<author>
<name sortKey="Klonowski, P" uniqKey="Klonowski P">P Klonowski</name>
</author>
<author>
<name sortKey="Kohany, O" uniqKey="Kohany O">O Kohany</name>
</author>
<author>
<name sortKey="Walichiewicz, J" uniqKey="Walichiewicz J">J Walichiewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Al" uniqKey="Price A">AL Price</name>
</author>
<author>
<name sortKey="Jones, Nc" uniqKey="Jones N">NC Jones</name>
</author>
<author>
<name sortKey="Pevzner, Pa" uniqKey="Pevzner P">PA Pevzner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benson, G" uniqKey="Benson G">G Benson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abrusan, G" uniqKey="Abrusan G">G Abrusan</name>
</author>
<author>
<name sortKey="Grundmann, N" uniqKey="Grundmann N">N Grundmann</name>
</author>
<author>
<name sortKey="Demeester, L" uniqKey="Demeester L">L DeMeester</name>
</author>
<author>
<name sortKey="Makalowski, W" uniqKey="Makalowski W">W Makalowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slater, Gsc" uniqKey="Slater G">GSC Slater</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanke, M" uniqKey="Stanke M">M Stanke</name>
</author>
<author>
<name sortKey="Diekhans, M" uniqKey="Diekhans M">M Diekhans</name>
</author>
<author>
<name sortKey="Baertsch, R" uniqKey="Baertsch R">R Baertsch</name>
</author>
<author>
<name sortKey="Haussler, D" uniqKey="Haussler D">D Haussler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pachter, L" uniqKey="Pachter L">L Pachter</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Williams, Ba" uniqKey="Williams B">BA Williams</name>
</author>
<author>
<name sortKey="Pertea, G" uniqKey="Pertea G">G Pertea</name>
</author>
<author>
<name sortKey="Mortazavi, A" uniqKey="Mortazavi A">A Mortazavi</name>
</author>
<author>
<name sortKey="Kwan, G" uniqKey="Kwan G">G Kwan</name>
</author>
<author>
<name sortKey="Van Baren, Mj" uniqKey="Van Baren M">MJ van Baren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabherr, Mg" uniqKey="Grabherr M">MG Grabherr</name>
</author>
<author>
<name sortKey="Haas, Bj" uniqKey="Haas B">BJ Haas</name>
</author>
<author>
<name sortKey="Yassour, M" uniqKey="Yassour M">M Yassour</name>
</author>
<author>
<name sortKey="Levin, Jz" uniqKey="Levin J">JZ Levin</name>
</author>
<author>
<name sortKey="Thompson, Da" uniqKey="Thompson D">DA Thompson</name>
</author>
<author>
<name sortKey="Amit, I" uniqKey="Amit I">I Amit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haas, Bj" uniqKey="Haas B">BJ Haas</name>
</author>
<author>
<name sortKey="Papanicolaou, A" uniqKey="Papanicolaou A">A Papanicolaou</name>
</author>
<author>
<name sortKey="Yassour, M" uniqKey="Yassour M">M Yassour</name>
</author>
<author>
<name sortKey="Grabherr, M" uniqKey="Grabherr M">M Grabherr</name>
</author>
<author>
<name sortKey="Blood, Pd" uniqKey="Blood P">PD Blood</name>
</author>
<author>
<name sortKey="Bowden, J" uniqKey="Bowden J">J Bowden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulz, Mh" uniqKey="Schulz M">MH Schulz</name>
</author>
<author>
<name sortKey="Zerbino, Dr" uniqKey="Zerbino D">DR Zerbino</name>
</author>
<author>
<name sortKey="Vingron, M" uniqKey="Vingron M">M Vingron</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, B" uniqKey="Li B">B Li</name>
</author>
<author>
<name sortKey="Dewey, Cn" uniqKey="Dewey C">CN Dewey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, Md" uniqKey="Robinson M">MD Robinson</name>
</author>
<author>
<name sortKey="Mccarthy, Dj" uniqKey="Mccarthy D">DJ McCarthy</name>
</author>
<author>
<name sortKey="Smyth, Gk" uniqKey="Smyth G">GK Smyth</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, Tn" uniqKey="Petersen T">TN Petersen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bendtsen, Jd" uniqKey="Bendtsen J">JD Bendtsen</name>
</author>
<author>
<name sortKey="Jensen, Lj" uniqKey="Jensen L">LJ Jensen</name>
</author>
<author>
<name sortKey="Blom, N" uniqKey="Blom N">N Blom</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emanuelsson, O" uniqKey="Emanuelsson O">O Emanuelsson</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horton, P" uniqKey="Horton P">P Horton</name>
</author>
<author>
<name sortKey="Park, K J" uniqKey="Park K">K-J Park</name>
</author>
<author>
<name sortKey="Obayashi, T" uniqKey="Obayashi T">T Obayashi</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N Fujita</name>
</author>
<author>
<name sortKey="Harada, H" uniqKey="Harada H">H Harada</name>
</author>
<author>
<name sortKey="Adams Collier, Cj" uniqKey="Adams Collier C">CJ Adams-Collier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tatusova, T" uniqKey="Tatusova T">T Tatusova</name>
</author>
<author>
<name sortKey="Ciufo, S" uniqKey="Ciufo S">S Ciufo</name>
</author>
<author>
<name sortKey="Fedorov, B" uniqKey="Fedorov B">B Fedorov</name>
</author>
<author>
<name sortKey="O Eill, K" uniqKey="O Eill K">K O’Neill</name>
</author>
<author>
<name sortKey="Tolstoy, I" uniqKey="Tolstoy I">I Tolstoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitchell, A" uniqKey="Mitchell A">A Mitchell</name>
</author>
<author>
<name sortKey="Chang, H Y" uniqKey="Chang H">H-Y Chang</name>
</author>
<author>
<name sortKey="Daugherty, L" uniqKey="Daugherty L">L Daugherty</name>
</author>
<author>
<name sortKey="Fraser, M" uniqKey="Fraser M">M Fraser</name>
</author>
<author>
<name sortKey="Hunter, S" uniqKey="Hunter S">S Hunter</name>
</author>
<author>
<name sortKey="Lopez, R" uniqKey="Lopez R">R Lopez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzek, Be" uniqKey="Suzek B">BE Suzek</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
<author>
<name sortKey="Mcgarvey, Pb" uniqKey="Mcgarvey P">PB McGarvey</name>
</author>
<author>
<name sortKey="Wu, Ch" uniqKey="Wu C">CH Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sigrist, Cja" uniqKey="Sigrist C">CJA Sigrist</name>
</author>
<author>
<name sortKey="De Castro, E" uniqKey="De Castro E">E de Castro</name>
</author>
<author>
<name sortKey="Cerutti, L" uniqKey="Cerutti L">L Cerutti</name>
</author>
<author>
<name sortKey="Cuche, Ba" uniqKey="Cuche B">BA Cuche</name>
</author>
<author>
<name sortKey="Hulo, N" uniqKey="Hulo N">N Hulo</name>
</author>
<author>
<name sortKey="Bridge, A" uniqKey="Bridge A">A Bridge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Dongen, S" uniqKey="Van Dongen S">S van Dongen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goujon, M" uniqKey="Goujon M">M Goujon</name>
</author>
<author>
<name sortKey="Mcwilliam, H" uniqKey="Mcwilliam H">H McWilliam</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Valentin, F" uniqKey="Valentin F">F Valentin</name>
</author>
<author>
<name sortKey="Squizzato, S" uniqKey="Squizzato S">S Squizzato</name>
</author>
<author>
<name sortKey="Paern, J" uniqKey="Paern J">J Paern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcwilliam, H" uniqKey="Mcwilliam H">H McWilliam</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Uludag, M" uniqKey="Uludag M">M Uludag</name>
</author>
<author>
<name sortKey="Squizzato, S" uniqKey="Squizzato S">S Squizzato</name>
</author>
<author>
<name sortKey="Park, Ym" uniqKey="Park Y">YM Park</name>
</author>
<author>
<name sortKey="Buso, N" uniqKey="Buso N">N Buso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heger, A" uniqKey="Heger A">A Heger</name>
</author>
<author>
<name sortKey="Holm, L" uniqKey="Holm L">L Holm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duckert, P" uniqKey="Duckert P">P Duckert</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Blom, N" uniqKey="Blom N">N Blom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zdobnov, Em" uniqKey="Zdobnov E">EM Zdobnov</name>
</author>
<author>
<name sortKey="Apweiler, R" uniqKey="Apweiler R">R Apweiler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="She, R" uniqKey="She R">R She</name>
</author>
<author>
<name sortKey="Chu, Js C" uniqKey="Chu J">JS-C Chu</name>
</author>
<author>
<name sortKey="Uyar, B" uniqKey="Uyar B">B Uyar</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K Wang</name>
</author>
<author>
<name sortKey="Chen, N" uniqKey="Chen N">N Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Notredame, C" uniqKey="Notredame C">C Notredame</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
<author>
<name sortKey="Heringa, J" uniqKey="Heringa J">J Heringa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallace, Im" uniqKey="Wallace I">IM Wallace</name>
</author>
<author>
<name sortKey="O Ullivan, O" uniqKey="O Ullivan O">O O’Sullivan</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
<author>
<name sortKey="Notredame, C" uniqKey="Notredame C">C Notredame</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beitz, E" uniqKey="Beitz E">E Beitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, Dgo" uniqKey="Saunders D">DGO Saunders</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J Win</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S Kamoun</name>
</author>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S Raffaele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flutre, T" uniqKey="Flutre T">T Flutre</name>
</author>
<author>
<name sortKey="Duprat, E" uniqKey="Duprat E">E Duprat</name>
</author>
<author>
<name sortKey="Feuillet, C" uniqKey="Feuillet C">C Feuillet</name>
</author>
<author>
<name sortKey="Quesneville, H" uniqKey="Quesneville H">H Quesneville</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caffier, V" uniqKey="Caffier V">V Caffier</name>
</author>
<author>
<name sortKey="Patocchi, A" uniqKey="Patocchi A">A Patocchi</name>
</author>
<author>
<name sortKey="Expert, P" uniqKey="Expert P">P Expert</name>
</author>
<author>
<name sortKey="Bellanger, Mn" uniqKey="Bellanger M">MN Bellanger</name>
</author>
<author>
<name sortKey="Durel, Ce" uniqKey="Durel C">CE Durel</name>
</author>
<author>
<name sortKey="Hilber Bodmer, M" uniqKey="Hilber Bodmer M">M Hilber-Bodmer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Genomics</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Genomics</journal-id>
<journal-title-group>
<journal-title>BMC Genomics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2164</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28464870</article-id>
<article-id pub-id-type="pmc">5412055</article-id>
<article-id pub-id-type="publisher-id">3699</article-id>
<article-id pub-id-type="doi">10.1186/s12864-017-3699-1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparative analysis of the predicted secretomes of Rosaceae scab pathogens
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
reveals expanded effector families and putative determinants of host range</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Deng</surname>
<given-names>Cecilia H.</given-names>
</name>
<address>
<email>Cecilia.Deng@plantandfood.co.nz</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Plummer</surname>
<given-names>Kim M.</given-names>
</name>
<address>
<phone>+61 (3) 9032 7474</phone>
<email>K.Plummer@latrobe.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jones</surname>
<given-names>Darcy A. B.</given-names>
</name>
<address>
<email>darcy.a.jones@postgrad.curtin.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mesarich</surname>
<given-names>Carl H.</given-names>
</name>
<address>
<email>C.Mesarich@Massey.ac.nz</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
<xref ref-type="aff" rid="Aff8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shiller</surname>
<given-names>Jason</given-names>
</name>
<address>
<email>jason.shiller@inra.fr</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Taranto</surname>
<given-names>Adam P.</given-names>
</name>
<address>
<email>adam.taranto@anu.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Robinson</surname>
<given-names>Andrew J.</given-names>
</name>
<address>
<email>Andrew.Robinson@latrobe.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kastner</surname>
<given-names>Patrick</given-names>
</name>
<address>
<email>P.Kastner@latrobe.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hall</surname>
<given-names>Nathan E.</given-names>
</name>
<address>
<email>N.Hall@latrobe.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Templeton</surname>
<given-names>Matthew D.</given-names>
</name>
<address>
<email>Matt.Templeton@plantandfood.co.nz</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Bowen</surname>
<given-names>Joanna K.</given-names>
</name>
<address>
<phone>+64 (9) 925 7154</phone>
<email>Joanna.Bowen@plantandfood.co.nz</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.27859.31</institution-id>
<institution></institution>
<institution>The New Zealand Institute for Plant & Food Research Limited (PFR),</institution>
</institution-wrap>
Auckland, New Zealand</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2342 0938</institution-id>
<institution-id institution-id-type="GRID">grid.1018.8</institution-id>
<institution>Animal, Plant & Soil Sciences Department,</institution>
<institution>AgriBio Centre for AgriBioscience, La Trobe University,</institution>
</institution-wrap>
Melbourne, Victoria Australia</aff>
<aff id="Aff3">
<label>3</label>
Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0372 3343</institution-id>
<institution-id institution-id-type="GRID">grid.9654.e</institution-id>
<institution>The School of Biological Sciences,</institution>
<institution>University of Auckland,</institution>
</institution-wrap>
Auckland, New Zealand</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Plant Sciences Division,</institution>
<institution>Research School of Biology, The Australian National University,</institution>
</institution-wrap>
Canberra, Australia</aff>
<aff id="Aff6">
<label>6</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.452643.2</institution-id>
<institution></institution>
<institution>Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI),</institution>
</institution-wrap>
Victoria, Australia</aff>
<aff id="Aff7">
<label>7</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0375 4078</institution-id>
<institution-id institution-id-type="GRID">grid.1032.0</institution-id>
<institution>Present Address: The Centre for Crop and Disease Management,</institution>
<institution>Curtin University,</institution>
</institution-wrap>
Bentley, Australia</aff>
<aff id="Aff8">
<label>8</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.148374.d</institution-id>
<institution>Present Address: Institute of Agriculture & Environment,</institution>
<institution>Massey University,</institution>
</institution-wrap>
Palmerston North, New Zealand</aff>
<aff id="Aff9">
<label>9</label>
Present Address: INRA-Angers, Beaucouzé, Cedex, France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>2</day>
<month>5</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>2</day>
<month>5</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>18</volume>
<elocation-id>339</elocation-id>
<history>
<date date-type="received">
<day>9</day>
<month>12</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>4</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The New Zealand Institute for Plant and Food Research Limited. 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Fungal plant pathogens belonging to the genus
<italic>Venturia</italic>
cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are
<italic>V. inaequalis</italic>
, which infects apple, and
<italic>V. pirina</italic>
, which is a pathogen of European pear. Given that
<italic>Venturia</italic>
fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of
<italic>Venturia</italic>
with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity.</p>
</sec>
<sec>
<title>Results</title>
<p>Genomes of
<italic>Venturia pirina</italic>
(one European pear scab isolate) and
<italic>Venturia inaequalis</italic>
(three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific
<italic>V. inaequalis</italic>
isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to
<italic>Venturia</italic>
, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to
<italic>Leptosphaeria maculans AvrLm6</italic>
and the
<italic>Verticillium</italic>
spp.
<italic>Ave1</italic>
were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Comparative secretomics has revealed candidate effectors from
<italic>Venturia</italic>
fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-017-3699-1) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>
<italic>Venturia inaequalis</italic>
</kwd>
<kwd>
<italic>Venturia pirina</italic>
</kwd>
<kwd>Apple</kwd>
<kwd>
<italic>Malus</italic>
x
<italic>domestica</italic>
</kwd>
<kwd>European pear</kwd>
<kwd>
<italic>Pyrus communis</italic>
</kwd>
<kwd>Secretome</kwd>
<kwd>Effector</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution>The New Zealand Foundation for Research, Science and Technology</institution>
</funding-source>
<award-id>C06X0302 C06X0207</award-id>
</award-group>
<award-group>
<funding-source>
<institution>Victorian Life Sciences Computation Initiative’s (VLSCI) Life Sciences Computation Centre</institution>
</funding-source>
</award-group>
<award-group>
<funding-source>
<institution>Victorian Life Sciences Computation Initiative’s (VLSCI) Life Sciences Computation Centre</institution>
</funding-source>
</award-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100001215</institution-id>
<institution>La Trobe University</institution>
</institution-wrap>
</funding-source>
</award-group>
<award-group>
<funding-source>
<institution>Victorian Life Sciences Computation Initiative</institution>
</funding-source>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Background</title>
<p>Plant-pathogen interactions are a fine interplay between prospective host and pathogen, involving the exchange of molecular signals that determine the outcome of the interaction. The plant endeavours to detect invaders by deploying, as a first line of defence, pattern recognition receptors that recognise pathogen-associated molecular patterns (PAMPs) shared by a wide range of non-specialised microbes, with a resulting induction of a low-level defence response termed PAMP-triggered immunity (PTI). In response, pathogens evolve effectors that enhance a pathogen’s ability to cause disease, often by blocking or suppressing PTI [
<xref ref-type="bibr" rid="CR1">1</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
]. Plants in turn evolve resistance (R) proteins that recognise a subset of these effectors either directly or by their actions on plant host targets. Thus the respective effector and R protein complements can contribute to the determination of host-range for any given pathogen.</p>
<p>The genus
<italic>Venturia</italic>
belongs to the order Venturiales, which is assigned to the class Dothideomycetes [
<xref ref-type="bibr" rid="CR5">5</xref>
]. The Dothideomycetes include many highly destructive plant pathogens, the
<italic>Venturiales</italic>
being no exception.
<italic>Venturia</italic>
pathogens are relatively host-specific and infect selected members of the family Rosaceae, perhaps the best known and most widely researched of which is
<italic>V. inaequalis</italic>
Cooke (Wint.) that causes the economically important disease apple scab [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
]. Related species, for example
<italic>V. pirina</italic>
,
<italic>V. nashicola</italic>
,
<italic>V. carpophila</italic>
and
<italic>V. cerasi</italic>
, cause scab diseases of other Rosaceae hosts: European pear, Asian pear, peach and cherry respectively [
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR11">11</xref>
].
<italic>Venturia</italic>
species cause similar symptoms by adopting analogous biotrophic parasitic strategies [
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR10">10</xref>
]. During infection they penetrate the host cuticle directly and then develop stromata (laterally dividing, pseudoparenchymatous cells) in the cuticle and sub-cuticular space without penetrating host cells. Ultimately conidiophores and conidia differentiate from stromata and erupt through the cuticle resulting in the formation of dark, crusty, dry lesions (scabs) on leaves and fruit. A fundamental question arises as to what determines the host range of these pathogens, especially given that they have similar modes of biotrophic parasitism and infect closely related host species.</p>
<p>A further level of complexity underlies pathogen/host species specificity in scab fungi, for example, certain isolates classified as
<italic>V. inaequalis</italic>
on the basis of morphological and molecular criteria, as well as their ability to mate, are unable to infect
<italic>Malus</italic>
, but instead infect different Rosaceous hosts, such as
<italic>Eriobotrya</italic>
(loquat) and
<italic>Pyracantha</italic>
(firethorn) [
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
]. Whether these isolates should be considered as separate species or formae speciales is still open to debate. Gladieux and associates [
<xref ref-type="bibr" rid="CR13">13</xref>
] suggested that there should be no sub-species delineation based on analysis of six nuclear loci. These isolates are therefore very closely related phylogenetically, but have distinct host specificities. Host cultivar specificity has long been demonstrated in isolates of
<italic>V. inaequalis</italic>
that infect
<italic>Malus</italic>
[
<xref ref-type="bibr" rid="CR14">14</xref>
]; 17 gene-for-gene pairings have been identified to date between races of
<italic>V. inaequalis</italic>
and cultivars of
<italic>Malus</italic>
. Only two scab
<italic>R</italic>
gene loci in apple (
<italic>Rvi6</italic>
and
<italic>Rvi15</italic>
) have been fully characterised [
<xref ref-type="bibr" rid="CR15">15</xref>
<xref ref-type="bibr" rid="CR18">18</xref>
]; however, no effectors of
<italic>V. inaequalis</italic>
have been characterised to date
<italic>.</italic>
Work to identify the
<italic>V. inaequalis</italic>
effector repertoire that determines cultivar specificity, and most probably host specificity, has been impeded by the lack of a whole genome sequence for this species.</p>
<p>Genome estimates for
<italic>V. inaequalis</italic>
range from 38 Mb [
<xref ref-type="bibr" rid="CR19">19</xref>
] to 100 Mb [
<xref ref-type="bibr" rid="CR20">20</xref>
]. The de novo transcriptome of a single isolate of
<italic>V. inaequalis</italic>
has been published [
<xref ref-type="bibr" rid="CR21">21</xref>
], with analysis of both in vitro and in planta transcripts. In our study the whole genome sequences of four isolates of
<italic>V. inaequalis</italic>
(three physiological races, differing in their ability to infect apple accessions carrying different
<italic>R</italic>
genes, and a loquat-infecting isolate) were sequenced using Illumina sequencing technologies. The
<italic>V. inaequalis</italic>
genomes were compared to a single
<italic>V. pirina</italic>
genome [
<xref ref-type="bibr" rid="CR22">22</xref>
]. Given the extracellular in planta niche the
<italic>Venturia</italic>
fungi occupy during parasitism it can be assumed that the majority of the factors that enable successful parasitism are first secreted into the sub-cuticular plant-pathogen interface. Therefore the secretomes of these isolates are of utmost relevance and so were compared to identify putative pathogencity or virulence factors that may have a role in host determination, with special emphasis on secreted enzymes and putative proteinaceous effectors.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Whole genome assemblies and gene predictions</title>
<p>A total of 40 Mb (Vi1.2.8.9) to 61 Mb (Vi1.10) was assembled for
<italic>Malus</italic>
-infecting
<italic>V. inaequalis</italic>
isolates. The assembled genome size for the loquat scab pathogen (ViL) was 62 and 41 Mb for the pear scab pathogen (Vp). Lack of sequencing of mate-pair libraries with long inserts contributed to the Vi1.2.8.9 assembly having the lowest N50 value (~49 kb) among the five isolates, while Vp had the largest N50 (332 kb, Table 
<xref rid="Tab1" ref-type="table">1</xref>
, Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
). A summary of the repeat content masked for each genome assembly is presented in Table 
<xref rid="Tab1" ref-type="table">1</xref>
and Additional file
<xref rid="MOESM2" ref-type="media">2</xref>
.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>The whole genome assemblies of isolates of
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Species</th>
<th colspan="4">
<italic>Venturia inaequalis</italic>
</th>
<th>
<italic>Venturia pirina</italic>
</th>
</tr>
<tr>
<th>Isolate (race)</th>
<th>Vi1 (race 1) = ICMP13258 = MNH120</th>
<th>Vi1.10 (race 1,10) = EU-B04
<sup>d</sup>
</th>
<th>Vi1.2.8.9 (race 1,2,8,9) = 1639</th>
<th>ViL = 1389</th>
<th>Vp = ICMP11032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host range</td>
<td>
<italic>Malus</italic>
 × 
<italic>domestica</italic>
</td>
<td>
<italic>Malus</italic>
 × 
<italic>domestica</italic>
</td>
<td>
<italic>Malus</italic>
 × 
<italic>domestica</italic>
</td>
<td>
<italic>Eriobotrya japonica</italic>
</td>
<td>
<italic>Pyrus communis</italic>
</td>
</tr>
<tr>
<td>Estimated genome coverage</td>
<td>120x</td>
<td>90x</td>
<td>89x</td>
<td>89x</td>
<td>74x</td>
</tr>
<tr>
<td>Package used for assembly</td>
<td>Velvet</td>
<td>ALLPATHS -LG</td>
<td>Velvet</td>
<td>ALLPATHS -LG</td>
<td>Velvet</td>
</tr>
<tr>
<td>Number of scaffolds</td>
<td>1012</td>
<td>1415</td>
<td>1680</td>
<td>1040</td>
<td>364</td>
</tr>
<tr>
<td>Size (Mb)</td>
<td>55</td>
<td>61</td>
<td>40</td>
<td>62</td>
<td>41</td>
</tr>
<tr>
<td>N50</td>
<td>233760</td>
<td>136376</td>
<td>48770</td>
<td>213378</td>
<td>332167</td>
</tr>
<tr>
<td>N90</td>
<td>16289</td>
<td>23736</td>
<td>11843</td>
<td>37088</td>
<td>81548</td>
</tr>
<tr>
<td>Repeats in total genome (%)</td>
<td>4.11%</td>
<td>33.41%</td>
<td>0.74%</td>
<td>35.60%</td>
<td>7.28%</td>
</tr>
<tr>
<td>Number of predicted genes
<sup>a</sup>
</td>
<td>13333/12546</td>
<td>12234</td>
<td>12868</td>
<td>12258</td>
<td>11960</td>
</tr>
<tr>
<td>Percentage completeness: partial (full)
<sup>b</sup>
</td>
<td>99.60 (99.19)</td>
<td>98.79 (95.16)</td>
<td>98.39 (94.76)</td>
<td>97.58 (94.76)</td>
<td>98.39 (95.16)</td>
</tr>
<tr>
<td>Percentage completeness: partial (full)
<sup>c</sup>
</td>
<td>99.51 (96.45)</td>
<td>99.37 (97.01)</td>
<td>99.37 (96.94)</td>
<td>99.51 (97.22)</td>
<td>99.65 (97.01)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Hybrid with hints/ab initio gene predictions for Vi1</p>
<p>
<sup>b</sup>
CEGMA analysis using both partial and full gene sequences [
<xref ref-type="bibr" rid="CR25">25</xref>
]</p>
<p>
<sup>c</sup>
BUSCO analysis using both partial and full gene sequences [
<xref ref-type="bibr" rid="CR26">26</xref>
]</p>
<p>
<sup>d</sup>
Note the recent race designation change reported for EU-B04 [
<xref ref-type="bibr" rid="CR187">187</xref>
], previously reported as race (1,14) by Bus et al. [
<xref ref-type="bibr" rid="CR14">14</xref>
]</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Gene models were predicted with AUGUSTUS gene prediction software (Table 
<xref rid="Tab1" ref-type="table">1</xref>
and Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
) [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR24">24</xref>
]. The number of gene models in the
<italic>V. inaequalis</italic>
isolates ranged from 12,234 to 13,333 whereas there were 11,960 identified in
<italic>V. pirina</italic>
. To estimate the completeness of the assembled genomes, the assemblies were scanned for the 248 most highly conserved core eukaryotic genes using the Core Eukaryotic Genes Mapping Approach (CEGMA; Table 
<xref rid="Tab1" ref-type="table">1</xref>
and Additional file
<xref rid="MOESM4" ref-type="media">4</xref>
) [
<xref ref-type="bibr" rid="CR25">25</xref>
]. Comparisons of partial or complete predicted translated proteins demonstrated that the
<italic>V. inaequalis</italic>
Vi1 genome is the most complete, with only one or two core eukaryotic genes missing respectively. The lowest representation of the 248 core eukaryotic genes in any genome was still high, 235 complete and another seven partial predicted proteins for
<italic>V. inaequalis</italic>
ViL, indicating a reasonably complete whole genome sequence for all isolates. In addition, a Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis was also conducted using BUSCO_v1.1b [
<xref ref-type="bibr" rid="CR26">26</xref>
]. This analysis indicated that the
<italic>V. pirina</italic>
genome is the most complete and of the
<italic>V. inaequalis</italic>
genomes Vi1 and ViL are the most complete when partial predicted proteins are considered, although on comparison of complete predicted proteins the ViL genome is the most complete (Table 
<xref rid="Tab1" ref-type="table">1</xref>
and Additional file
<xref rid="MOESM5" ref-type="media">5</xref>
). Since Vi1 was the most comprehensive
<italic>V. inaequalis</italic>
genome in terms of coverage when CEGMA and BUSCO analyses were taken together, and is predicted to have the most complete set of avirulence effectors (due to the avirulent phenotype of this isolate on all but one of the set of resistant apple host differentials following inoculation in glasshouse trials; Vincent Bus, personal communication), this isolate was selected for preliminary expression (RNA-Seq) analyses.</p>
</sec>
<sec id="Sec4">
<title>The predicted secretomes of
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
</title>
<p>To predict the secretome of each isolate, gene models were analysed with a pipeline of programmes (Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
). The total number of genes encoding the predicted secretome for each genome is as follows: 1622 in Vi1; 1158 in Vi1.10; 1324 in Vi1.2.8.9; 1131 in ViL and 1139 in Vp. The number of predicted proteins in the Vi1 secretome is greater than that for the other genomes due to use of both ab initio (based on the trained species model) and hybrid (evidence informed) gene predictions in the analysis. Thakur et al. [
<xref ref-type="bibr" rid="CR21">21</xref>
] reported a lower predicted secretome number of 946, however this was based on transcriptome data alone and, as such, direct comparison is problematic. Gene ontology analysis through an in-house annotation pipeline (BioView; Ross Crowhurst, Marcus Davy and Cecilia Deng, unpublished) was used to annotate predicted genes in each secretome; however, the majority of the predicted proteins had no gene ontology classification. Hence, for this reason, the Carbohydrate Active Enzyme (CAZyme) Analysis Toolkit (CAT) [
<xref ref-type="bibr" rid="CR27">27</xref>
], and similarity searches utilising BLASTp [
<xref ref-type="bibr" rid="CR28">28</xref>
] against the NCBI non-redundant (nr) database [
<xref ref-type="bibr" rid="CR29">29</xref>
] were used in addition to gene ontology. Where conflicting designations occurred, CAT, then gene ontology took precedence over similarity search designations. The secretome repertoire, in terms of diversity and abundance of protein classes, was similar between all
<italic>Venturia</italic>
isolates, with small, secreted, non-enzymatic proteins (SSPs) dominating (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). For comparative purposes the secretomes of three plant pathogenic fungi,
<italic>Parastagonospora nodorum</italic>
(synonym:
<italic>Stagonospora nodorum</italic>
),
<italic>Cladosporium fulvum</italic>
and
<italic>Puccinia graminis</italic>
f. sp
<italic>tritici</italic>
were also identified using the same pipeline of programmes using predicted proteins downloaded from the Joint Genome Institute (JGI; Additional files
<xref rid="MOESM6" ref-type="media">6</xref>
and
<xref rid="MOESM7" ref-type="media">7</xref>
). The size of the
<italic>P. graminis</italic>
f. sp
<italic>tritici</italic>
secretome (1820 predicted proteins) was significantly larger than that recorded for
<italic>C. fulvum</italic>
and
<italic>P. nodorum</italic>
(1170 and 1122 predicted proteins respectively). The size of the Vi1 secretome was similar to that of
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
, whereas the remaining
<italic>Venturia</italic>
secretomes were of a similar size to those of
<italic>P. nodorum</italic>
and
<italic>C. fulvum</italic>
.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>The secretomes of four isolates of
<italic>V. inaequalis</italic>
and one isolate of
<italic>V. pirina</italic>
. Annotations were based on gene ontology analysis including interrogation of NCBI RefSeq [
<xref ref-type="bibr" rid="CR168">168</xref>
], InterPro [
<xref ref-type="bibr" rid="CR169">169</xref>
], UniRef [
<xref ref-type="bibr" rid="CR170">170</xref>
], ExPASy UniProtKB/Swiss-Prot [
<xref ref-type="bibr" rid="CR171">171</xref>
] and ExPASy Prosite [
<xref ref-type="bibr" rid="CR172">172</xref>
], CAZyme identification using the CAT server [
<xref ref-type="bibr" rid="CR27">27</xref>
] and BLASTp searches against the NCBI non-redundant database [
<xref ref-type="bibr" rid="CR29">29</xref>
]. Small secreted proteins (SSPs) include predicted proteins with similarity to known effectors and proteins with no known function, either with or without putative conserved motifs identified by PfamScan [
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR38">38</xref>
]</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p>OrthoMCL was conducted to assess similarity between the predicted
<italic>Venturia</italic>
secretomes (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
and Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
) [
<xref ref-type="bibr" rid="CR30">30</xref>
]. A total of 898 isolate-specific singletons were identified (310 in Vi1; 37 in Vi1.10; 118 in Vi1.2.8.9; 88 in ViL, and 345 in Vp) but are not included in the OrthoMCL clustering figure (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). The
<italic>Venturia</italic>
core secretome (those predicted secreted proteins represented in all
<italic>Venturia</italic>
isolates) consisted of 514 orthologous clusters, with CAZymes (163) and non-enzymatic SSPs (225) being the predominant classes (Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
). The
<italic>Venturia</italic>
pan secretome (the sum of all predicted secreted proteins from all
<italic>Venturia</italic>
isolates) totalled 5474 representing 2238 individual proteins (1340 clusters, plus 898 isolate-specific singletons), with many lineage-specific and host-specificity candidates identified, most of which were predicted to encode non-enzymatic SSPs. The majority of these SSPs had no significant similarity to proteins in the public domain. The
<italic>V. inaequalis</italic>
-unique (including both apple- and loquat-infecting strains) pan secretome totalled 2033 representing 1156 individual proteins (603 clusters and 553 singletons), with a total of 929 representing 672 individual proteins (207 clusters plus 465 singletons) specific to apple-infecting isolates, with 85 of the clusters (mostly with a single protein from each isolate) found in all three isolates. There were 88 singletons, but no unique clusters specific to the loquat-infecting isolate ViL. The
<italic>V. pirina</italic>
-specific secretome totalled 480 representing 387 individual proteins, with 16 unique protein clusters and 345 singletons.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Proteins in the secretomes of four isolates of
<italic>Venturia inaequalis</italic>
and one of
<italic>V. pirina</italic>
. Similar proteins in each of the secretomes were identified by OrthoMCL-2.0.3 [
<xref ref-type="bibr" rid="CR30">30</xref>
] together with the Markov clustering algorithm mcl-09-149 [
<xref ref-type="bibr" rid="CR173">173</xref>
]. Similarity levels were calculated based on reciprocal BLASTp similarity searches between the protein sequences with an e value threshold of 1e-10. Figures within the boxes represent the number of proteins in each cluster, whereas figures outside the wheel are the number of clusters in each sector. Those proteins that are singletons within each secretome are not represented</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>Two sets of RNA-Seq data, from libraries made with RNA harvested from
<italic>V. inaequalis</italic>
Vi1 grown in vitro (in cellophane membranes) and Vi1-infected apple seedling leaves (two and seven days post inoculation; dpi), provided evidence of transcription for 93.4% of the Vi1 secretome. The RNA-Seq data were also used to select a smaller subgroup of the Vi1 secretome to analyse in greater detail (sequences are deposited under the BioProject ID PRJNA261633: in vitro: SRR1586226, two dpi in planta: SRR1586224, seven dpi in planta: SRR15862230). These data were used as indicators of involvement in virulence or pathogenicity. Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
shows representative stages of this material (no signs of microbial contamination were evident in the sterile distilled water (SDW)-inoculated apple leaves, as assessed by microscopic evaluation). Two approaches were used: first, overall Vi1 gene expression levels were estimated by analysing fragments per kilobase of exon per million reads mapped (FPKM) values. This enabled a ranking of the genes in terms of overall expression during infection to be calculated at both two and seven dpi and the most highly expressed genes at either time point were selected to give the top 5% data set. Of the 82 genes identified, 48 were expressed at two and seven dpi, 17 at two only and 17 at seven dpi only. In addition, a differential expression analysis detected 268 of the 1622 genes that were up-regulated during growth in planta, compared with in vitro growth (log
<sub>2</sub>
fold change not smaller than two with a false discovery rate of less than 0.05). Thirty-seven genes were in both the top 5% data set and up-regulated during infection gene sets, giving a total of 313 individual genes (which will be referred to henceforth as the
<bold>
<italic>V</italic>
</bold>
<italic>enturia</italic>
<bold>I</bold>
nfection
<bold>S</bold>
ecretome or ‘
<italic>V</italic>
IS’ gene set; Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Microscopic evaluation of
<italic>Venturia inaequalis</italic>
Vi1 infection of susceptible apple leaves.
<bold>a</bold>
Two, and
<bold>b</bold>
seven days post inoculation, and
<bold>c</bold>
in vitro (in cellophane) showing stromatic growth habit</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig3_HTML" id="MO3"></graphic>
</fig>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Predicted proteins present in the
<italic>V</italic>
IS set from the secretome of
<italic>Venturia inaequalis</italic>
isolate Vi1. Annotations were based on gene ontology analysis including interrogation of NCBI RefSeq [
<xref ref-type="bibr" rid="CR168">168</xref>
], InterPro [
<xref ref-type="bibr" rid="CR169">169</xref>
], UniRef [
<xref ref-type="bibr" rid="CR170">170</xref>
], ExPASy UniProtKB/Swiss-Prot [
<xref ref-type="bibr" rid="CR171">171</xref>
] and ExPASy Prosite [
<xref ref-type="bibr" rid="CR172">172</xref>
], CAZyme identification using the CAT server [
<xref ref-type="bibr" rid="CR27">27</xref>
] and BLASTp searches against the NCBI non-redundant database [
<xref ref-type="bibr" rid="CR29">29</xref>
]. Small secreted proteins (SSPs) include predicted proteins with similarity to known effectors and proteins with no known function, either with or without putative conserved motifs identified by PfamScan [
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR38">38</xref>
]. The order of the categories in the legend is the same as that in the chart</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<sec id="Sec5">
<title>Carbohydrate-Active Enzymes (CAZymes) and putative non-CAZyme cell wall degrading enzymes</title>
<p>The CAZyme repertoire (216 to 240 proteins, depending on the isolate) was similar between all
<italic>Venturia</italic>
secretomes, with 167 belonging to the core secretome (Additional files
<xref rid="MOESM8" ref-type="media">8</xref>
,
<xref rid="MOESM9" ref-type="media">9</xref>
and
<xref rid="MOESM10" ref-type="media">10</xref>
). Of these, all isolates have between 16 and 25 proteins with multiple CAZyme domains.</p>
<p>Proteins were identified as being associated with carbohydrate-binding motif (CBM), carbohydrate esterase (CE), glycoside hydrolase (GH), polysaccharide lyase (PL) and glycosyl transferase (GT) domains. Of these, the classes with the greatest number of protein members across each genome were those with: CBM2, CBM1 and CBM13 domains, with specificity for cell wall carbohydrates, and in terms of the latter two, plant cell wall specifically; CE5 domains with specificity for cutin; GH28 with specificity for plant cell wall pectin; GH3 and GH5 with specificity for β-glycans; and GH43 with specificity for pectin and hemicelluloses. Also identified, although not as numerous, were CAZyme domain-containing proteins predicted to interact with fungal cell wall components including: GHs associated with β-glycans, α-glucan, chitin, and CBM domains specific for chitin [
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
].</p>
<p>The majority of the CAZymes were either present in OrthoMCL clusters that had a single enzyme from each isolate and were thus members of the core secretome set, or in clusters comprised of enzymes from only the four isolates of
<italic>V. inaequalis</italic>
, not
<italic>V. pirina</italic>
(Additional files
<xref rid="MOESM7" ref-type="media">7</xref>
and
<xref rid="MOESM9" ref-type="media">9</xref>
).</p>
<p>Similar numbers of predicted proteins (17 to 24) were identified in the secretome sets, which were similar to enzymes that degrade non-carbohydrate cell-wall components, e.g. ligninases (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
and Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
).</p>
</sec>
<sec id="Sec6">
<title>Peptidases and lipases</title>
<p>Depending on the isolate, 31 to 38 predicted proteins were identified in the
<italic>Venturia</italic>
secretomes with similarity to peptidases (Figs. 
<xref rid="Fig1" ref-type="fig">1</xref>
and
<xref rid="Fig4" ref-type="fig">4</xref>
, Additional files
<xref rid="MOESM2" ref-type="media">2</xref>
and
<xref rid="MOESM11" ref-type="media">11</xref>
). The majority of these were conserved in the core secretome or in isolates of
<italic>V. inaequalis</italic>
rather than
<italic>V. pirina</italic>
. There were proteins predicted in the secretomes of only the
<italic>V. inaequalis</italic>
isolates that were similar to AVR-Pita, the avirulence protein from
<italic>Magnaporthe</italic>
with zinc metalloprotease features that binds directly to its cognate R protein [
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
], albeit with a relatively high similarity score of 8e-16 recorded when the Pathogen Host Interactions database (PHI-base) [
<xref ref-type="bibr" rid="CR35">35</xref>
] was interrogated. In addition, a further similar protein was also encoded by the genome of
<italic>V. pirina</italic>
but was not predicted to be secreted. There were also between eight and 11 proteins, depending on secretome, with similarity to proteases from
<italic>Candida</italic>
and
<italic>Coccidioides</italic>
following interrogation of protein sequences against PHI-base. Predicted proteins with similarity to lipases were also identified in each secretome (15 to 20, depending on the secretome).</p>
</sec>
<sec id="Sec7">
<title>Primary metabolism and putative proteins involved in redox reactions</title>
<p>Proteins with a wide range of functionality in primary metabolism, e.g. proteins involved in amino acid (aa) or nucleotide metabolism; phosphatases and nitrilases, and unclassified enzymes with an alpha/beta hydrolase fold were identified. Depending on the isolate, there were between 88 and 123 proteins in this category in each secretome, most of which were in the core
<italic>Venturia</italic>
secretome. Numerous (51 to 68) proteins with putative functions in redox reactions were identified in the
<italic>Venturia</italic>
secretomes.</p>
</sec>
<sec id="Sec8">
<title>Putative proteins associated with the cell wall, transport, signalling and secondary metabolism</title>
<p>As expected there were few proteins in the secretomes associated with the cell wall, transport, signalling and secondary metabolism, since these proteins would be eliminated in the secretome prediction pipeline (Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
). The majority of these proteins were members of the core secretome set (Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
).</p>
</sec>
<sec id="Sec9">
<title>Small secreted proteins</title>
<p>Proteins classified as SSPs (i.e. mature predicted protein ≤500 aa in length, including proteins with similarity to known effectors, but excluding proteins with similarity to lytic enzymes) made up between 55 and 66% of each secretome (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
and Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
). For comparative purposes, three secretomes derived from publicly available genomes (housed at the JGI) were also screened for SSPs using the same pipeline of programmes as those used to analyse the
<italic>Venturia</italic>
secretomes. SSPs (less than 500 aa in length) made up 79% of the secretome of
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
, and 43 and 28% of the secretomes of
<italic>P. nodorum</italic>
and
<italic>C. fulvum</italic>
respectively. Smaller SSPs less than 200 aa in length predominated in the
<italic>Venturia</italic>
and
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
secretomes, especially those with a predicted signal peptide. In contrast, SSPs of less than 200 aa in length in the predicted SSP repertoires of
<italic>C. fulvum</italic>
and
<italic>P. nodorum</italic>
were dominated by those predicted to be secreted by a non-classical mechanism (Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
). The majority of genes encoding SSPs in Vi1 were supported with evidence of transcription (95%). Most SSPs are novel to
<italic>Venturia</italic>
(i.e. had BLASTp similarity of ≥1e-10 to any non-
<italic>Venturia</italic>
proteins in public databases) and most of these novel SSPs were ≤200 aa in length. The vast majority of
<italic>V</italic>
IS genes, 245/313, were predicted to encode SSPs (≤500 aa in length), 195 of which were ≤200 aa in length (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Of these smaller SSPs, 165 have two or more cysteines in the mature predicted protein. Larger secreted proteins (>500 aa in length) with no similarity to known proteins were also represented in each of the secretomes (25 to 38 putative proteins; Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
).</p>
</sec>
</sec>
<sec id="Sec10">
<title>Candidate effectors from the SSP set</title>
<p>The secretomes of
<italic>Venturia</italic>
have several proteins with a putative role in binding hydrophobic surfaces including between 12 and 15 proteins with hydrophobic surface binding (HsbA) domains (Pfam: PF12296.3) as identified by PfamScan [
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR38">38</xref>
], with similarity to the
<italic>Aspergillus oryzae</italic>
HsbA, Hydrophobic Surface Binding, cell wall galactomannoprotein. Five putative
<italic>HsbA-</italic>
like genes were identified amongst the Vi1
<italic>V</italic>
IS gene set. Another gene up-regulated at seven dpi encodes a small predicted mature protein of 120 aa with four cysteines and shares predicted aa sequence identity (e value: 1e-17) to bacterial chaplins, which are membrane-associated proteins known to have similar functions to hydrophobins [
<xref ref-type="bibr" rid="CR39">39</xref>
]. Predicted proteins with similarity to bacterial chaplins are also present in Vi1.10, ViL and Vp, but not Vi1.2.8.9.</p>
<p>Two or three proteins with similarity to fungal hydrophobins were identified in the secretomes of
<italic>V. inaequalis</italic>
isolates and four in the
<italic>V. pirina</italic>
secretome, on the basis of conserved cysteine patterns [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
]. None were included in the
<italic>V</italic>
IS gene set.</p>
<p>The
<italic>Venturia</italic>
secretomes included predicted SSPs with similarity to known effectors from other fungi, including Ecp6 (GenBank: ACF19427.1) from
<italic>C. fulvum</italic>
[
<xref ref-type="bibr" rid="CR42">42</xref>
], AvrLm6 (CAJ90695.1) from
<italic>Leptosphaeria maculans</italic>
[
<xref ref-type="bibr" rid="CR43">43</xref>
] and Ave1 (AFB18185.1) from
<italic>Verticillium</italic>
spp. [
<xref ref-type="bibr" rid="CR44">44</xref>
]. The
<italic>Venturia</italic>
candidate effectors were most similar to these effectors in a reciprocal BLAST of the
<italic>Cladosporium</italic>
,
<italic>Leptosphaeria</italic>
and
<italic>Verticillium</italic>
genomes. In addition to the OrthoMCL clustering analysis, further similarity searches within genomes were employed with a more relaxed threshold of 1e-5, to ascertain whether putative paralogues (multigene families) were present. Single orthologues of
<italic>Ecp6</italic>
were identified in each of the
<italic>Venturia</italic>
genomes analysed, corroborating the data of Thakur et al. [
<xref ref-type="bibr" rid="CR21">21</xref>
] who reported an orthologue of
<italic>Ecp6</italic>
in the transcriptome of a single apple-specific isolate of
<italic>V. inaequalis</italic>
. A search of the Pfam database [
<xref ref-type="bibr" rid="CR36">36</xref>
] with the Vi1 orthologue of Ecp6 revealed three peptidoglycan-binding, lysin motif (LysM) domains. At the aa level there is 42% identity between Ecp6 and the
<italic>V. inaequalis</italic>
orthologues, whereas the
<italic>V. pirina</italic>
orthologue has slightly higher identity at 44%. The Vi1 and ViL predicted proteins are identical, whereas that from Vi1.2.8.9 has one aa substitution compared with the Vi1/ViL sequence and that from Vi1.10 has four aa substitutions. The Vi1
<italic>Ecp6</italic>
orthologue was expressed during growth in planta and in vitro, although expression was not sufficiently high to be in the
<italic>V</italic>
IS set.</p>
<p>Orthologues of
<italic>AvrLm6</italic>
[
<xref ref-type="bibr" rid="CR45">45</xref>
] and
<italic>Ave1</italic>
are present as large gene families in all of the
<italic>Venturia</italic>
genomes examined. The copy number of full length
<italic>AvrLm6</italic>
-like genes varied among
<italic>V. inaequalis</italic>
isolates (24–29 copies), while the
<italic>V. pirina</italic>
isolate had 16 copies. Further characterisation of the
<italic>Venturia AvrLm6</italic>
-like gene families is reported in Shiller et al. [
<xref ref-type="bibr" rid="CR45">45</xref>
]. Three
<italic>AvrLm6</italic>
-like genes are present in the
<italic>V</italic>
IS gene set.</p>
<p>Ten full-length
<italic>Ave1-</italic>
like genes and seven
<italic>Ave1-</italic>
like pseudogenes, were identified in the whole genome sequence of
<italic>V. inaequalis</italic>
Vi1, with similar numbers in all other
<italic>Venturia</italic>
genomes. The
<italic>V. inaequalis</italic>
Ave1-like full length, predicted proteins range in similarity from 37 to 57% identity to
<italic>V. dahliae</italic>
Ave1. All but one of the Vi1 Ave1-like proteins have transcript evidence, with expression at all growth stages, including in vitro (on cellophane), with some very highly expressed during both infection time points. Two
<italic>Ave1</italic>
-like gene loci are represented in the
<italic>V</italic>
IS gene set.</p>
<p>Loci of all 16 of the previously identified
<bold>
<italic>V</italic>
</bold>
<italic>.</italic>
<bold>
<italic>i</italic>
</bold>
<italic>naequalis</italic>
<bold>c</bold>
andidate
<bold>e</bold>
ffector (VICE) genes [
<xref ref-type="bibr" rid="CR46">46</xref>
] from Vi1 were identified in the Vi1 WGS. However, the majority of the predicted gene models associated with these loci were longer than those identified using ESTs [
<xref ref-type="bibr" rid="CR46">46</xref>
]. One
<italic>VICE</italic>
gene (
<italic>VICE</italic>
13) did not correspond with any AUGUSTUS gene prediction. Only six VICE predicted proteins were included in the secretome of Vi1 (corresponding to
<italic>VICE</italic>
4, 5, 6, 9, 10 and 11), five of which were in OrthoMCL clusters in the core secretome, with a single predicted protein from each isolate in each cluster. The sixth predicted protein (corresponding to
<italic>VICE</italic>
4) belongs to a cluster with members from only Vi1 (19) and Vp (four). Genes encoding four of these proteins were in the
<italic>V</italic>
IS set, including the
<italic>VICE</italic>
4 gene. The remaining nine
<italic>VICE</italic>
gene models, assigned by AUGUSTUS, did not encode proteins that were predicted to be secreted. Inspection of these loci revealed that, in the majority of these cases, the N-terminus predicted by AUGUSTUS was upstream of the translation start site predicted by Bowen and associates [
<xref ref-type="bibr" rid="CR46">46</xref>
]. Thus the gene predictions at these loci need further validation by sequencing full length cDNAs. Most of the
<italic>VICE</italic>
gene transcripts were also detected by Thakur et al. [
<xref ref-type="bibr" rid="CR21">21</xref>
], in a single transcriptome of
<italic>V. inaequalis</italic>
; however, these authors did not confirm whether these transcripts encoded predicted secreted proteins.</p>
<p>Two cellophane-induced (
<italic>Cin</italic>
) genes,
<italic>Cin1</italic>
and
<italic>Cin3</italic>
, that encode proteins with internal repeats, have been previously identified as being highly expressed during both in vitro growth in cellophane membranes (10 dpi) and infection of Vi1 on apple (five and 10 dpi) [
<xref ref-type="bibr" rid="CR47">47</xref>
]. The RNA-Seq data supported the expression levels reported in the previous study for both of these genes. There were Cin1 orthologues in each of the isolates examined forming a single OrthoMCL cluster, whereas Cin3 orthologues were only in
<italic>V. inaequalis</italic>
isolates, again forming a single OrthoMCL cluster.
<italic>Cin1</italic>
was one of the most highly expressed genes in the
<italic>V</italic>
IS gene set, with very high expression in vitro as well as at both infection time points.</p>
<p>Two additional genes, which encode smaller cysteine-rich Cin1-like proteins, Cin1L1 and Cin1L2 (106 and 169 aa) [
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
], are also found in each of the isolates. However, their sequence is more variable since a single cluster with representative proteins from each isolate was not observed. The proteins similar to Cin1L1 from each
<italic>V. inaequalis</italic>
isolate clustered together, but that from the
<italic>V. pirina</italic>
isolate was classified as a singleton. There are proteins similar to Cin1L2 in each isolate; however, those proteins encoded by the Vi1.10 and Vi1.2.8.9 genomes, although having a signal peptide, were classified as being targeted to the mitochondria by both ProtComp and WoLF PSORT, and the proteins from the remaining isolates formed a single cluster.
<italic>Cin1L1</italic>
and
<italic>Cin1L2</italic>
are in the
<italic>V</italic>
IS gene set.</p>
<p>Of those proteins originally classified as SSPs in the
<italic>Venturia</italic>
secretomes four shared similarity to proteins in PHI-base [
<xref ref-type="bibr" rid="CR35">35</xref>
]: the hydrophobin MHP1 from
<italic>Magnaporthe oryzae</italic>
[
<xref ref-type="bibr" rid="CR50">50</xref>
]; NPP1 from
<italic>Hyaloperonospora arabidopsidis</italic>
[
<xref ref-type="bibr" rid="CR51">51</xref>
<xref ref-type="bibr" rid="CR53">53</xref>
]; GAS1 from
<italic>Magnaporthe oryzae</italic>
[
<xref ref-type="bibr" rid="CR54">54</xref>
]; BEC1019 from
<italic>Blumeria graminis</italic>
f. sp.
<italic>hordei</italic>
[
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
]. None of these proteins were members of the
<italic>V</italic>
IS set, although all had evidence of transcription in vitro and in planta (Additional file
<xref rid="MOESM12" ref-type="media">12</xref>
).</p>
<sec id="Sec11">
<title>SSP families in the
<italic>V</italic>
IS set</title>
<p>Of the 195
<italic>V</italic>
IS SSPs ≤200 aa in length in the Vi1 secretome, 64 appear to be single proteins following spectral clustering analysis [
<xref ref-type="bibr" rid="CR57">57</xref>
], 121 belong to 38 different families, having between two and 86 members. The families include predicted proteins without in planta up-regulated expression of their corresponding genes and putative proteins that were not predicted by the original gene prediction software (Figs. 
<xref rid="Fig5" ref-type="fig">5</xref>
and
<xref rid="Fig6" ref-type="fig">6</xref>
). The remaining 10 SSPs were not retained in the dataset since, although initially classified as an SSP ≤200 aa in length, they belong to families where the majority of members have a robust annotation to an enzyme based on gene ontology analysis and similarity searches, or are larger than 200 aa in length. Family 4, 6 and 35 are very closely related and as an indication of this these families share members (four are in both family 4 and 6 and one is in both family 6 and 35). A representative sequence logo for family seven is shown in Additional file
<xref rid="MOESM13" ref-type="media">13</xref>
. Although sequence diverse, the families have a putative conserved structure based on conservation of cysteines.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Small secreted proteins (SSPs) in the
<italic>Venturia inaequalis</italic>
Vi1 secretome encoded by single genes. Only SSPs ≤200 amino acids in length are included. The number of similar proteins in the
<italic>Venturia</italic>
and related Dothideomycete proteomes are indicated by numbers: black indicates a gene predicted by AUGUSTUS, white indicates a putative coding sequence identified by tBLASTn using the protein sequence as query, followed by manual curation. Percentage identity is represented by:
<italic>red</italic>
 = 100%;
<italic>orange</italic>
 = 90–99%;
<italic>yellow</italic>
 = 70–89%;
<italic>green</italic>
 = 50–69;
<italic>blue</italic>
 = 30–49%</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig5_HTML" id="MO5"></graphic>
</fig>
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Small secreted protein (SSP) families in four
<italic>Venturia inaequalis</italic>
and one
<italic>V. pirina</italic>
secretomes. Only SSPs ≤200 amino acids in length are included.
<italic>Red</italic>
 = proteins in the same family from Vi1;
<italic>yellow</italic>
 = protein families from Vi1.10;
<italic>green</italic>
 = families from Vi1.2.8.9;
<italic>blue</italic>
 = families from ViL;
<italic>purple</italic>
 = families from Vp. Families f1-f28, and f34-f38 are cysteine rich i.e. two or more cysteines per protein; f29-f33 are those with one or no cysteines. ★ = families with predicted similar proteins in related Dothideomycete genomes</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
<p>Thirty families of predicted SSPs, and 31 single proteins, have similar proteins present in all of the
<italic>Venturia</italic>
isolates analysed. All, except five, of the single proteins (from the Vi1 isolate) are also single proteins in all of the isolates studied. Seven families are unique to and conserved within the isolates of
<italic>V. inaequalis</italic>
, whereas there are 20 single proteins in Vi1 with similar proteins present in all
<italic>V. inaequalis</italic>
isolates and absent from
<italic>V. pirina</italic>
. There is one family, and two single proteins, restricted to isolates that only infect apple (Figs. 
<xref rid="Fig5" ref-type="fig">5</xref>
and
<xref rid="Fig6" ref-type="fig">6</xref>
).</p>
<p>In addition, there are four single SSP proteins, and one family, that are putative candidates for the effector/s that contribute to the race profile of isolate Vi1.2.8.9, i.e. present in Vi1 and Vi1.10, but absent from Vi1.2.8.9 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
and Additional file
<xref rid="MOESM14" ref-type="media">14</xref>
). There is one family and three single proteins that are candidates for effector AvrRvi10, given their presence (in Vi1 and Vi1.2.8.9) and absence (in Vi1.10) in the
<italic>Venturia</italic>
isolates.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Small secreted proteins (SSPs) in the
<italic>Venturia</italic>
infection secretome (
<italic>V</italic>
IS) set and related fungi</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="6">Similar proteins in
<sup>a</sup>
:</th>
<th rowspan="2">Families in Vi1</th>
<th rowspan="2">Single proteins in Vi1</th>
</tr>
<tr>
<th>Vi1</th>
<th>Vi1.10</th>
<th>Vi1.2.8.9</th>
<th>ViL</th>
<th>Vp</th>
<th>Related Dothideomycete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Both families and single genes encoding small secreted proteins ≤200 amino acids in length are included. Families were analysed by Spectral Clustering followed by manual curation and analysis of non-predicted putative genes</p>
<p>
<sup>a</sup>
Ticks in columns indicate presence of a similar protein or proteins in that secretome</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>To ascertain whether any of the 195 SSPs of the
<italic>V</italic>
IS set were conserved across the Dothideomycetes, similarity searches (BLASTp) were made against selected Dothideomycete predicted proteomes curated at the JGI (Additional file
<xref rid="MOESM15" ref-type="media">15</xref>
) [
<xref ref-type="bibr" rid="CR58">58</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
]; this curation includes clustering information pertaining to proteins from each organism. Only SSPs predicted for the Vi1 secretome, which were present in all the
<italic>Venturia</italic>
isolates, had putative similar members in related Dothideomycete predicted proteomes (Table 
<xref rid="Tab2" ref-type="table">2</xref>
and Additional file
<xref rid="MOESM14" ref-type="media">14</xref>
, Figs. 
<xref rid="Fig5" ref-type="fig">5</xref>
,
<xref rid="Fig6" ref-type="fig">6</xref>
and
<xref rid="Fig7" ref-type="fig">7</xref>
).
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Similar small secreted proteins (SSPs) in Dothideomycete proteomes and the
<italic>Venturia inaequalis</italic>
Vi1 secretome. Only SSPs ≤200 amino acids in length are included. Shades of
<italic>blue</italic>
,
<italic>purple</italic>
and
<italic>pink</italic>
 = Pleosporales:
<italic>Cochliobolus sativus</italic>
,
<italic>C. heterostrophus</italic>
C4,
<italic>C. heterostrophus</italic>
C5,
<italic>C. lunatus</italic>
,
<italic>C. miyabeanus</italic>
,
<italic>C. victoriae</italic>
,
<italic>Pyrenophora tritici-repentis</italic>
,
<italic>P. teres</italic>
f.
<italic>teres</italic>
,
<italic>Leptosphaeria maculans</italic>
,
<italic>Parastagonospora nodorum</italic>
; shades of
<italic>orange</italic>
,
<italic>yellow</italic>
and
<italic>red</italic>
 = Capnodiales:
<italic>Septoria populicola</italic>
(teleomorph
<italic>Mycosphaerella populicola</italic>
),
<italic>S. musiva (</italic>
teleomorph
<italic>M. populorum)</italic>
,
<italic>M. fijiensis</italic>
,
<italic>Cladosporium fulvum</italic>
(syn:
<italic>Passalora fulva</italic>
),
<italic>Dothistroma septosporum</italic>
,
<italic>Zymoseptoria tritici</italic>
,
<italic>Baudoinia compniacensis</italic>
;
<italic>green</italic>
 = Dothideales:
<italic>Aureobasidium pullulans</italic>
var.
<italic>pullulans</italic>
</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig7_HTML" id="MO7"></graphic>
</fig>
</p>
</sec>
<sec id="Sec12">
<title>Putative host range determinants in the SSP set</title>
<p>In addition to those candidate effectors that are specific to either
<italic>V. inaequalis</italic>
, or those isolates able to infect apple described above, SSPs ≤200 aa in length specific to the loquat-infecting isolate of
<italic>V. inaequalis</italic>
or to
<italic>V. pirina</italic>
were identified by OrthoMCL analysis (Additional file
<xref rid="MOESM16" ref-type="media">16</xref>
). In addition to the 62 candidate effectors specific to ViL, only four of which had any similarity to proteins in the NCBI nr database, 6 were found in both the ViL and Vp secretomes. A further 238 candidate effectors were found to be specific to
<italic>V. pirina</italic>
.</p>
</sec>
</sec>
<sec id="Sec13">
<title>Gene density and proximity of genes to transposable elements (or transposable element remnants)</title>
<p>Most genes in the Vi1 genome have intergenic regions between 200 bp and 3 kb (Fig. 
<xref rid="Fig8" ref-type="fig">8</xref>
), with a mean intergenic distance of 1677 bp. A subset of core eukaryotic genes [
<xref ref-type="bibr" rid="CR25">25</xref>
] had a slightly shorter mean intergenic distance of 1289 bp, whereas the SSP genes in the
<italic>V</italic>
IS set (highlighted as pink data points in Fig. 
<xref rid="Fig8" ref-type="fig">8</xref>
), display a significantly (
<italic>P</italic>
 < 0.005) longer average intergenic distance at 2560 bp. Genes located on scaffold ends, hence lacking neighbouring genes, were excluded from this analysis. This excluded 17/440 (3.6%) from the core eukaryotic gene set and 21/245 (8.6%) from the SSPs in the
<italic>V</italic>
IS set. The greater proportion of SSP genes located on the ends of scaffolds suggests a bias for association with complex repeat regions that cause problems with sequencing and assembly, resulting in broken genomic scaffolds.
<fig id="Fig8">
<label>Fig. 8</label>
<caption>
<p>Flanking distance (3′ and 5′) between predicted genes of
<italic>Venturia inaequalis</italic>
Vi1. Intergenic distances for all predicted genes are represented in the underlying heatmap, with the number of genes in each bin shown as a colour-coded heat map (on orthogonal projection) generated as in Saunders et al. [
<xref ref-type="bibr" rid="CR185">185</xref>
]. Genes were sorted into two-dimensional bins on the basis of the lengths of flanking intergenic distances to neighbouring genes at their 5′ and 3′ ends; overlying this are scatterplots of
<bold>a</bold>
423 Core Eukaryotic Genes (
<italic>white dots</italic>
) or
<bold>b</bold>
<italic>Venturia</italic>
infection secretome (
<italic>V</italic>
IS) gene set, plus
<italic>AvrLm6-</italic>
and
<italic>Ave1</italic>
-like genes (coloured dots:
<italic>dark pink</italic>
 = SSPs with two or more cysteines (≤500 amino acids);
<italic>light pink</italic>
 = SSPs with one or no cysteines (≤500 amino acids); blue = peptidases;
<italic>dark green</italic>
 = CAZymes;
<italic>light green</italic>
 = putative cell wall-degrading enzymes (non-CAZyme);
<italic>white</italic>
 = cell wall associated and miscellaneous proteins >500 amino acids). Note that the axes are not linear. Genes at the scaffold end were excluded from this analysis</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig8_HTML" id="MO8"></graphic>
</fig>
</p>
<p>Concordantly, SSP genes also appear to be more closely associated with transposable elements (TEs) or TE-like features than core eukaryotic genes and all remaining genes in the Vi1 genome. The mean gene to TE distance was 9024 bp for all genes predicted in the genome (Fig. 
<xref rid="Fig9" ref-type="fig">9</xref>
). The core eukaryotic gene set had a significantly (
<italic>P</italic>
 < 0.005) greater mean distance to the nearest TE of 10,528 bp, whereas the SSPs in the
<italic>V</italic>
IS set had a mean distance to the nearest TE (or TE-like features) of only 5401 bp. Twenty-two SSPs in the
<italic>V</italic>
IS set were nested within predicted TE-like features. Fourteen of the core eukaryotic genes and six of the
<italic>V</italic>
IS set SSP genes were excluded from this analysis as they lacked a neighbouring TE feature on the same scaffold.
<fig id="Fig9">
<label>Fig. 9</label>
<caption>
<p>Distance between predicted genes and transposable element (TE)-like features of
<italic>Venturia inaequalis</italic>
Vi1. Flanking distances (3′ and 5′) to TE-like features for all predicted genes are represented in the underlying heat map, with the number of genes in each bin shown as a colour-coded heat map on orthogonal projection (generated as in Saunders et al. [
<xref ref-type="bibr" rid="CR185">185</xref>
]). Genes were sorted into two dimensional bins on the basis of the lengths of flanking distances.
<bold>a</bold>
423 Core Eukaryotic Genes (
<italic>white dots</italic>
) are similar to all genes in that they are not closely associated with TE-like features; whereas
<bold>b</bold>
<italic>Venturia</italic>
infection secretome (
<italic>V</italic>
IS) gene set, plus
<italic>AvrLm6-</italic>
and
<italic>Ave1</italic>
-like genes (coloured dots:
<italic>dark pink</italic>
 = SSPs with two or more cysteines (≤500 amino acid);
<italic>light pink</italic>
 = SSPs with one or no cysteines or less (≤500 amino acids); blue = enzymes (peptidases/redox/primary metabolism);
<italic>dark green</italic>
 = CAZymes;
<italic>light green</italic>
 = putative cell wall-degrading enzymes (non-CAZyme);
<italic>white</italic>
 = cell wall associated and miscellaneous proteins >500 amino acids in length). Note that the axes are not linear. Genes at the scaffold end were excluded from this analysis</p>
</caption>
<graphic xlink:href="12864_2017_3699_Fig9_HTML" id="MO9"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec14" sec-type="discussion">
<title>Discussion</title>
<sec id="Sec15">
<title>Comparisons of whole genome assemblies and gene predictions</title>
<p>This paper reports the first analysis of whole genome sequences from multiple isolates of
<italic>V. inaequalis</italic>
(
<italic>V. pirina</italic>
being released in 2014) [
<xref ref-type="bibr" rid="CR22">22</xref>
]. The sizes of all five
<italic>Venturia</italic>
genomes are comparable to those of other Dothideomycetes [
<xref ref-type="bibr" rid="CR60">60</xref>
]; however, these may be an underestimate since the majority of the sequencing was carried out on the Illumina platform. Assembling repeat regions using short reads is notoriously difficult [
<xref ref-type="bibr" rid="CR61">61</xref>
<xref ref-type="bibr" rid="CR64">64</xref>
], and hinders genome assembly using de Bruijn graph-based genome assemblers like Velvet and ALLPATHS-LG [
<xref ref-type="bibr" rid="CR62">62</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
].</p>
<p>In addition, there is an apparent wide range of genome size that can be largely attributed to additional repetitive content, with the assembled genic regions being similar in size for all five
<italic>Venturia</italic>
isolates. Whilst variation in genome size between isolates from the same species is not unprecedented; for example, genome size in three isolates of the Dothideomycete
<italic>Zymoseptoria tritici</italic>
(synonym
<italic>Mycosphaerella graminicola</italic>
) ranged from 31 to 40 Mb as estimated by pulsed field gel electrophoresis [
<xref ref-type="bibr" rid="CR66">66</xref>
], this apparent variation in the
<italic>Venturia</italic>
genomes may be attributable to the different strategies, and software, used for sequencing. The genomes (Vi1.10 and ViL) assembled using ALLPATHS-LG software, have much larger genome sizes and higher percentages of repeats, than those assembled using Velvet (Vi1, Vi1.2.8.9, and Vp). The major difference between the sequencing of these five isolates is that Vi1.10 and ViL paired-end (PE) libraries were specifically constructed with an insert size of 180 bp so that paired reads overlapped at the end (which is required by ALLPATHS-LG), to produce longer super-reads. For the other three isolates, the PE libraries were constructed with a typical insert size of 400 bp, and paired reads did not overlap and could not be assembled using ALLPATHS-LG. The super-reads generated by ALLPATHS-LG result in repeats being better assembled [
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
]. As a trial, in addition to ALLPATHS-LG, the Vi1.10 and ViL sequences were also assembled using Velvet. The percentage of repeats in the Velvet scaffolds for each isolate was lower than that for the ALLPATHS-LG assembly, but was still very high compared with the remaining three isolates, with 21.5 and 25% for Vi1.10 and ViL respectively. Additional investigation is required to determine whether the larger genome sizes and higher percentages of repeats in Vi1.10 and ViL are a biological reality.</p>
<p>The number of predicted genes in the
<italic>Venturia</italic>
genomes (11,960–13,333) is significantly less than the 24,571 unique fungal genes reported for
<italic>V. inaequalis</italic>
by Thakur et al. [
<xref ref-type="bibr" rid="CR21">21</xref>
]. Just over half of the reported sequences had no significant similarity to sequences in other species. The Thakur et al. [
<xref ref-type="bibr" rid="CR21">21</xref>
] estimate was based on in vitro and in planta transcriptome data only, with multiple gene splice variants likely to account for the higher gene number. Our estimate of predicted gene number is comparable to related Dothideomycete genomes which range from 9739 in
<italic>S. populicola</italic>
[
<xref ref-type="bibr" rid="CR60">60</xref>
] to 14,127 in
<italic>C. fulvum</italic>
[
<xref ref-type="bibr" rid="CR69">69</xref>
]. Gene number variation could be due to difference in coverage of the various genomes; however, variation in gene number between isolates is also not unprecedented. For example, Xue and associates [
<xref ref-type="bibr" rid="CR70">70</xref>
] found that in the rice blast fungus
<italic>M. oryzae</italic>
, gene number varied, with hundreds of isolate-specific genes present in genomes of field isolates. Similar gene number variation was reported in isolates of
<italic>C. heterostrophus</italic>
[
<xref ref-type="bibr" rid="CR71">71</xref>
].</p>
</sec>
<sec id="Sec16">
<title>
<italic>Venturia</italic>
pathogens: lifestyle and host determination</title>
<p>Focussing on the secretome of the
<italic>Venturia</italic>
pathogens has revealed repertoires of proteins that reflect aspects of their adopted mode of parasitism, with secretion of compounds to adhere to the waxy, water-proof cuticle on leaves and fruit and to enable direct penetration and colonisation of the cuticle and sub-cuticular space. In addition, effectors that are predicted to effect evasion of recognition and suppression of host defence will be secreted to the extracellular plant-pathogen interface, including those that may be directed to be taken up by the host cells.</p>
<sec id="Sec17">
<title>Attachment and penetration</title>
<p>Several
<italic>Venturia</italic>
proteins were identified in the secretomes that may be involved in attachment and penetration of the cuticle. A predicted protein present in all the Dothideomycete genomes analysed has similarity to a
<italic>M. oryzae</italic>
fasciclin protein. Fasciclins have been implicated in cell adhesion in diverse organisms including both prokaryotes and eukaryotes [
<xref ref-type="bibr" rid="CR72">72</xref>
<xref ref-type="bibr" rid="CR75">75</xref>
]. The
<italic>M. oryzae</italic>
fasciclin has an important role in development and pathogenicity, involved in conidiation and conidial adhesion [
<xref ref-type="bibr" rid="CR76">76</xref>
]. A similar role for fasciclins in cell adhesion for all the
<italic>Venturia</italic>
isolates analysed is easily envisaged.</p>
<p>Hydrophobins are small, secreted, cysteine-rich, amphipathic proteins that are usually found on the cell walls of fungi [
<xref ref-type="bibr" rid="CR77">77</xref>
,
<xref ref-type="bibr" rid="CR78">78</xref>
]. They provide a water-repellent coat and are well characterized for their role in morphogenesis and virulence in plant pathogenic fungi, promoting interactions with hydrophobic surfaces [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
]. It is thought that these proteins may also assist in avoiding detection by the host during infection [
<xref ref-type="bibr" rid="CR77">77</xref>
]. Hydrophobins are usually highly variable in sequence; however, they have a conserved structure due to conserved cysteine residues.
<italic>Venturia</italic>
secretomes have fewer hydrophobin genes (two-to-four) than
<italic>C. fulvum</italic>
(11) but have a similar number to
<italic>D. septosporum</italic>
(four) [
<xref ref-type="bibr" rid="CR69">69</xref>
].</p>
<p>The
<italic>Venturia</italic>
secretomes also have a high number of genes (11–14) encoding putative HsbA proteins. HsbA proteins are found in entomopathogenic fungi as well as pathogens of higher animals; with cuticle colonisation being a possible common link. HsbAs are not commonly reported to be encoded by plant pathogen genomes (although genes with low similarity to
<italic>V. inaequalis HsbA</italic>
-like genes were identified in genome sequences of members within
<italic>Colletotrichum</italic>
,
<italic>Magnaporthe</italic>
and
<italic>Verticillium</italic>
genera). One sequence with similarity to an HsbA was identified in the genome of the mesophyll apoplast-dwelling
<italic>C. fulvum</italic>
and the pine pathogen
<italic>D. septosporum</italic>
[
<xref ref-type="bibr" rid="CR69">69</xref>
]. HsbAs are not hydrophobins, but they have been reported [
<xref ref-type="bibr" rid="CR81">81</xref>
] to have an analagous role in
<italic>A. oryzae</italic>
in binding to hydrophobic surfaces and recruiting the CutL1 polyesterase/cutinase to degrade the polyester substrate, poly(butylene succinate-co-adipate) (PBSA). Takahashi and associates [
<xref ref-type="bibr" rid="CR82">82</xref>
] also reported that the
<italic>A. oryzae</italic>
hydrophobin, RolA, also recruits CutL1, to aid degradation of PBSA surfaces. Thus,
<italic>A. oryzae</italic>
appears to use several types of proteins to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation. Proteins similar to the
<italic>A. oryzae</italic>
CutL1 polyesterase/cutinase and HsbA were well represented in the
<italic>V</italic>
IS set. Extracellular cutinase has been implicated in penetration by
<italic>V. inaequalis</italic>
, as cutinase is produced by germinating conidia, and a cutinase inhibitor can prevent penetration [
<xref ref-type="bibr" rid="CR83">83</xref>
,
<xref ref-type="bibr" rid="CR84">84</xref>
]. In addition, esterase-like activity has been reported during the germination of conidia and in appressoria [
<xref ref-type="bibr" rid="CR85">85</xref>
]. The presence of high numbers of CEs in the
<italic>Venturia</italic>
secretomes supports the experimental evidence of enzymatic penetration of the cuticle by
<italic>V. inaequalis</italic>
and the inference that
<italic>V. pirina</italic>
also may act similarly. We propose that
<italic>Venturia</italic>
, like
<italic>A. oryzae</italic>
, uses multiple proteins (e.g. hydrophobins and HsbA proteins) to recruit cutinases/esterases to facilitate appressorial adhesion and direct penetration, as well as degradation and digestion of cuticle. This hypothesis fits observations of the cuticular degradation that occurs during colonisation by
<italic>Venturia</italic>
fungi potentially drawing nutrition from the cuticle or cuticle precursors [
<xref ref-type="bibr" rid="CR7">7</xref>
].</p>
</sec>
<sec id="Sec18">
<title>Nutrition</title>
<p>Exploitation of the cuticle may be insufficient to satisfy pathogen nutritional requirements throughout the infection cycle. During biotrophic infection
<italic>Venturia</italic>
remains in the cuticle and sub-cuticular space causing relatively little damage to the host. Most damage is due to breaching of the cuticle upon sporulation [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
]. At this time the epidermal cells underlying the stroma undergo a progressive depletion of plastids and cytoplasm, accompanied by increasing vacuolation, leading ultimately to cell death. It has been proposed that this damage late in the infection cycle is caused by partial cell wall degradation [
<xref ref-type="bibr" rid="CR86">86</xref>
,
<xref ref-type="bibr" rid="CR87">87</xref>
]. Indeed, cellulase and pectinase activities have all been reported for
<italic>V. inaequalis</italic>
growing in vitro [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
]. However, it has been suggested that the timing of this host cell degradation precludes a significant role for these enzymes in nutrient acquisition [
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
].</p>
<p>The predominant polysaccharide in apple fruit skin is pectin at 65%, compared with a level of 3% for cellulose [
<xref ref-type="bibr" rid="CR91">91</xref>
], with pear fruit also having higher levels of pectin than cellulose [
<xref ref-type="bibr" rid="CR92">92</xref>
].
<italic>Venturia</italic>
appears to have tailored its CAZyme repertoire to suit the composition of the host cell wall with pectin-specific CAZymes predominating; the two most numerous classes of CAZymes found in the
<italic>Venturia</italic>
secretomes, after those with cutinase activity, are GH28 and GH43 that have pectin as a substrate. A single GH28 enzyme and two putative PLs, that also have pectin as target substrate [
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR93">93</xref>
], are up-regulated during infection and are present in the
<italic>V</italic>
IS set. Significantly, this lytic activity may therefore not be limited to late in the infection cycle as previously thought, but contribute to nutrition via degrading the surface polysaccharides of the epidermal cells beneath stromata, this damage only becoming evident macroscopically late in infection. In addition, those CAZymes present in the secretomes of the
<italic>Venturia</italic>
fungi may also benefit the fungus during saprobic growth and sexual fruiting body development during winter.</p>
</sec>
<sec id="Sec19">
<title>Evasion of host defence</title>
<p>The putative proteases present in the secretomes of the
<italic>Venturia</italic>
fungi may aid in the evasion of host defense since proteases have been implicated in plant defence avoidance in many plant-pathogen interactions [
<xref ref-type="bibr" rid="CR94">94</xref>
]. For example, fungal proteases can target plant chitinases, as in the interaction between
<italic>Fusarium oxysporum</italic>
f. sp
<italic>lycopersici</italic>
and tomato where both a serine protease and a metalloprotease are required for the inactivation of a chitin-binding domain (CBD)-containing chitinase thus contributing to virulence [
<xref ref-type="bibr" rid="CR95">95</xref>
].</p>
<p>As a possible alternative strategy to counteract host chitinases the
<italic>Venturia</italic>
strains, in common with many other fungi, all have a homologue of the
<italic>C. fulvum</italic>
LysM domain effector, Ecp6. These are likely to either have a similar function to
<italic>C. fulvum</italic>
Ecp6 [
<xref ref-type="bibr" rid="CR42">42</xref>
,
<xref ref-type="bibr" rid="CR96">96</xref>
] in preventing recognition of chitin fragments capable of initiating a defence response, or to the LysM effectors from
<italic>Z. tritici</italic>
that protect hyphae from the action of chitinases, thus preventing the release of chitin-derived PAMPs [
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR98">98</xref>
]. In addition, there are single proteins in each secretome similar to the
<italic>Blumeria</italic>
effector BEC1019 [
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
]. The putative
<italic>Venturia</italic>
BEC1019 orthologues all have the conserved ETVIC motif that is required for suppression of the hypersensitive response (HR) in barley. A similar function for these proteins during the pathogenicity of
<italic>Venturia</italic>
is therefore easily envisaged.</p>
<p>Although single proteins similar to the NPP1 protein from
<italic>H. arabidopsidis</italic>
are present in each of the
<italic>Venturia</italic>
secretomes [
<xref ref-type="bibr" rid="CR51">51</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
] the sequence of these from two apple-infecting isolates are truncated. In the remaining secretomes (Vi1, ViL and Vp) the NPP1-similar proteins appear to belong to the type I Nep-1-like protein (NLP) family, with the two conserved cysteines [
<xref ref-type="bibr" rid="CR99">99</xref>
]. All three proteins also have two additional C-terminal cysteines, however these are not characteristic of type 2 NLPs [
<xref ref-type="bibr" rid="CR100">100</xref>
]. The majority of NLPs induce necrosis in a wide-range of dicotyledonous plants, although whether this necrosis is a direct result of cytotoxicity via dispruption of the plasma membrane or initiation of a defence response remains open to debate [
<xref ref-type="bibr" rid="CR100">100</xref>
]. However, the requirement for a functional necrosis-inducing protein in the biotrophic
<italic>Venturia</italic>
pathogens is unlikely. Indeed, each of the
<italic>Venturia</italic>
proteins has mutations in the critical H residue in the loop region required for necrosis in the NLP from
<italic>V. dahliae</italic>
[
<xref ref-type="bibr" rid="CR101">101</xref>
], whilst the two
<italic>V. inaequalis</italic>
proteins also have a mutation in the heptapeptide domain (GHRHDWE mutated to GHRHEWE) required for necrosis in NLPs from diverse taxa [
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
,
<xref ref-type="bibr" rid="CR102">102</xref>
]. These mutations may therefore prevent unwanted pathogen-induced necrosis, but the retention of these NLP-like proteins by
<italic>Venturia</italic>
may indicate a virulence function that remains to be elucidated.</p>
<p>
<italic>Venturia</italic>
predicted proteins with similarity to the
<italic>Magnaporthe</italic>
GAS1 protein, required for appressorial penetration and lesion development, may play a similar role in apple and pear scab diseases to that observed in rice. Whether GAS1 is translocated to the host cytoplasm with a role in defence suppression remains equivocal, however; weak fluorescence of fluorescent protein constructs in infectious hyphae in onion epidermal cells was observed [
<xref ref-type="bibr" rid="CR54">54</xref>
], as was translocation to rice cytoplasm, albeit under, presumably, the heterologous protomoter from the
<italic>Magnaporthe</italic>
gene
<italic>PWL2</italic>
[
<xref ref-type="bibr" rid="CR103">103</xref>
]. The
<italic>Venturia</italic>
proteins may therefore be translocated to the host cell cytoplasm where they may have a role in re-directing host metabolism during scab disease, however this remains conjecture.</p>
</sec>
<sec id="Sec20">
<title>Initiation of host resistance: an avirulence function</title>
<p>The comparative approach undertaken here has enabled preliminary identification of candidates for
<italic>V. inaequalis</italic>
avirulence effectors AvrRvi2, AvrRvi8, AvrRvi9 and AvrRvi10, which have an avirulence function and are recognised by cognate R proteins. All candidates have cysteine residues but no recognisable protein motifs, except a single candidate for AvrRvi2, AvrRvi8 or AvrRvi9 that is similar to a bacterial chaplin with a domain of unknown function, that may play a role in the
<italic>Venturia</italic>
lifecycle similar to that of hydrophobins. In addition to SSPs that may be involved in race/cultivar specificity on apple within
<italic>V. inaequalis</italic>
, further SSPs were identified that are specific to the loquat-specific isolate of
<italic>V. inaequalis</italic>
or to
<italic>V. pirina</italic>
. The majority of these SSPs were either similar to hypothetical proteins available in the public domain or had no similarity with known proteins. However, of interest is a protein with ankyrin repeats that may be involved in the specificity of
<italic>V. pirina</italic>
, since it is dissimilar to proteins found in the other secretomes. Ankyrin repeat-containing proteins are involved in protein-protein interactions and are present in effectors from both prokaryotes and eukaryotes, and as such this protein may play a role in the interaction with European pear [
<xref ref-type="bibr" rid="CR104">104</xref>
]. In addition, a single protein specific to the ViL isolate has a SnoaL-like domain. SnoaL-like domains are found in proteins from diverse taxa, including filamentous fungal phytopathogens. For example, the protein PEP2 from
<italic>Nectria haematococca</italic>
MPVI has such a domain and contributes to virulence on pea; complementing an isolate of
<italic>N. haematococca</italic>
lacking a supernumerary chromosome bearing pathogenicity genes with
<italic>PEP2</italic>
results in a small, but significant, increase in virulence [
<xref ref-type="bibr" rid="CR105">105</xref>
]. How these candidate effectors may be contributing to host range determination is unknown. They may be acting as avirulence proteins during attempted infection of a nonhost, with a recognition event triggering resistance, and a concomitant lack of recognition in a compatible host. Indeed, since the hosts are closely related [
<xref ref-type="bibr" rid="CR106">106</xref>
], the contribution of R protein-triggered immunity towards nonhost resistance has been postulated to be greater than for host plants that are more distantly related [
<xref ref-type="bibr" rid="CR3">3</xref>
]. The variability of the closely related genomes of the
<italic>Venturiaceae</italic>
with respect to SSPs reinforces the utility of a comparative genomic approach.</p>
<p>In each of the
<italic>V. inaequalis</italic>
secretomes the predicted proteins with similarity to AVR-Pita1 from
<italic>M. oryzae</italic>
may play a similar role to that adopted by both AVR-Pita1, and its paralogue AVR-Pita2, in the rice blast interaction [
<xref ref-type="bibr" rid="CR107">107</xref>
,
<xref ref-type="bibr" rid="CR108">108</xref>
]. Although the virulence function of AVR-Pita1, a putative zinc metalloprotease, has not been verified it is directly recognised by the cognate
<italic>R</italic>
gene product Pi-ta. An avirulence function for the similar proteins in the
<italic>Venturia</italic>
pathogens remains to be elucidated.</p>
</sec>
<sec id="Sec21">
<title>Effectors with unknown function</title>
<p>In addition to those proteins with similarity to known effectors with roles partially or fully confirmed, the
<italic>Venturia</italic>
secretomes comprise a large repertoire of putative effector SSPs with no obvious hints as to function from similarity searches. The paradigm for the role of SSPs is that they are lineage-specific effectors that contribute to the maintenance and evolution of parasitism and that obligate biotrophy is associated with expanded effector repertoires [
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR110">110</xref>
]. It is thought that biotrophs require a more extensive and nuanced effector inventory than that required by necrotrophs, that rely more prominently on cell-wall degrading enzymes and toxins [
<xref ref-type="bibr" rid="CR111">111</xref>
]. Although this précis of fungal pathogen lifestyles is highly simplistic, it seems to be reflected in the fewer number of SSPs recorded for necrotrophic fungal phytopathogens. For example
<italic>Parastagonospora nodorum</italic>
has a suite of only 209 SSPs [
<xref ref-type="bibr" rid="CR60">60</xref>
], and a recent analysis of the secretome of
<italic>Sclerotinia sclerotiorum</italic>
revealed only 78 effector candidates, albeit using different criteria for selection [
<xref ref-type="bibr" rid="CR112">112</xref>
]. This contrasts with the numbers of SSPs reported for the obligate biotrophs:
<italic>B. graminis</italic>
(490) [
<xref ref-type="bibr" rid="CR113">113</xref>
], although these are up to 400 aa in length;
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
(540); and
<italic>Melampsora larici-populina</italic>
(305) [
<xref ref-type="bibr" rid="CR60">60</xref>
]. These studies use different criteria for SSP identification, hampering valid comparsions. In the current study, SSPs from
<italic>P. nodorum</italic>
,
<italic>C. fulvum</italic>
and
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
were predicted using the same pipeline as that used for SSP analysis from the
<italic>Venturia</italic>
pathogens
<italic>.</italic>
The number of SSPs in the
<italic>Venturia</italic>
pathogens were between that recorded for the obligate biotroph
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
and the necrotroph
<italic>P. nodorum</italic>
or the facultative biotroph
<italic>C. fulvum</italic>
. For those SSPs predicted to be less than 200 aa in length, the proportion predicted to be classically secreted predominated. This profile resembled that of
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
. Thus overall the repertoire of SSPs from the
<italic>Venturia</italic>
pathogens more closely resembles that of an obligate biotroph rather than a necrotroph or facultative biotroph.</p>
<p>Evidence of high expression or up-regulation during infection (compared with in vitro growth) was used to prioritise a smaller set of
<italic>Venturia</italic>
SSPs [
<xref ref-type="bibr" rid="CR114">114</xref>
]. The smallest of these uncharacterised SSPs were analysed in more detail and of those with similarity to predicted proteins in related Dothideomycete genomes, only four were found in the majority of genomes investigated. These Dothideomycete genomes are from organisms with diverse lifestyles. Up until recently this broad conservation would indicate a core metabolic role, rather than a role in pathogenicity, especially for those proteins also found in the extremophilic sooty mould saprobe,
<italic>Baudoinia compniacensis</italic>
, with its compact genome of 21.88 Mb [
<xref ref-type="bibr" rid="CR60">60</xref>
]. However, the recent research of Whigham and associates [
<xref ref-type="bibr" rid="CR56">56</xref>
] showing that the broadly conserved effector BEC1019 from the pathogen
<italic>Blumeria</italic>
, that can suppress HR, may be repurposed to fulfil particular roles in fungi with diverse lifestyles, challenges this view.</p>
<p>A small family of proteins in
<italic>V. inaequalis</italic>
with similarity to Bys1 from
<italic>M. oryzae</italic>
also has representatives in other diverse Dothideomycetes. The function of the Bys1 domain is unknown, but in
<italic>Blastomyces dermatitidis</italic>
the expression of a Bys1-encoding gene is associated with pathogenesis [
<xref ref-type="bibr" rid="CR115">115</xref>
,
<xref ref-type="bibr" rid="CR116">116</xref>
], thus a similar role in Dothideomycete pathogens cannot be ruled out.</p>
<p>One of the most highly expressed genes in the
<italic>V</italic>
IS gene set, with expression in vitro and in planta, encodes a protein with similarity to the
<italic>Alternaria alternata</italic>
major allergen Alt a 1 (GenBank: AAM90320.1). This
<italic>V. inaequalis</italic>
protein was identified previously [
<xref ref-type="bibr" rid="CR117">117</xref>
] in an analysis of semi-purified secreted proteins that elicited a response from specific resistant apple hosts. Single genes encoding proteins with similarity to the Alt a 1 allergen were identified in all
<italic>Venturia</italic>
genomes and a single gene was also identified in some (but not all), related Dothideomycetes (
<italic>P. nodorum; S. populicola</italic>
,
<italic>S. musiva</italic>
,
<italic>C. fulvum</italic>
,
<italic>Z. tritici</italic>
). Alt a 1 is well known in clinical settings as a human allergen. It has a structure unique to fungi; however, its role in pathogenesis has not as yet been determined [
<xref ref-type="bibr" rid="CR118">118</xref>
].</p>
<p>A large number of SSPs in the
<italic>V</italic>
IS set with similar proteins across Dothideomycete spp. have an internal repeat structure. Repeat structures in fungal effectors have been reported previously [
<xref ref-type="bibr" rid="CR104">104</xref>
]. For example the SP7 effector from
<italic>Glomus intraradices</italic>
, an arbuscular mycorrhizal biotroph, has nine hydrophilic tandem repeats. SP7 re-programmes plant expression to reduce the defence response thus enabling establishment of the fungus within the roots of plants [
<xref ref-type="bibr" rid="CR119">119</xref>
]. In addition, a double knock-out mutant of
<italic>U. maydis</italic>
lacking the repeat-containing protein effectors, Hum3/Rsp1, has arrested growth
<italic>in planta</italic>
, shortly after penetration [
<xref ref-type="bibr" rid="CR120">120</xref>
]. The roles of the previously identified repeat-containing proteins, Cin1 and Cin3, which are expressed very highly in the stromata and runner hyphae of
<italic>Venturia</italic>
, are yet to be determined [
<xref ref-type="bibr" rid="CR48">48</xref>
].</p>
</sec>
<sec id="Sec22">
<title>Expanded SSP effector families</title>
<p>Intriguingly,
<italic>Venturia</italic>
strains have multiple genes predicted to encode proteins with similarity to AvrLm6 from the Dothideomycete
<italic>L. maculans</italic>
and Ave1 from the Sordariomycete
<italic>Verticillium</italic>
spp. These effectors are encoded by a single gene (
<italic>Ave1</italic>
) in
<italic>Verticillium</italic>
spp. [
<xref ref-type="bibr" rid="CR44">44</xref>
], or a single gene plus a paralogue (
<italic>AvrLm6</italic>
) in
<italic>L. maculans</italic>
[
<xref ref-type="bibr" rid="CR121">121</xref>
].</p>
<p>The
<italic>Venturia Ave1</italic>
-like genes were generally not found in clusters on contigs and both effector families have significant numbers of pseudogenes (lacking a start and/or a stop codon). The role of these Ave1-like proteins is yet to be determined; however, the multiple gene members in the
<italic>AvrLm6</italic>
and
<italic>Ave1</italic>
effector families will present a challenge for functional analyses.
<italic>AvrLm6</italic>
-like genes are not found in most of the sequenced Dothideomycete relatives of
<italic>L. maculans</italic>
. The same is true for
<italic>Ave1</italic>
from the Sordariomycete,
<italic>Verticillium</italic>
. This discontinuous distribution of
<italic>Ave1</italic>
and
<italic>AvrLm6</italic>
suggests that these effectors are either ancient effector ancestors that have been lost or diversified beyond recognition during coevolution and host specialisation, or that there may have been horizontal gene transfer events involving the
<italic>Ave1</italic>
- and the
<italic>AvrLm6</italic>
-containing species. None of these species share a common host, however, and so mechanisms for gene transfer are not obvious.</p>
<p>Many of these
<italic>Venturia</italic>
effector Ave1 and AvrLm6 orthologues were not identified by the secretome prediction pipeline as their N-terminus was incorrectly designated by the automated gene calling software packages. Ave1-like proteins have also been detected by Mass Spectrometry in an analysis of
<italic>V. pirina</italic>
proteins expressed in vitro [
<xref ref-type="bibr" rid="CR22">22</xref>
]. The presence of a signal peptide, mature N terminus, cleavage site and presence of a conserved intron in the 5′ UTR of the gene, was confirmed for several of the
<italic>V. pirina</italic>
Vp
<italic>Ave1</italic>
-like genes in this proteogenomic analysis. The conserved intron in the 5′ UTR of
<italic>Ave1-</italic>
like genes appears to have caused difficulties in accurate gene prediction for all genes in this family. Rigorous interrogation of the whole set of SSPs, with a size of 200 aa or less, also highlighted the challenges of gene prediction. On initial comparison of gene predictions, via comparison of their encoded proteins, genes encoding SSPs similar to those in the Vi1 secretome were not predicted in the other genomes. To verify this absence, comparison of aa sequence against a six-frame translation of the genomes was undertaken and revealed the presence of identical or near-identical loci. The use of RNA-seq data to inform gene prediction in the Vi1 genome appeared to be more efficient than using a model based upon these data for gene prediction in the other genomes, highlighting the importance of RNA-seq data for individual genomes for accurate gene prediction.</p>
<p>With the exception of the families comprising
<italic>Ave1</italic>
- and
<italic>AvrLm6</italic>
–like genes, the majority of families of SSP genes in
<italic>Venturia</italic>
do not have similar genes in the other Dothideomycete genomes analysed. These families appear to be lineage-specific. Lineage-specific genes are common features of fungal genomes sequenced to date [
<xref ref-type="bibr" rid="CR122">122</xref>
]. In the
<italic>Venturia</italic>
pathogens many of the lineage-specific SSPs appear to belong to expanded families, for example, eight SSP families with members of less than 200 aa have more than 10 members, and up to 86 members, and are restricted to the
<italic>Venturia</italic>
genus. Gene gain and also expansion of these lineage-specific families is obviously associated with host range determination and specificity, and the converse, reduction or loss of gene families can likewise be associated with evolution of virulence on a particular host [
<xref ref-type="bibr" rid="CR122">122</xref>
]. Expansion of lineage-specific effector families has recently been reported in
<italic>B. graminis</italic>
[
<xref ref-type="bibr" rid="CR123">123</xref>
], with the 1350 paralogous copies of
<italic>AVR</italic>
<sub>
<italic>k1</italic>
</sub>
and
<italic>AVR</italic>
<sub>
<italic>a10</italic>
</sub>
, that contribute to the establishment of the haustorium, being an extreme example [
<xref ref-type="bibr" rid="CR124">124</xref>
,
<xref ref-type="bibr" rid="CR125">125</xref>
].</p>
<p>Whether the members of the SSP gene families observed in the
<italic>Venturia</italic>
genomes are derived from a common ancestor remains equivocal since their overall sequence conservation is low. However, de Guillen et al. [
<xref ref-type="bibr" rid="CR126">126</xref>
] identified a family of sequence-unrelated, but structurally conserved effectors (termed MAX-effectors) in
<italic>Magnaporthe</italic>
, accounting for 5–10% of the effector repertoire. These effectors have been presumed to have evolved via diversifying selection rather than convergent evolution [
<xref ref-type="bibr" rid="CR126">126</xref>
]. In addition, hydrophobins, with their patchy distribution and low level of sequence conservation, contrasting with a highly conserved structure, related to function, appear to evolve by a birth-and-death mechanism and to be phylogenetically related [
<xref ref-type="bibr" rid="CR127">127</xref>
,
<xref ref-type="bibr" rid="CR128">128</xref>
]. The families of
<italic>Venturia</italic>
SSPs with retention of presumably critical cysteines, in terms of structure and stability, may have also arisen under similar evolutionary constraints and thus also be related phylogenetically. Evolution of protein families involves the duplication of an ancestral gene followed by mutation of the duplicated gene to enable novel functionality to emerge [
<xref ref-type="bibr" rid="CR129">129</xref>
,
<xref ref-type="bibr" rid="CR130">130</xref>
]. In the case of effectors, expansion and diversification within a family may enable modification of function to prevent alerting a guarding resistance gene product, or structural modification to avoid a direct recognition event that would otherwise elicit a defense response. Thus having expanded families of effectors may offer an evolutionary selective advantage to a pathogen, enabling recognition of an effector to be overcome with evolution of a novel paralogue and deletion or pseudogenization of the previously recognised effector. The processes involved in how these families expand is still open to debate. The presence of large numbers of presumably structurally related, but sequence diverse, proteins poses problems for the delineation of families. Indeed, three families were delineated in this study that shared common members. Although an unorthodox compromise, these families were deemed to be too diverse to be amalgamated using the thresholds adopted for this analysis, but the members are sufficiently closely related to form a single family if the thresholds were to be slightly relaxed, thereby highlighting the pitfalls of depending on arbitrary thresholds for either separating or grouping proteins.</p>
<p>In many pathogens, effector genes are associated with TEs. Association of TEs is evident with the co-evolution of the
<italic>B. graminis AVR</italic>
<sub>
<italic>k1</italic>
</sub>
effector family with a class of LINE-1 retrotransposons [
<xref ref-type="bibr" rid="CR124">124</xref>
], the
<italic>B. graminis</italic>
AvrPm3a2/f2 effector family with various TEs [
<xref ref-type="bibr" rid="CR123">123</xref>
] and the association of miniature impala transposons (mimps) in the promoters of effectors in
<italic>F. oxysporum</italic>
[
<xref ref-type="bibr" rid="CR131">131</xref>
]. TEs have also been implicated in horizontal gene transfer [
<xref ref-type="bibr" rid="CR132">132</xref>
]. The analyses of gene density, and association of effector candidates with repeat elements in Vi1, suggests that effectors and TEs may be similarly associated in
<italic>Venturia</italic>
. In addition, most of the
<italic>AvrLm6-</italic>
and
<italic>Ave1</italic>
-like genes are closely associated with repeats, i.e. TEs and TE-like remnants, as identified by REPET [
<xref ref-type="bibr" rid="CR45">45</xref>
]. Oliver [
<xref ref-type="bibr" rid="CR133">133</xref>
] outlined the mutagenic potential of transposons and their, at first, seemingly unlikely contribution to the evolution of a successful pathogen: transposons contribute to diversity generation by insertion either in or near a gene, affecting either structure of the resulting encoded protein or the expression pattern, respectively. Transposons may facilitate gene family expansion through capture and translocation of host genes [
<xref ref-type="bibr" rid="CR134">134</xref>
], such expansions can become targets for repeat induced point mutation (RIP), with mutations occuring not only in the duplicated transposons but the associated genes [
<xref ref-type="bibr" rid="CR133">133</xref>
,
<xref ref-type="bibr" rid="CR135">135</xref>
,
<xref ref-type="bibr" rid="CR136">136</xref>
]. This is an ongoing area of interest and analysis of repeat regions is currently underway in cross progeny of
<italic>V. inaequalis</italic>
. Further analyses are required in the
<italic>Venturia</italic>
spp. to reveal if TEs and indeed RIP are involved in diversity generation, and expansion of gene families as suggested by this initial analysis.</p>
</sec>
</sec>
</sec>
<sec id="Sec23" sec-type="conclusion">
<title>Conclusions</title>
<p>The comparative analysis of whole secreteomes of multiple races of
<italic>V. inaequalis</italic>
with the related scab pathogen,
<italic>V. pirina</italic>
, has provided novel insights into the unusual, biotrophic lifestyle niche that these pathogens occupy. It has also yielded significant leads in the hunt for cultivar- and host-specificity determinants of scab fungi. The challenge now will be to prioritise leads, from the expanded arrays of putative effectors, for futher investigation with a mind to delivering durable, scab control.</p>
</sec>
<sec id="Sec24" sec-type="materials|methods">
<title>Methods</title>
<sec id="Sec25">
<title>Fungal material and culture conditions</title>
<p>All
<italic>V. inaequalis</italic>
and
<italic>V. pirina</italic>
isolates used in this study (Table 
<xref rid="Tab1" ref-type="table">1</xref>
; Additional file
<xref rid="MOESM17" ref-type="media">17</xref>
) have been reported previously [
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR137">137</xref>
,
<xref ref-type="bibr" rid="CR138">138</xref>
] and morphology, pathology as well as DNA sequence comparisons (ribosomal RNA ITS1-5.8-ITS2 and TEF1) have been used to validate the classifications of these isolates as
<italic>V. inaequalis</italic>
or
<italic>V. pirina.</italic>
All isolates were grown on cellophane (Waugh Rubber Bands, Wellington, New Zealand) [
<xref ref-type="bibr" rid="CR139">139</xref>
] overlying potato dextrose agar (PDA) at 20 °C for 18 h to 14 days (16 h light period/day) under white fluorescent lights (4300 K) for the production of conidia for plant inoculation (Vi1 only) and biomass for genomic DNA (gDNA; all isolates) and RNA extraction (Vi1 only). Cellophane was used, as it induces the formation of spores and stromata-like tissues in
<italic>Venturia</italic>
spp
<italic>.</italic>
similar to those formed during infection [
<xref ref-type="bibr" rid="CR47">47</xref>
].</p>
</sec>
<sec id="Sec26">
<title>Plant material and infection assays</title>
<p>Four- to six-week-old seedlings originating from open-pollinated
<italic>Malus</italic>
x
<italic>domestica</italic>
‘Royal Gala’ (Hawke’s Bay, New Zealand) were used to produce infected plant material. A detached leaf assay was used for generating tissue for RNA sequencing [
<xref ref-type="bibr" rid="CR117">117</xref>
], except that 5 μl droplets of conidial suspension (1 × 10
<sup>5</sup>
 ml
<sup>−1</sup>
) were used to cover the entire leaf surface.
<italic>V. inaequalis</italic>
Vi1-infected and SDW-inoculated leaves were harvested at two or seven dpi and used for RNA extraction and microscopic evaluation of infection.</p>
</sec>
<sec id="Sec27">
<title>gDNA extraction and whole genome sequencing</title>
<p>Extraction of
<italic>V. inaequalis</italic>
gDNA was carried out as reported in Kucheryava and associates [
<xref ref-type="bibr" rid="CR47">47</xref>
]. Two PE libraries and two mate-pair (MP) libraries (with 5 kb and 10 kb insert sizes) were constructed for Vi1. These libraries were sequenced on the HiSeq2000 platform at the Allan Wilson Centre Genome Service (AWCGS), Massey University, New Zealand, and the Australian Genome Research Facility (AGRF). One plate of a whole genome library was also sequenced by the AWCGS on the Roche 454 Life Sciences Genome Sequencer with read length ranging from 18 to 634 bases. One PE and one MP library were constructed for each of the isolates, Vi1.10 and ViL. The PE libraries were specially built with a fragment size of 180 bp so that read 1 and 2 overlapped at the end. All four libraries were sequenced on the Illumina HiSeq2000 platform at Macrogen, Korea. The Vi.1.2.8.9 PE library was sequenced in one lane on the Illumina HiSeq2000 at the AGRF. Genome sequencing details for Vp were reported in Cooke et al. [
<xref ref-type="bibr" rid="CR22">22</xref>
]. The majority of the genomes were sequenced using the Illumina platform, apart from Vi1 which is a hybrid assembly of reads from both Illumina HiSeq and Roche 454 platforms.</p>
</sec>
<sec id="Sec28">
<title>RNA extraction and transcriptome sequencing</title>
<p>Total RNA was extracted by the method of Chang et al
<italic>.</italic>
[
<xref ref-type="bibr" rid="CR140">140</xref>
] and concentration quantified using a Nanodrop, ND-1000 Spectrophotometer (NanoDrop Technologies, Rockland, DE). For RNA sequencing cellophane membranes were harvested as follows and combined for a single RNA extraction: three cellophanes 18 h post inoculation (hpi), four cellophanes four dpi, four cellophanes six dpi and one quarter of a cellophane 14 dpi, stripped of aerial hyphae (to enrich for stromatic tissues inside the cellophane sheet). For in planta material three detached leaves inoculated with
<italic>V. inaequalis</italic>
conidia (detached leaf assay) were harvested at two and seven dpi and snap frozen in liquid nitrogen. RNA was extracted as above, a single sample being derived from the three leaves. Genomic DNA contamination was excluded by visualisation of RNA on a 0.8% agarose gel and absence of an amplification product using primers specific for glyceraldehyde 3-phosphate dehydrogenase genes from
<italic>V. inaequalis</italic>
and apple [
<xref ref-type="bibr" rid="CR47">47</xref>
]. The RNA from in vitro and in planta extractions (5 μg), from the two different time points, was sequenced on the Illumina HiSeq2000 platform in PE mode AGRF, giving between 17 and 33 million pairs of reads per sample.</p>
</sec>
<sec id="Sec29">
<title>Bioinformatic analyses</title>
<sec id="Sec30">
<title>Genome assembly</title>
<p>For each
<italic>Venturia</italic>
isolate, a quality check (QC) on genome sequencing data was carried out utilising PIQA v1.0 [
<xref ref-type="bibr" rid="CR141">141</xref>
], the FASTX toolkit v0.0.13 [
<xref ref-type="bibr" rid="CR142">142</xref>
] and FastQC [
<xref ref-type="bibr" rid="CR143">143</xref>
]. Reads were trimmed using in-house PERL tools and adaptor sequences were removed using fastq-mcf [
<xref ref-type="bibr" rid="CR144">144</xref>
] based on data QC reports. De novo genome assembly was performed using Velvet [
<xref ref-type="bibr" rid="CR61">61</xref>
] and SOAPdenovo with a range of Kmer values for Vi1 and Vi1.2.8.9 [
<xref ref-type="bibr" rid="CR145">145</xref>
]. For each isolate, the top three assemblies that produced the best statistics in terms of size of contigs and scaffolds, and N50 and N90 metrics, were chosen for futher analysis. CEGMA [
<xref ref-type="bibr" rid="CR25">25</xref>
] and BUSCO [
<xref ref-type="bibr" rid="CR26">26</xref>
] tests were performed on various genome assemblies to check their completeness; utilising the 248 most conserved core genes for the former [
<xref ref-type="bibr" rid="CR146">146</xref>
]. Known
<italic>Venturia</italic>
ESTs (ABEA, ABEB, IAAA, MAAB and MAAD libraries deposited as ESTs at NCBI) [
<xref ref-type="bibr" rid="CR46">46</xref>
] were aligned to the genome assemblies for quality evaluation i.e. to ensure correct assembly of the corresponding sequences in the genome using a BLASTn similarity threshold of <1e-05. The assembly with the highest percentage completeness measured by the CEGMA analysis and the best-mapping ESTs was selected as the genome to release for the isolate. Isolates Vi1.10, and ViL, were assembled with three genome assemblers, Velvet, SOAPdenovo, and the ALLPATHS-LG programme since their PE libraries were constructed specifically with overlapping pairs and satisfied the requirements for ALLPATHS-LG [
<xref ref-type="bibr" rid="CR62">62</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
]. As for the other isolates, the assembly with the best statistics was chosen for further improvement. The best genome assembly for each isolate was gapfilled using GapCloser with PE reads (GapCloser in SOAPdenovo version 1.12) [
<xref ref-type="bibr" rid="CR145">145</xref>
] then scaffolded using SSPACE with MP reads (SSPACE version 2) [
<xref ref-type="bibr" rid="CR147">147</xref>
]. The gapfilling and scaffolding steps were performed iteratively until there was no obvious gap size decrease or reduction in scaffold number.</p>
</sec>
<sec id="Sec31">
<title>Gene prediction</title>
<p>The assembled genomes were masked before gene prediction using a customized pipeline which included RepeatMasker-open-3-3-0, RepBase [
<xref ref-type="bibr" rid="CR148">148</xref>
], RepeatScout [
<xref ref-type="bibr" rid="CR149">149</xref>
], trf [
<xref ref-type="bibr" rid="CR150">150</xref>
] and TEClass [
<xref ref-type="bibr" rid="CR151">151</xref>
]. Fungal genes downloaded from NCBI (August, 2012) were mapped to the Vi1 genome assembly using Exonerate [
<xref ref-type="bibr" rid="CR152">152</xref>
] for similarity based gene prediction. Transcriptome assemblies for in planta and in vitro libraries (see transcriptome analysis section below) together with ESTs from Vi1 grown in vitro and in planta (Vi1-infected susceptible apple leaves) [
<xref ref-type="bibr" rid="CR46">46</xref>
] were used to train AUGUSTUS [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR153">153</xref>
] to build a species model file (meta parameter file) for
<italic>Venturia</italic>
. Hybrid (evidence-based) gene prediction was performed for Vi1 using this model together with the Vi1 transcript sequences and ESTs as hints in AUGUSTUS. Based on the trained species model, ab initio gene predictions were carried out on the repeat-masked genomes for all the five
<italic>Venturia</italic>
isolates, thus there were two sets of gene predictions for the Vi1 genome.</p>
</sec>
<sec id="Sec32">
<title>Transcriptome analysis</title>
<p>RNA-Seq data QC was done using FASTX-Toolkit v0.0.13 [
<xref ref-type="bibr" rid="CR142">142</xref>
]. Reads were trimmed to 64 nucleotides based on the QC reports (using a median phred score >20 as threshold). For genome-guided transcriptome assembly, trimmed RNA-Seq reads from Vi1 in vitro and two or seven dpi (in planta) were mapped to the reference genome of Vi1 using tophat-1.4.1 [
<xref ref-type="bibr" rid="CR154">154</xref>
] and further assembled with cufflinks-1.3.0 [
<xref ref-type="bibr" rid="CR155">155</xref>
]. De novo transcriptome assembly was carried out using Inchworm (now evolved to Trinity) [
<xref ref-type="bibr" rid="CR156">156</xref>
,
<xref ref-type="bibr" rid="CR157">157</xref>
], and Oases [
<xref ref-type="bibr" rid="CR158">158</xref>
] to aid gene prediction (see above). To measure transcriptional support for genes FPKM values were calculated within samples enabling gross ranking of transcriptional activity, with an arbitrary threshold of >1 for evidence of transcription. Differential gene expression tests were carried out between in vitro and in planta samples at different inoculation time points, using rsem-1.2.4 [
<xref ref-type="bibr" rid="CR159">159</xref>
] to first map the reads, followed by edgeR v3.2.4 [
<xref ref-type="bibr" rid="CR160">160</xref>
] in Bioconductor version 2.12 [
<xref ref-type="bibr" rid="CR161">161</xref>
]. Highly differentially expressed genes, with a false discovery rate <0.05 and log
<sub>2</sub>
fold change (LogFC) not smaller than two, were used for prioritisation of genes for analysis.</p>
</sec>
<sec id="Sec33">
<title>Identification of the predicted secretomes</title>
<p>Genes encoding putatively secreted proteins were identified in each
<italic>Venturia</italic>
genome and gene catalogues from
<italic>P. nodorum</italic>
,
<italic>P. graminis</italic>
f. sp
<italic>tritici</italic>
and
<italic>C. fulvum</italic>
downloaded via the Mycocosm portal at the JGI, using a custom software pipeline (Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
). Both the hybrid (based on trancriptome resources used to build the trained species model) and ab initio (based on the trained species model) predictions for Vi1 were used in the secretome discovery pipeline to avoid excluding genes predicted in only one approach; gene predictions in either set that co-localised at the same locus (with a greater than 90% identity and e value of <1e-10) were considered a single prediction. The SignalP 4.0 [
<xref ref-type="bibr" rid="CR162">162</xref>
] and the SecretomeP [
<xref ref-type="bibr" rid="CR163">163</xref>
] servers were used initially to screen for predicted proteins with a signal peptide or those secreted via a non-classical pathway, respectively. The TMHMM server was used to screen for predicted proteins without a predicted transmembrane domain [
<xref ref-type="bibr" rid="CR164">164</xref>
]. Only those predicted proteins, either lacking a transmembrane domain or with a single transmembrane domain with at least 10 aa in the first 60 aa, indicating a probable correspondence with secretion signal, were considered for further analysis. The TargetP server [
<xref ref-type="bibr" rid="CR165">165</xref>
] was used to predict cellular location, with those predicted to be extracellular retained. ProtComp v 9.0 [
<xref ref-type="bibr" rid="CR166">166</xref>
] and WoLF PSORT servers (with an extracellular score threshold of >17) [
<xref ref-type="bibr" rid="CR167">167</xref>
] were used to further analyse the putative location of these predicted proteins. Proteins predicted to be secreted by either method were included to avoid the omission of false negatives.</p>
</sec>
<sec id="Sec34">
<title>Annotation of the predicted secretomes</title>
<p>Putative functions of the secretome proteins were initially assigned following gene ontology analysis through an in-house annotation pipeline (BioView; Ross Crowhurst, Marcus Davy and Cecilia Deng, unpublished) that scans public databases including NCBI RefSeq [
<xref ref-type="bibr" rid="CR168">168</xref>
], InterPro [
<xref ref-type="bibr" rid="CR169">169</xref>
], UniRef [
<xref ref-type="bibr" rid="CR170">170</xref>
], ExPASy UniProtKB/Swiss-Prot [
<xref ref-type="bibr" rid="CR171">171</xref>
] and ExPASy Prosite [
<xref ref-type="bibr" rid="CR172">172</xref>
] and subsequent manual curation on the basis of similarity searches (BLASTp with a similarity threshold of 1e-10) against the NCBI nr database [
<xref ref-type="bibr" rid="CR29">29</xref>
]. In addition, identification of the complement of putative carbohydrate-active enzymes (CAZymes) was achieved using the CAT server [
<xref ref-type="bibr" rid="CR27">27</xref>
]. Default parameters were used for CAZyme identification, apart from the -threshold which was set to 1e-05.</p>
<p>
<italic>Venturia</italic>
genomes were also interrogated (using a combination of automated annotations, BLASTp and tBLASTn, with a similarity threshold of 1e-10), with sequences listed in PHI-base [
<xref ref-type="bibr" rid="CR35">35</xref>
] and other effectors (e.g.
<italic>V. dahliae</italic>
Ave1, GenBank: AFB18188.1;
<italic>L. maculans</italic>
, AvrLm6 GenBank: CAJ90695.1;
<italic>C. fulvum</italic>
Ecp6 GenBank: ACF19427.1), as well as sequences annotated as ‘hydrophobin’ and containing the ascomycete-specific hydrophobin motif IPR010636 or conserved eight cysteine pattern, from
<italic>C. fulvum</italic>
and
<italic>D. septosporum</italic>
(as referred to in [
<xref ref-type="bibr" rid="CR69">69</xref>
]),
<italic>P. nodorum</italic>
(JGI protein ID 9201, SNOG_03122.3) and
<italic>L. maculans</italic>
(JGI protein ID 775, Lema_T007750.1). Conserved domains were identified using Pfamscan [
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR38">38</xref>
].</p>
<p>Orthologous protein clusters were identified using OrthoMCL version 2.0.3 [
<xref ref-type="bibr" rid="CR30">30</xref>
] together with the Markov clustering algorithm mcl [
<xref ref-type="bibr" rid="CR173">173</xref>
] to cluster all-vs-all BLASTp (e value <1e-10) results across all isolates.</p>
</sec>
<sec id="Sec35">
<title>Small secreted proteins (SSPs)</title>
<p>Small secreted proteins (SSPs) were defined as proteins that were present in the secretome dataset with a length of ≤500 aa (following removal of the secretion signal if identified by SignalP). Enzymes, such as CAZymes, were not included in the SSP set. A more stringent length parameter of 200 aa was also used to identify a more discrete set of candidate effectors. Those SSPs with two or more cysteine residues in the predicted mature protein were also identified. SSPs were screened for repeat content using RADAR [
<xref ref-type="bibr" rid="CR174">174</xref>
<xref ref-type="bibr" rid="CR176">176</xref>
]. The presence of pro-peptide cleavage sites was analysed using ProP 1.0 [
<xref ref-type="bibr" rid="CR177">177</xref>
], with those sites with a score ≥0.5 recorded as positive. InterProScan 5 [
<xref ref-type="bibr" rid="CR174">174</xref>
,
<xref ref-type="bibr" rid="CR178">178</xref>
] was used to analyse conserved domains in the SSPs.</p>
<p>In addition to the OrthoMCL analysis, the SSPs (≤200 aa in length) were analysed further using Spectral Clustering SCPS 0.9.8 [
<xref ref-type="bibr" rid="CR57">57</xref>
] to detect possible clusters of SSPs comprising members with lower sequence similarity than those clustered using the more stringent thresholds of OrthoMCL. The parameters (default) used were those that resulted in the AvrLm6-like proteins forming a cluster with the same members as when clustered manually [
<xref ref-type="bibr" rid="CR45">45</xref>
]. The clusters were manually inspected and those members with a similar cysteine pattern retained. In addition, since those SSPs less than 200 aa in length were over-represented in the Vi1 secretome, members of the clusters from Vi1 were used to detect possible gene predictions that were not called automatically by searching each of the
<italic>Venturia</italic>
genomes using genBlastG 1.39 [
<xref ref-type="bibr" rid="CR179">179</xref>
], then manually curating novel gene models followed by family assignment based on cysteine patterns and construction of multiple sequence alignments using T-Coffee 11.00.8cbe486 [
<xref ref-type="bibr" rid="CR180">180</xref>
,
<xref ref-type="bibr" rid="CR181">181</xref>
]. Sequence logos were constructed using the TeX package, TeXshade [
<xref ref-type="bibr" rid="CR182">182</xref>
].</p>
<p>Proteins similar to selected SSPs in related Dothideomycete genomes (Additional file
<xref rid="MOESM15" ref-type="media">15</xref>
) were identified either by BLASTp for singletons or HMMER 3.1b2 [
<xref ref-type="bibr" rid="CR183">183</xref>
] for families (thresholds 1e-10), and clustering data pertaining to the predicted Dothideomycete orthologues were obtained from the JGI. Dothideomycete genomes were selected for comparison based on phylogenetic spread and diversity of lifestyle, including extremophile saprobes, biotrophs, hemibiotrophs and necrotrophs.</p>
</sec>
<sec id="Sec36">
<title>Gene density and proximity to transposable elements (or transposable element remnants) in the Vi1 genome</title>
<p>Intergenic distances were calculated for the predicted genes of Vi1. Gene density across the Vi1 genome was approximated from 5′ and 3′ flanking intergenic lengths. Intergenic lengths were binned according to log (length) and plotted as a 2-dimensional heatmap in R [
<xref ref-type="bibr" rid="CR184">184</xref>
] using a method adapted from Saunders and associates [
<xref ref-type="bibr" rid="CR185">185</xref>
]. The average distances were also calculated; however, genes lacking an immediate neighbour at either the 5′ or 3′ flank, such as those at the ends of genomic scaffolds, were excluded from this analysis. The
<italic>V</italic>
IS set, plus
<italic>AvrLm6-</italic>
and
<italic>Ave1</italic>
-like genes were compared with 440 core eukaryotic genes [
<xref ref-type="bibr" rid="CR25">25</xref>
].</p>
<p>The repeat prediction suite REPET 2.2 [
<xref ref-type="bibr" rid="CR186">186</xref>
] was used for the detection and annotation of TEs (repeat sequences) for the whole genome sequence of Vi1. A custom Python script was used to calculate the 5′ and 3′ flanking distances between gene annotations and TE genomic features that were identified in the REPET analysis. Flanking distances between genes and repeats were binned according to log (length) and plotted as a 2-dimensional heatmap in R [
<xref ref-type="bibr" rid="CR184">184</xref>
] using a method adapted from Saunders and associates [
<xref ref-type="bibr" rid="CR185">185</xref>
]. The
<italic>V</italic>
IS and core eukaryotic gene gene sets were plotted for comparison. Student’s
<italic>t</italic>
-Tests were conducted to determine whether any differences were statistically significant.</p>
</sec>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Additional files</title>
<sec id="Sec37">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="12864_2017_3699_MOESM1_ESM.xlsx">
<label>Additional file 1:</label>
<caption>
<p>Statistics for the whole genome assemblies of isolates of
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
. (XLSX 11 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="12864_2017_3699_MOESM2_ESM.xlsx">
<label>Additional file 2:</label>
<caption>
<p>Repeats in
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
genome assemblies. (XLSX 10 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="12864_2017_3699_MOESM3_ESM.xlsx">
<label>Additional file 3:</label>
<caption>
<p>Analysis of gene models from the
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
genomes. (XLSX 10 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM4">
<media xlink:href="12864_2017_3699_MOESM4_ESM.xlsx">
<label>Additional file 4:</label>
<caption>
<p>Core Eukaryotic Gene Model Analysis (CEGMA) of the
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
genomes. The 248 most highly-conserved core eukaryotic genes were used in the CEGMA to assess genome completeness. (XLSX 10 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM5">
<media xlink:href="12864_2017_3699_MOESM5_ESM.xlsx">
<label>Additional file 5:</label>
<caption>
<p>Benchmarking Universal Single-Copy Orthologs (BUSCO_v1.1b) analysis of the
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
genomes. BUSCO analysis was used to assess completeness of the
<italic>Venturia</italic>
genome assemblies. (XLSX 10 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM6">
<media xlink:href="12864_2017_3699_MOESM6_ESM.docx">
<label>Additional file 6:</label>
<caption>
<p>Pipeline of programmes used to identify the in silico-predicted secretome of each isolate. (DOCX 147 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM7">
<media xlink:href="12864_2017_3699_MOESM7_ESM.xlsx">
<label>Additional file 7:</label>
<caption>
<p>The predicted secretomes and small, secreted proteins (SSPs) encoded by the genomes of
<italic>Venturia</italic>
and representative related pathogens. The genomes for
<italic>Parastagonospora nodorum</italic>
,
<italic>Cladosporium fulvum</italic>
and
<italic>Puccinia graminis</italic>
f. sp.
<italic>tritici</italic>
were downloaded via the Mycocosm portal at the Joint Genome Institute (JGI; see details in Additional file
<xref rid="MOESM15" ref-type="media">15</xref>
). These pathogens were representatives of necrotrophic, facultative and obligate biotrophic fungi, respectively. The pipeline outlined in Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
was employed to identify the secretome and SSPs in each of the genomes. (XLSX 11 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM8">
<media xlink:href="12864_2017_3699_MOESM8_ESM.pptx">
<label>Additional file 8:</label>
<caption>
<p>The predicted proteins belonging to OrthoMCL clusters present in the secretomes of five
<italic>Venturia</italic>
isolates. The coloured horizontal bars represent proportions of predicted proteins (scale at bottom of figure) that have been annotated according to the key at the top of the figure, that are present in the secretomes indicated by grey boxes to the left of the figure (white boxes indicate lack of similar proteins). S: indicates singleton proteins. Numbers in the boxes are numbers of proteins. The order of the categories in the key is the same as that in the horizontal bars. For example: the core secretome is represented by the top-most horizontal bar; there are similar proteins present in each of the secretomes (5 grey boxes), of which 15% (77 proteins) are classified as SSPs between 200 and 500 amino acids in length with 2 or more cysteines. (PPTX 56 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM9">
<media xlink:href="12864_2017_3699_MOESM9_ESM.xlsx">
<label>Additional file 9:</label>
<caption>
<p>The CAZyme domains present in proteins encoded by the
<italic>Venturia</italic>
secretomes. CAZyme domains were identified using the CAZymes analysis toolkit (CAT) server. Domains: CBM: carbohydrate binding module; CE: carbohydrate esterase; GH: glycoside hydrolase; GT: glycosyltransferase; PL: polysaccharide lyase. The known substrates for the CAZyme domains were taken from Zhao et al. PCW: plant cell wall. FCW: fungal cell wall. CW: cell wall. ESR: energy storage and recovery. PG: protein glycosylation. dpi: days post inoculation. (XLSX 17 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM10">
<media xlink:href="12864_2017_3699_MOESM10_ESM.xlsx">
<label>Additional file 10:</label>
<caption>
<p>Summary of distribution of similar proteins with CAZyme domains encoded by the
<italic>Venturia</italic>
secretomes. CAZyme domains were identified using the CAZymes analysis toolkit (CAT) server. Filled grey boxes in columns indicate presence of a similar protein or proteins in that secretome identified by OrthoMCL clustering. (XLSX 12 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM11">
<media xlink:href="12864_2017_3699_MOESM11_ESM.xlsx">
<label>Additional file 11:</label>
<caption>
<p>Classification of proteases in the secretomes of the
<italic>Venturia</italic>
pathogens. Filled grey boxes in columns indicate presence of similar proteins in that secretome identified by OrthoMCL clustering: aspartate and serine (including those annotated as subtilases) proteases, metalloproteases and unclassified peptidases. Several of the proteases were similar (</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM12">
<media xlink:href="12864_2017_3699_MOESM12_ESM.xlsx">
<label>Additional file 12:</label>
<caption>
<p>Summary of small, secreted proteins (SSPs) similar to proteins present in the Pathogen-Host Interactions database. Filled grey boxes in columns indicate presence of a similar protein(s) in that secretome identified by OrthoMCL clustering. (XLSX 12 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM13">
<media xlink:href="12864_2017_3699_MOESM13_ESM.docx">
<label>Additional file 13:</label>
<caption>
<p>Small, secreted protein (SSP) family 07 members. Sequence logo of members of A. family 07 from Vi1 and B. family 07 from all isolates. (DOCX 221 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM14">
<media xlink:href="12864_2017_3699_MOESM14_ESM.xlsx">
<label>Additional file 14:</label>
<caption>
<p>Details of the small (≤200 amino acids in length) secreted proteins in the
<italic>Venturia</italic>
infection secretome (
<italic>V</italic>
IS) gene set. (XLSX 22 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM15">
<media xlink:href="12864_2017_3699_MOESM15_ESM.xlsx">
<label>Additional file 15:</label>
<caption>
<p>The genomes used in this study (non-
<italic>Venturia</italic>
). Sources of the genomes downloaded or accessed (with permission) from the Joint Genome Institute (JGI)/MycoCosm. (XLSX 14 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM16">
<media xlink:href="12864_2017_3699_MOESM16_ESM.xlsx">
<label>Additional file 16:</label>
<caption>
<p>Details of the lineage-specific small, secreted proteins (SSPs) identified in
<italic>Venturia inaequalis</italic>
ViL and
<italic>V. pirina</italic>
secretomes. Only those proteins ≤200 amino acids in length are included. (XLSX 18 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM17">
<media xlink:href="12864_2017_3699_MOESM17_ESM.xlsx">
<label>Additional file 17:</label>
<caption>
<p>Details of isolates of
<italic>Venturia inaequalis</italic>
and
<italic>V. pirina</italic>
used in this study. (XLSX 12 kb)</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>aa</term>
<def>
<p>Amino acid</p>
</def>
</def-item>
<def-item>
<term>AGRF</term>
<def>
<p>Australian Genome Research Facility</p>
</def>
</def-item>
<def-item>
<term>AWCGS</term>
<def>
<p>Allan Wilson Centre Genome Service</p>
</def>
</def-item>
<def-item>
<term>BUSCO</term>
<def>
<p>Benchmarking Universal Single-Copy Orthologs</p>
</def>
</def-item>
<def-item>
<term>CAT</term>
<def>
<p>CAZyme Analysis Toolkit</p>
</def>
</def-item>
<def-item>
<term>CAZyme</term>
<def>
<p>Carbohydrate Active Enzyme</p>
</def>
</def-item>
<def-item>
<term>CBD</term>
<def>
<p>Chitin-binding domain</p>
</def>
</def-item>
<def-item>
<term>CBM</term>
<def>
<p>Carbohydrate-binding motif</p>
</def>
</def-item>
<def-item>
<term>CE</term>
<def>
<p>Carbohydrate esterase</p>
</def>
</def-item>
<def-item>
<term>CEGMA</term>
<def>
<p>Core Eukaryotic Genes Mapping Approach</p>
</def>
</def-item>
<def-item>
<term>
<italic>Cin</italic>
</term>
<def>
<p>Cellophane-induced</p>
</def>
</def-item>
<def-item>
<term>dpi</term>
<def>
<p>Days post inoculation</p>
</def>
</def-item>
<def-item>
<term>FPKM</term>
<def>
<p>Fragments per kilobase of exon per million reads mapped</p>
</def>
</def-item>
<def-item>
<term>gDNA</term>
<def>
<p>Genomic DNA</p>
</def>
</def-item>
<def-item>
<term>GH</term>
<def>
<p>Glycoside hydrolase</p>
</def>
</def-item>
<def-item>
<term>GT</term>
<def>
<p>Glycosyl transferase</p>
</def>
</def-item>
<def-item>
<term>hpi</term>
<def>
<p>Hours post inoculation</p>
</def>
</def-item>
<def-item>
<term>HR</term>
<def>
<p>Hypersensitive response</p>
</def>
</def-item>
<def-item>
<term>HsbA</term>
<def>
<p>hydrophobic surface binding</p>
</def>
</def-item>
<def-item>
<term>JGI</term>
<def>
<p>Joint Genome Institute</p>
</def>
</def-item>
<def-item>
<term>LysM</term>
<def>
<p>Lysin motif</p>
</def>
</def-item>
<def-item>
<term>Mimp</term>
<def>
<p>Miniature impala transposon</p>
</def>
</def-item>
<def-item>
<term>MP</term>
<def>
<p>Mate-pair</p>
</def>
</def-item>
<def-item>
<term>NLP</term>
<def>
<p>Nep-1-like protein</p>
</def>
</def-item>
<def-item>
<term>PAMP</term>
<def>
<p>Pathogen-associated molecular pattern</p>
</def>
</def-item>
<def-item>
<term>PBSA</term>
<def>
<p>Poly(butylene succinate-co-adipate)</p>
</def>
</def-item>
<def-item>
<term>PDA</term>
<def>
<p>Potato dextrose agar</p>
</def>
</def-item>
<def-item>
<term>PE</term>
<def>
<p>Paired-end</p>
</def>
</def-item>
<def-item>
<term>PFR</term>
<def>
<p>Plant & Food Research Limited</p>
</def>
</def-item>
<def-item>
<term>PL</term>
<def>
<p>Polysaccharide lyase</p>
</def>
</def-item>
<def-item>
<term>PTI</term>
<def>
<p>PAMP-triggered immunity</p>
</def>
</def-item>
<def-item>
<term>QC</term>
<def>
<p>Quality check</p>
</def>
</def-item>
<def-item>
<term>R</term>
<def>
<p>Resistance</p>
</def>
</def-item>
<def-item>
<term>RIP</term>
<def>
<p>Repeat induced point mutation</p>
</def>
</def-item>
<def-item>
<term>SDW</term>
<def>
<p>Sterile distilled water</p>
</def>
</def-item>
<def-item>
<term>SSP</term>
<def>
<p>Small, secreted, non-enzymatic protein</p>
</def>
</def-item>
<def-item>
<term>TEs</term>
<def>
<p>Transposable elements</p>
</def>
</def-item>
<def-item>
<term>VICE</term>
<def>
<p>
<italic>V. inaequalis</italic>
candidate effector</p>
</def>
</def-item>
<def-item>
<term>
<italic>V</italic>
IS</term>
<def>
<p>
<italic>Venturia</italic>
Infection Secretome</p>
</def>
</def-item>
<def-item>
<term>VLSCI</term>
<def>
<p>Victorian Life Sciences Computation Initiative</p>
</def>
</def-item>
</def-list>
</glossary>
<ack>
<title>Acknowledgements</title>
<p>The authors wish to thank Jared Bennett for technical assistance with DNA preparation; Mark Andersen and Erik Rikkerink for critical reviewing of the manuscript.</p>
<sec id="FPar1">
<title>Funding</title>
<p>This work was supported by: the New Zealand Foundation for Research, Science and Technology (now Ministry for Business, Innovation and Employment), contract numbers C06X0302 and C06X0207 and PFR Core funding; Victorian Life Sciences Computation Initiative’s (VLSCI) Life Sciences Computation Centre, a collaboration between La Trobe, Melbourne and Monash Universities (an initiative of the Victorian Government, Australia); La Trobe University eResearch grant; JS was supported by an Australian postgraduate award and VLSCI PhD top-up award.</p>
</sec>
<sec id="FPar2">
<title>Availability of data and materials</title>
<p>De novo assemblies for the five
<italic>Venturia</italic>
isolates have been deposited at DDBJ/EMBL/GenBank under the accession numbers: National Center for Biotechnology Information (NCBI) [
<xref ref-type="bibr" rid="CR29">29</xref>
] BioProject ID PRJNA261633 for
<italic>V. inaequalis</italic>
and JEMP01000000 for the
<italic>V. pirina</italic>
genome. RNA-seq data (
<italic>V. inaequalis</italic>
Vi1) are deposited under the same BioProject (ID PRJNA261633): in vitro: SRR1586226, two dpi in planta: SRR1586224, seven dpi in planta: SRR1586223. In addition, the Vi1 and Vp genomes and gene predictions are publicly accessible via the Mycocosm portal at JGI [
<xref ref-type="bibr" rid="CR58">58</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
].</p>
</sec>
<sec id="FPar3">
<title>Authors’ contributions</title>
<p>CHD: Genome assemblies for Vi isolates; Repeat elements identification and repeat masking of genomes; Gene prediction and annotation; Comparative genomics of fungal species; Transcriptome assemblies; Gene differential expression profiling; Genome visualization and consortium web site maintenance; Deposition of genome assemblies to NCBI; Deployment of genomes and gene structures to JGI/MycoCosm; Experimental design for WGS and RNASeq (with JKB). KMP: conception and experimental design, bioinformatics analyses, writing of manuscript. DABJ: Analysis of families and singletons in the Vi secretomes. CHM: bioinformatic identification of effector candidates, writing of manuscript. JS: identification of the
<italic>AvrLm6</italic>
orthologues and bioinformatics analyses. APT: interrogation of Vi1 and Vp genomes of Ave1 orthologue members, REPET and intergenic and gene to TE flanking distances analysis. AJR: REPET analyses, bioinformatics assistance and support. PK: bioinformatics and validation of Ave1 orthologue members. NEH: bioinformatics and technical support. MDT: sequence analysis, gene mining. JKB: conception and experimental design, DNA and RNA preparation, infection assays, microscopy, bioinformatics analyses, writing of manuscript. All authors read and approved the final manuscript.</p>
</sec>
<sec id="FPar4">
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec id="FPar5">
<title>Consent for publication</title>
<p>Not applicable.</p>
</sec>
<sec id="FPar6">
<title>Ethics approval and consent to participate</title>
<p>The plant material used in this research was
<italic>Malus</italic>
x
<italic>domestica</italic>
‘Royal Gala’ that was open-pollinated. Seeds were sourced from fruit produced in the Plant & Food Research Orchard (Hawke’s Bay, New Zealand). Since the plant material was not collected from a wild source, any permissions/permits were not necessary. ‘Royal Gala’ is one of the most widely grown apple cultivars worldwide and is readily available for purchase from nurseries.</p>
</sec>
<sec id="FPar7">
<title>Publisher’s Note</title>
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chisholm</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Coaker</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>Host-microbe interactions: shaping the evolution of the plant immune response</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<fpage>803</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2006.02.008</pub-id>
<pub-id pub-id-type="pmid">16497589</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>The plant immune system</article-title>
<source>Nature</source>
<year>2006</year>
<volume>444</volume>
<fpage>323</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1038/nature05286</pub-id>
<pub-id pub-id-type="pmid">17108957</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schulze-Lefert</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Panstruga</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation</article-title>
<source>Trends Plant Sci</source>
<year>2011</year>
<volume>16</volume>
<fpage>117</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/j.tplants.2011.01.001</pub-id>
<pub-id pub-id-type="pmid">21317020</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stergiopoulos</surname>
<given-names>I</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Fungal effector proteins</article-title>
<source>Annu Rev Phytopathol</source>
<year>2009</year>
<volume>47</volume>
<fpage>233</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.phyto.112408.132637</pub-id>
<pub-id pub-id-type="pmid">19400631</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Crous</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Schoch</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Bahkali</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Hyde</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>A molecular, morphological and ecological re-appraisal of Venturiales - a new order of Dothideomycetes</article-title>
<source>Fungal Divers</source>
<year>2011</year>
<volume>51</volume>
<fpage>249</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1007/s13225-011-0141-x</pub-id>
<pub-id pub-id-type="pmid">22368534</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>MacHardy</surname>
<given-names>WE</given-names>
</name>
</person-group>
<source>Apple scab: biology, epidemiology, and management</source>
<year>1996</year>
<publisher-loc>St. Paul</publisher-loc>
<publisher-name>The American Phytopathological Society Press</publisher-name>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowen</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Bus</surname>
<given-names>VGM</given-names>
</name>
<name>
<surname>Beresford</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>
<italic>Venturia inaequalis</italic>
: the causal agent of apple scab</article-title>
<source>Mol Plant Pathol</source>
<year>2011</year>
<volume>12</volume>
<fpage>105</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2010.00656.x</pub-id>
<pub-id pub-id-type="pmid">21199562</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sivanesan</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>
<italic>Venturia carpophila</italic>
IMI descriptions of pathogenic fungi and bacteria</source>
<year>1974</year>
<fpage>402</fpage>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sivanesan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Holliday</surname>
<given-names>P</given-names>
</name>
</person-group>
<source>
<italic>Venturia cerasi</italic>
IMI descriptions of fungi and bacteria</source>
<year>1981</year>
<fpage>706</fpage>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sivanesan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Waller</surname>
<given-names>JM</given-names>
</name>
</person-group>
<source>
<italic>Venturia pirina</italic>
. IMI descriptions of fungi and bacteria</source>
<year>1974</year>
<fpage>404</fpage>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishii</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yanase</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>
<italic>Venturia nashicola</italic>
, the scab fungus of Japanese and Chinese pears: a species distinct from
<italic>V. pirina</italic>
</article-title>
<source>Mycol Res</source>
<year>2000</year>
<volume>104</volume>
<fpage>755</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1017/S0953756299001720</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le Cam</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Parisi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Arene</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Evidence for two
<italic>formae speciales</italic>
in
<italic>Venturia inaequalis</italic>
, responsible for apple and pyracantha scab</article-title>
<source>Phytopathology</source>
<year>2002</year>
<volume>92</volume>
<fpage>314</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2002.92.3.314</pub-id>
<pub-id pub-id-type="pmid">18944005</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gladieux</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Caffier</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Devaux</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Le Cam</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Host-specific differentiation among populations of
<italic>Venturia inaequalis</italic>
causing scab on apple, pyracantha and loquat</article-title>
<source>Fungal Genet Biol</source>
<year>2009</year>
<volume>47</volume>
<fpage>511</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1016/j.fgb.2009.12.007</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bus</surname>
<given-names>VGM</given-names>
</name>
<name>
<surname>Rikkerink</surname>
<given-names>EHA</given-names>
</name>
<name>
<surname>Caffier</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Durel</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Revision of nomenclature of the differential host-pathogen interactions of
<italic>Venturia inaequalis</italic>
and
<italic>Malus</italic>
</article-title>
<source>Annu Rev Phytopathol</source>
<year>2011</year>
<volume>49</volume>
<fpage>391</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-phyto-072910-095339</pub-id>
<pub-id pub-id-type="pmid">21599495</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belfanti</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Silfverberg-Dilworth</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tartarini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Patocchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Barbieri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>HcrVf2</italic>
gene from a wild apple confers scab resistance to a transgenic cultivated variety</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2004</year>
<volume>101</volume>
<fpage>886</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0304808101</pub-id>
<pub-id pub-id-type="pmid">14715897</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joshi</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Schaart</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Groenwold</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schouten</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Krens</surname>
<given-names>FA</given-names>
</name>
</person-group>
<article-title>Functional analysis and expression profiling of
<italic>HcrVf1</italic>
and
<italic>HcrVf2</italic>
for development of scab resistant cisgenic and intragenic apples</article-title>
<source>Plant Mol Biol</source>
<year>2011</year>
<volume>75</volume>
<fpage>579</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1007/s11103-011-9749-1</pub-id>
<pub-id pub-id-type="pmid">21293908</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schouten</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Brinkhuis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>van der Burgh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schaart</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Groenwold</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Broggini</surname>
<given-names>GAL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cloning and functional characterization of the
<italic>Rvi15</italic>
(
<italic>Vr2</italic>
) gene for apple scab resistance</article-title>
<source>Tree Genet Genomes</source>
<year>2014</year>
<volume>10</volume>
<fpage>251</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1007/s11295-013-0678-9</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinatzer</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Patocchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gianfranceschi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tartarini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Gessler</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Apple contains receptor-like genes homologous to the
<italic>Cladosporium fulvum</italic>
resistance gene family of tomato with a cluster of genes cosegregating with
<italic>Vf</italic>
apple scab resistance</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2001</year>
<volume>14</volume>
<fpage>508</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI.2001.14.4.508</pub-id>
<pub-id pub-id-type="pmid">11310738</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Celton</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Christoffels</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sargent</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Rees</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map</article-title>
<source>BMC Biol</source>
<year>2010</year>
<volume>8</volume>
<fpage>155</fpage>
<pub-id pub-id-type="doi">10.1186/1741-7007-8-155</pub-id>
<pub-id pub-id-type="pmid">21192788</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broggini</surname>
<given-names>GAL</given-names>
</name>
<name>
<surname>Le Cam</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Parisi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H-B</given-names>
</name>
<name>
<surname>Gessler</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Construction of a contig of BAC clones spanning the region of the apple scab avirulence gene
<italic>AvrVg</italic>
</article-title>
<source>Fungal Genet Biol</source>
<year>2007</year>
<volume>44</volume>
<fpage>44</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1016/j.fgb.2006.07.001</pub-id>
<pub-id pub-id-type="pmid">16904351</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thakur</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chawla</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bhatti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Swarnkar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shankar</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>De novo transcriptome sequencing and analysis for
<italic>Venturia inaequalis</italic>
, the devastating apple scab pathogen</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e53937</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0053937</pub-id>
<pub-id pub-id-type="pmid">23349770</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cooke</surname>
<given-names>IR</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Faou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>NE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Proteogenomic analysis of the
<italic>Venturia pirina</italic>
(Pear Scab fungus) secretome reveals potential effectors</article-title>
<source>J Proteome Res</source>
<year>2014</year>
<volume>13</volume>
<fpage>3635</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1021/pr500176c</pub-id>
<pub-id pub-id-type="pmid">24965097</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schöffmann</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Waack</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources</article-title>
<source>BMC Bioinformatics</source>
<year>2006</year>
<volume>7</volume>
<fpage>62</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-7-62</pub-id>
<pub-id pub-id-type="pmid">16469098</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kollmar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stanke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Waack</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A novel hybrid gene prediction method employing protein multiple sequence alignments</article-title>
<source>Bioinformatics</source>
<year>2011</year>
<volume>27</volume>
<fpage>757</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btr010</pub-id>
<pub-id pub-id-type="pmid">21216780</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parra</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bradnam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Korf</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes</article-title>
<source>Bioinformatics</source>
<year>2007</year>
<volume>23</volume>
<fpage>1061</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btm071</pub-id>
<pub-id pub-id-type="pmid">17332020</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<mixed-citation publication-type="other">Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–12.</mixed-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Karpinets</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Syed</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Leuze</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Uberbacher</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database</article-title>
<source>Glycobiology</source>
<year>2010</year>
<volume>20</volume>
<fpage>1574</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1093/glycob/cwq106</pub-id>
<pub-id pub-id-type="pmid">20696711</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Basic local alignment search tool</article-title>
<source>J Mol Biol</source>
<year>1990</year>
<volume>215</volume>
<fpage>403</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-2836(05)80360-2</pub-id>
<pub-id pub-id-type="pmid">2231712</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sayers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Benson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Bolton</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Canese</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Database resources of the National Center for Biotechnology Information</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<issue>Database Issue</issue>
<fpage>D13</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkr1184</pub-id>
<pub-id pub-id-type="pmid">22140104</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Stoeckert</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Roos</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>OrthoMCL: identification of ortholog groups for eukaryotic genomes</article-title>
<source>Genome Res</source>
<year>2003</year>
<volume>13</volume>
<fpage>2178</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1101/gr.1224503</pub-id>
<pub-id pub-id-type="pmid">12952885</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lombard</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Golaconda Ramulu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Drula</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Coutinho</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Henrissat</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The Carbohydrate-active enzymes database (CAZy) in 2013</article-title>
<source>Nucleic Acids Res</source>
<year>2014</year>
<volume>42</volume>
<issue>Database Issue</issue>
<fpage>D490</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt1178</pub-id>
<pub-id pub-id-type="pmid">24270786</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J-R</given-names>
</name>
</person-group>
<article-title>Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>274</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-274</pub-id>
<pub-id pub-id-type="pmid">23617724</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orbach</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Farrall</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sweigard</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Chumley</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Valent</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>A telomeric avirulence gene determines efficacy for the rice blast resistance gene
<italic>Pi-ta</italic>
</article-title>
<source>Plant Cell</source>
<year>2000</year>
<volume>12</volume>
<fpage>2019</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.12.11.2019</pub-id>
<pub-id pub-id-type="pmid">11090206</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bryan</surname>
<given-names>GT</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>K-S</given-names>
</name>
<name>
<surname>Farrall</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hershey</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>McAdams</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene
<italic>Pi-ta</italic>
</article-title>
<source>Plant Cell</source>
<year>2000</year>
<volume>12</volume>
<fpage>2033</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.12.11.2033</pub-id>
<pub-id pub-id-type="pmid">11090207</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Urban</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pant</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Raghunath</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Irvine</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Pedro</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The Pathogen-Host Interactions database: additions and future developments</article-title>
<source>Nucleic Acids Res</source>
<year>2015</year>
<volume>43</volume>
<issue>Database Issue</issue>
<fpage>D645</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gku1165</pub-id>
<pub-id pub-id-type="pmid">25414340</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finn</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Clements</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Coggill</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Eberhardt</surname>
<given-names>RY</given-names>
</name>
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Pfam protein families database</article-title>
<source>Nucleic Acids Res</source>
<year>2014</year>
<volume>42</volume>
<issue>Database Issue</issue>
<fpage>D222</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt1223</pub-id>
<pub-id pub-id-type="pmid">24288371</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mistry</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Finn</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Predicting active site residue annotations in the Pfam database</article-title>
<source>BMC Bioinformatics</source>
<year>2007</year>
<volume>8</volume>
<fpage>298</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-8-298</pub-id>
<pub-id pub-id-type="pmid">17688688</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cowley</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Uludag</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gur</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McWilliam</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Squizzato</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The EMBL-EBI bioinformatics web and programmatic tools framework</article-title>
<source>Nucleic Acids Res</source>
<year>2015</year>
<volume>43</volume>
<issue>Web Server Issue</issue>
<fpage>W580</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv279</pub-id>
<pub-id pub-id-type="pmid">25845596</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sunde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kwan</surname>
<given-names>AHY</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Beever</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Mackay</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Structural analysis of hydrophobins</article-title>
<source>Micron</source>
<year>2008</year>
<volume>39</volume>
<fpage>773</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/j.micron.2007.08.003</pub-id>
<pub-id pub-id-type="pmid">17875392</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kershaw</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Talbot</surname>
<given-names>NJ</given-names>
</name>
</person-group>
<article-title>Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis</article-title>
<source>Fungal Genet Biol</source>
<year>1998</year>
<volume>23</volume>
<fpage>18</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1006/fgbi.1997.1022</pub-id>
<pub-id pub-id-type="pmid">9501475</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bayry</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Aimanianda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Guijarro</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Sunde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Latgé</surname>
<given-names>J-P</given-names>
</name>
</person-group>
<article-title>Hydrophobins—unique fungal proteins</article-title>
<source>PLoS Pathog</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002700</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002700</pub-id>
<pub-id pub-id-type="pmid">22693445</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bolton</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>van Esse</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Vossen</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>de Jonge</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stergiopoulos</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Stulemeijer</surname>
<given-names>IJE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The novel
<italic>Cladosporium fulvum</italic>
lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species</article-title>
<source>Mol Microbiol</source>
<year>2008</year>
<volume>69</volume>
<fpage>119</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2008.06270.x</pub-id>
<pub-id pub-id-type="pmid">18452583</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fudal</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gout</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Blaise</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Eckert</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterochromatin-like regions as ecological niches for avirulence genes in the
<italic>Leptosphaeria maculans</italic>
genome: map-based cloning of
<italic>AvrLm6</italic>
</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2007</year>
<volume>20</volume>
<fpage>459</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-20-4-0459</pub-id>
<pub-id pub-id-type="pmid">17427816</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Jonge</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Peter van Esse</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Maruthachalam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bolton</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Santhanam</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Saber</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>5110</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1119623109</pub-id>
<pub-id pub-id-type="pmid">22416119</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiller</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Van de Wouw</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Taranto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Dubois</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A large family of
<italic>AvrLm6</italic>
-like genes in the apple and pear scab pathogens,
<italic>Venturia inaequalis</italic>
and
<italic>Venturia pirina</italic>
</article-title>
<source>Front Plant Sci</source>
<year>2015</year>
<volume>6</volume>
<fpage>980</fpage>
<pub-id pub-id-type="doi">10.3389/fpls.2015.00980</pub-id>
<pub-id pub-id-type="pmid">26635823</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowen</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Rees-George</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Candidate effector gene identification in the ascomycete fungal phytopathogen
<italic>Venturia inaequalis</italic>
by expressed sequence tag analysis</article-title>
<source>Mol Plant Pathol</source>
<year>2009</year>
<volume>10</volume>
<fpage>431</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2009.00543.x</pub-id>
<pub-id pub-id-type="pmid">19400844</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucheryava</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Sutherland</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Conolly</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Rikkerink</surname>
<given-names>EHA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Two novel
<italic>Venturia inaequalis</italic>
genes induced upon morphogenetic differentiation during infection and in vitro growth on cellophane</article-title>
<source>Fungal Genet Biol</source>
<year>2008</year>
<volume>45</volume>
<fpage>1329</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="doi">10.1016/j.fgb.2008.07.010</pub-id>
<pub-id pub-id-type="pmid">18692586</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tremouihac</surname>
<given-names>P</given-names>
</name>
<name>
<surname>McGillivray</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Dingley</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Structure, dynamics and domain organization of the repeat protein Cin1 from the apple scab fungus</article-title>
<source>Biochim Biophys Acta</source>
<year>1824</year>
<volume>2012</volume>
<fpage>1118</fpage>
<lpage>28</lpage>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
</person-group>
<source>Investigating the structure and function of ViCin1, a novel repeat protein from the apple scab fungus
<italic>Venturia inaequalis</italic>
</source>
<year>2012</year>
<publisher-loc>Auckland</publisher-loc>
<publisher-name>The University of Auckland</publisher-name>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>I-P</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>H-S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y-H</given-names>
</name>
</person-group>
<article-title>MHP1, a
<italic>Magnaporthe grisea</italic>
hydrophobin gene, is required for fungal development and plant colonization</article-title>
<source>Mol Microbiol</source>
<year>2005</year>
<volume>57</volume>
<fpage>1224</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2005.04750.x</pub-id>
<pub-id pub-id-type="pmid">16101997</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fellbrich</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Romanski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Varet</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Blume</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Brunner</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Engelhardt</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NPP1, a
<italic>Phytophthora</italic>
-associated trigger of plant defense in parsley and
<italic>Arabidopsis</italic>
</article-title>
<source>Plant J</source>
<year>2002</year>
<volume>32</volume>
<fpage>375</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-313X.2002.01454.x</pub-id>
<pub-id pub-id-type="pmid">12410815</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cabral</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Oome</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sander</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kufner</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Nurnberger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Van den Ackerveken</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Nontoxic Nep1-like proteins of the downy mildew pathogen
<italic>Hyaloperonospora arabidopsidis</italic>
: repression of necrosis-inducing activity by a surface-exposed region</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2012</year>
<volume>25</volume>
<fpage>697</fpage>
<lpage>708</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-10-11-0269</pub-id>
<pub-id pub-id-type="pmid">22235872</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oome</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Raaymakers</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Cabral</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Samwel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Böhm</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Albert</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in
<italic>Arabidopsis</italic>
</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<fpage>16955</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1410031111</pub-id>
<pub-id pub-id-type="pmid">25368167</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xue</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J-R</given-names>
</name>
</person-group>
<article-title>Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus</article-title>
<source>Plant Cell</source>
<year>2002</year>
<volume>14</volume>
<fpage>2107</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.003426</pub-id>
<pub-id pub-id-type="pmid">12215509</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pliego</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nowara</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bonciani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gheorghe</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Surana</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2013</year>
<volume>26</volume>
<fpage>633</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-01-13-0005-R</pub-id>
<pub-id pub-id-type="pmid">23441578</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whigham</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mistry</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Surana</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fuerst</surname>
<given-names>GS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Broadly conserved fungal effector BEC1019 suppresses host cell death and enhances pathogen virulence in powdery mildew of barley (
<italic>Hordeum vulgare</italic>
L.)</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2015</year>
<volume>28</volume>
<fpage>968</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-02-15-0027-FI</pub-id>
<pub-id pub-id-type="pmid">25938194</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nepusz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sasidharan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Paccanaro</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale</article-title>
<source>BMC Bioinformatics</source>
<year>2010</year>
<volume>11</volume>
<fpage>120</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-11-120</pub-id>
<pub-id pub-id-type="pmid">20214776</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grigoriev</surname>
<given-names>IV</given-names>
</name>
<name>
<surname>Nikitin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Haridas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ohm</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Otillar</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MycoCosm portal: gearing up for 1000 fungal genomes</article-title>
<source>Nucleic Acids Res</source>
<year>2014</year>
<volume>42</volume>
<issue>Database Issue</issue>
<fpage>D699</fpage>
<lpage>704</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt1183</pub-id>
<pub-id pub-id-type="pmid">24297253</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grigoriev</surname>
<given-names>IV</given-names>
</name>
<name>
<surname>Nordberg</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shabalov</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Aerts</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cantor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Goodstein</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome portal of the Department of Energy Joint Genome Institute</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<issue>Database Issue</issue>
<fpage>D26</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkr947</pub-id>
<pub-id pub-id-type="pmid">22110030</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohm</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Feau</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Henrissat</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schoch</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Horwitz</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Barry</surname>
<given-names>KW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi</article-title>
<source>PLoS Pathog</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1003037</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1003037</pub-id>
<pub-id pub-id-type="pmid">23236275</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zerbino</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Birney</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Velvet: algorithms for de novo short read assembly using de Bruijn graphs</article-title>
<source>Genome Res</source>
<year>2008</year>
<volume>18</volume>
<fpage>821</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1101/gr.074492.107</pub-id>
<pub-id pub-id-type="pmid">18349386</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Butler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>MacCallum</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kleber</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shlyakhter</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Belmonte</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Lander</surname>
<given-names>ES</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ALLPATHS: de novo assembly of whole-genome shotgun microreads</article-title>
<source>Genome Res</source>
<year>2008</year>
<volume>18</volume>
<fpage>810</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1101/gr.7337908</pub-id>
<pub-id pub-id-type="pmid">18340039</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradnam</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Fass</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Alexandrov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Baranay</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bechner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Birol</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species</article-title>
<source>Gigascience</source>
<year>2013</year>
<volume>2</volume>
<fpage>1</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1186/2047-217X-2-10</pub-id>
<pub-id pub-id-type="pmid">23587291</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>MacCallum</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Przybylski</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gnerre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shlyakhter</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Gnirke</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ALLPATHS 2: Small genomes assembled accurately and with high continuity from short paired reads</article-title>
<source>Genome Biol</source>
<year>2009</year>
<volume>10</volume>
<fpage>R103</fpage>
<pub-id pub-id-type="doi">10.1186/gb-2009-10-10-r103</pub-id>
<pub-id pub-id-type="pmid">19796385</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gnerre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>MacCallum</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Przybylski</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-quality draft assemblies of mammalian genomes from massively parallel sequence data</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2011</year>
<volume>108</volume>
<fpage>1513</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1017351108</pub-id>
<pub-id pub-id-type="pmid">21187386</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehrabi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Taga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kema</surname>
<given-names>GHJ</given-names>
</name>
</person-group>
<article-title>Electrophoretic and cytological karyotyping of the foliar wheat pathogen
<italic>Mycosphaerella graminicola</italic>
reveals many chromosomes with a large size range</article-title>
<source>Mycologia</source>
<year>2007</year>
<volume>99</volume>
<fpage>868</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1080/15572536.2007.11832518</pub-id>
<pub-id pub-id-type="pmid">18333510</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chong</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>711</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-711</pub-id>
<pub-id pub-id-type="pmid">24134808</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kobert</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Flouri</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>PEAR: a fast and accurate Illumina Paired-End reAd mergeR</article-title>
<source>Bioinformatics</source>
<year>2014</year>
<volume>30</volume>
<fpage>614</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btt593</pub-id>
<pub-id pub-id-type="pmid">24142950</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>PJGM</given-names>
</name>
<name>
<surname>van der Burgt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ökmen</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stergiopoulos</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Abd-Elsalam</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Aerts</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genomes of the fungal plant pathogens
<italic>Cladosporium fulvum</italic>
and
<italic>Dothistroma septosporum</italic>
reveal adaptation to different hosts and lifestyles but also signatures of common ancestry</article-title>
<source>PLoS Genet</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1003088</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pgen.1003088</pub-id>
<pub-id pub-id-type="pmid">23209441</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xue</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative analysis of the genomes of two field isolates of the rice blast fungus
<italic>Magnaporthe oryzae</italic>
</article-title>
<source>PLoS Genet</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002869</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pgen.1002869</pub-id>
<pub-id pub-id-type="pmid">22876203</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Condon</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bushley</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Ohm</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Otillar</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative genome structure, secondary metabolite, and effector coding capacity across
<italic>Cochliobolus</italic>
pathogens</article-title>
<source>PLoS Genet</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003233</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pgen.1003233</pub-id>
<pub-id pub-id-type="pmid">23357949</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elkins</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zinn</surname>
<given-names>K</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>L</given-names>
</name>
<name>
<surname>HoffMann</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>Genetic analysis of a
<italic>Drosophila</italic>
neural cell adhesion molecule: interaction of fasciclin I and abelson tyrosine kinase mutations</article-title>
<source>Cell</source>
<year>1990</year>
<volume>60</volume>
<fpage>565</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(90)90660-7</pub-id>
<pub-id pub-id-type="pmid">2406026</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawamoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Noshiro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakamasu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hashimoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kawashima-Ohya</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structural and phylogenetic analyses of RGD-CAP/βig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes</article-title>
<source>Biochim Biophys Acta</source>
<year>1998</year>
<volume>1395</volume>
<fpage>288</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-4781(97)00172-3</pub-id>
<pub-id pub-id-type="pmid">9512662</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaspar</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>McKenna</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Bacic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>The complex structures of arabinogalactan-proteins and the journey towards understanding function</article-title>
<source>Plant Mol Biol</source>
<year>2001</year>
<volume>47</volume>
<fpage>161</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1023/A:1010683432529</pub-id>
<pub-id pub-id-type="pmid">11554470</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bloemink</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dentten</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Whelan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Solution structure of the
<italic>Mycobacterium tuberculosis</italic>
complex protein MPB70: from tuberculosis pathogenesis to inherited human corneal desease</article-title>
<source>J Biol Chem</source>
<year>2003</year>
<volume>278</volume>
<fpage>43736</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M307235200</pub-id>
<pub-id pub-id-type="pmid">12917404</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T-B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G-Q</given-names>
</name>
<name>
<surname>Min</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>F-C</given-names>
</name>
</person-group>
<article-title>
<italic>MoFLP1</italic>
, encoding a novel fungal fasciclin-like protein, is involved in conidiation and pathogenicity in
<italic>Magnaporthe oryzae</italic>
</article-title>
<source>J Zhejiang Univ Sci B</source>
<year>2009</year>
<volume>10</volume>
<fpage>434</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1631/jzus.B0920017</pub-id>
<pub-id pub-id-type="pmid">19489109</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Rikkerink</surname>
<given-names>EHA</given-names>
</name>
<name>
<surname>Beever</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Small, cysteine-rich proteins and recogntion in fungal-plant interactions</article-title>
<source>Mol Plant Microbe Interact</source>
<year>1994</year>
<volume>7</volume>
<fpage>320</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-7-0320</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wessels</surname>
<given-names>JGH</given-names>
</name>
</person-group>
<article-title>Developmental regulation of fungal cell wall formation</article-title>
<source>Annu Rev Phytopathol</source>
<year>1994</year>
<volume>32</volume>
<fpage>413</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.py.32.090194.002213</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wösten</surname>
<given-names>HAB</given-names>
</name>
</person-group>
<article-title>Hydrophobins: multipurpose proteins</article-title>
<source>Annu Rev Microbiol</source>
<year>2001</year>
<volume>55</volume>
<fpage>625</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.micro.55.1.625</pub-id>
<pub-id pub-id-type="pmid">11544369</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernard</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Latgé</surname>
<given-names>J-P</given-names>
</name>
</person-group>
<article-title>
<italic>Aspergillus fumigatus</italic>
cell wall: composition and biosynthesis</article-title>
<source>Med Mycol</source>
<year>2001</year>
<volume>39</volume>
<fpage>9</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1080/mmy.39.1.9.17</pub-id>
<pub-id pub-id-type="pmid">11800273</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohtaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamagata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gomi</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel hydrophobic surface binding protein, HsbA, produced by
<italic>Aspergillus oryzae</italic>
</article-title>
<source>Appl Environ Microbiol</source>
<year>2006</year>
<volume>72</volume>
<fpage>2407</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1128/AEM.72.4.2407-2413.2006</pub-id>
<pub-id pub-id-type="pmid">16597938</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yoneda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ohtaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yamagata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces</article-title>
<source>Mol Microbiol</source>
<year>2005</year>
<volume>57</volume>
<fpage>1780</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2005.04803.x</pub-id>
<pub-id pub-id-type="pmid">16135240</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Köller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Role of cutinase in the penetration of apple leaves by
<italic>Venturia inaequalis</italic>
</article-title>
<source>Phytopathology</source>
<year>1991</year>
<volume>81</volume>
<fpage>1375</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/Phyto-81-1375</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Köller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Purification and characterization of cutinase from
<italic>Venturia inaequalis</italic>
</article-title>
<source>Phytopathology</source>
<year>1989</year>
<volume>79</volume>
<fpage>278</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1094/Phyto-79-278</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicholson</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Kuc</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>EB</given-names>
</name>
</person-group>
<article-title>Histochemical demonstration of transitory esterase-activity in
<italic>Venturia inaequalis</italic>
</article-title>
<source>Phytopathology</source>
<year>1972</year>
<volume>62</volume>
<fpage>1242</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1094/Phyto-62-1242</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nusbaum</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Keitt</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>A cytological study of host-parasite relations of
<italic>Venturia inaequalis</italic>
on apple leaves</article-title>
<source>J Agric Res</source>
<year>1938</year>
<volume>56</volume>
<fpage>595</fpage>
<lpage>618</lpage>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valsangiacomo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gessler</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Role of the cuticular membrane in ontogenic and
<italic>Vf</italic>
-resistance of apple leaves against
<italic>Venturia inaequalis</italic>
</article-title>
<source>Phytopathology</source>
<year>1988</year>
<volume>78</volume>
<fpage>1066</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/Phyto-78-1066</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kollar</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Characterization of specific induction, activity, and isozyme polymorphism of extracellular cellulases from
<italic>Venturia inaequalis</italic>
detected
<italic>in vitro</italic>
and on the host plant</article-title>
<source>Mol Plant Microbe Interact</source>
<year>1994</year>
<volume>7</volume>
<fpage>603</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-7-0603</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valsangiacomo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gessler</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Purification and characterization of an exopolygalacturonase produced by
<italic>Venturia inaequalis</italic>
, the causal agent of apple scab</article-title>
<source>Physiol Mol Plant Pathol</source>
<year>1992</year>
<volume>40</volume>
<fpage>63</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1016/0885-5765(92)90072-4</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kollar</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Characterization of an endopolygalacturonase produced by the apple scab fungus,
<italic>Venturia inaequalis</italic>
</article-title>
<source>Mycol Res</source>
<year>1998</year>
<volume>102</volume>
<fpage>313</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1017/S0953756297005194</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnous</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Quantitative prediction of cell wall polysaccharide composition in grape (
<italic>Vitis vinifera</italic>
L.) and apple (
<italic>Malus domestica</italic>
) skins from acid hydrolysis monosaccharide profiles</article-title>
<source>J Agric Food Chem</source>
<year>2009</year>
<volume>57</volume>
<fpage>3611</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1021/jf900780r</pub-id>
<pub-id pub-id-type="pmid">19371033</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Almeida</surname>
<given-names>DPF</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Pintado</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Polysaccharide composition of dietary fiber and cell walls from ‘Rocha’ Pear at two ripening stages</article-title>
<source>Acta Hortic (ISHS)</source>
<year>2014</year>
<volume>1040</volume>
<fpage>23</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.17660/ActaHortic.2014.1040.1</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yip</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Withers</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Breakdown of oligosaccharides by the process of elimination</article-title>
<source>Curr Opin Chem Biol</source>
<year>2006</year>
<volume>10</volume>
<fpage>147</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/j.cbpa.2006.02.005</pub-id>
<pub-id pub-id-type="pmid">16495121</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jashni</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Mehrabi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Collemare</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>PJGM</given-names>
</name>
</person-group>
<article-title>The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions</article-title>
<source>Front Plant Sci</source>
<year>2015</year>
<volume>6</volume>
<fpage>584</fpage>
<pub-id pub-id-type="doi">10.3389/fpls.2015.00584</pub-id>
<pub-id pub-id-type="pmid">26284100</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jashni</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Dols</surname>
<given-names>IHM</given-names>
</name>
<name>
<surname>Iida</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Boeren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Beenen</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Mehrabi</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synergistic action of a metalloprotease and a serine protease from
<italic>Fusarium oxysporum</italic>
f. sp.
<italic>lycopersici</italic>
cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2015</year>
<volume>28</volume>
<fpage>996</fpage>
<lpage>1008</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-04-15-0074-R</pub-id>
<pub-id pub-id-type="pmid">25915453</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sánchez-Vallet</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Saleem-Batcha</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kombrink</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Valkenburg</surname>
<given-names>D-J</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>BP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization</article-title>
<source>Elife</source>
<year>2013</year>
<volume>2</volume>
<fpage>e00790</fpage>
<pub-id pub-id-type="doi">10.7554/eLife.00790</pub-id>
<pub-id pub-id-type="pmid">23840930</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marshall</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kombrink</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Motteram</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Loza-Reyes</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lucas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analysis of two
<italic>in planta</italic>
expressed LysM effector homologs from the fungus
<italic>Mycosphaerella graminicola</italic>
reveals novel functional properties and varying contributions to virulence on wheat</article-title>
<source>Plant Physiol</source>
<year>2011</year>
<volume>156</volume>
<fpage>756</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="doi">10.1104/pp.111.176347</pub-id>
<pub-id pub-id-type="pmid">21467214</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>W-S</given-names>
</name>
<name>
<surname>Rudd</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Kanyuka</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>
<italic>Mycosphaerella graminicola</italic>
LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2014</year>
<volume>27</volume>
<fpage>236</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-07-13-0201-R</pub-id>
<pub-id pub-id-type="pmid">24073880</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gijzen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nürnberger</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa</article-title>
<source>Phytochemistry</source>
<year>2006</year>
<volume>67</volume>
<fpage>1800</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1016/j.phytochem.2005.12.008</pub-id>
<pub-id pub-id-type="pmid">16430931</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oome</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Van den Ackerveken</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Comparative and functional analysis of the widely occurring family of Nep1-like proteins</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2014</year>
<volume>27</volume>
<fpage>1081</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-04-14-0118-R</pub-id>
<pub-id pub-id-type="pmid">25025781</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>B-J</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>P-S</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>H-S</given-names>
</name>
</person-group>
<article-title>Molecular characterization and functional analysis of a necrosis-and ethylene-inducing, protein-encoding gene family from
<italic>Verticillium dahliae</italic>
</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2012</year>
<volume>25</volume>
<fpage>964</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-12-11-0319</pub-id>
<pub-id pub-id-type="pmid">22414440</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ottmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Luberacki</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kufner</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Brunner</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Weyand</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A common toxin fold mediates microbial attack and plant defense</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2009</year>
<volume>106</volume>
<fpage>10359</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0902362106</pub-id>
<pub-id pub-id-type="pmid">19520828</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saitoh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fujisawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mitsuoka</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hirabuchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Large-scale gene disruption in
<italic>Magnaporthe oryzae</italic>
identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens</article-title>
<source>PLoS Pathog</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002711</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002711</pub-id>
<pub-id pub-id-type="pmid">22589729</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mesarich</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Hamiaux</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>Repeat-containing protein effectors of plant-associated organisms</article-title>
<source>Front Plant Sci</source>
<year>2015</year>
<volume>6</volume>
<fpage>872</fpage>
<pub-id pub-id-type="doi">10.3389/fpls.2015.00872</pub-id>
<pub-id pub-id-type="pmid">26557126</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Benny</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Kistler</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>VanEtten</surname>
<given-names>HD</given-names>
</name>
</person-group>
<article-title>Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen
<italic>Nectria haematococca</italic>
</article-title>
<source>Plant J</source>
<year>2001</year>
<volume>25</volume>
<fpage>305</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-313x.2001.00969.x</pub-id>
<pub-id pub-id-type="pmid">11208022</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>EYY</given-names>
</name>
<name>
<surname>Donoghue</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae)</article-title>
<source>Mol Phylogenet Evol</source>
<year>2012</year>
<volume>63</volume>
<fpage>230</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2011.10.005</pub-id>
<pub-id pub-id-type="pmid">22293154</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Winston</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Correll</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Induction of avirulence by AVR-Pita1 in virulent U.S. field isolates of
<italic>Magnaporthe oryzae</italic>
</article-title>
<source>Crop J</source>
<year>2014</year>
<volume>2</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/j.cj.2013.12.002</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S-Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y-H</given-names>
</name>
<name>
<surname>Valent</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Genome organization and evolution of the AVR-Pita avirulence gene family in the
<italic>Magnaporthe grisea</italic>
species complex</article-title>
<source>Mol Plant Microbe Interact</source>
<year>2008</year>
<volume>21</volume>
<fpage>658</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-21-5-0658</pub-id>
<pub-id pub-id-type="pmid">18393625</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duplessis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cuomo</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y-C</given-names>
</name>
<name>
<surname>Aerts</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tisserant</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Veneault-Fourrey</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Obligate biotrophy features unraveled by the genomic analysis of rust fungi</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2011</year>
<volume>108</volume>
<fpage>9166</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1019315108</pub-id>
<pub-id pub-id-type="pmid">21536894</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spanu</surname>
<given-names>PD</given-names>
</name>
</person-group>
<article-title>The genomics of obligate (and nonobligate) biotrophs</article-title>
<source>Annu Rev Phytopathol</source>
<year>2012</year>
<volume>50</volume>
<fpage>91</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-phyto-081211-173024</pub-id>
<pub-id pub-id-type="pmid">22559067</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horbach</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Navarro-Quesada</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Knogge</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Deising</surname>
<given-names>HB</given-names>
</name>
</person-group>
<article-title>When and how to kill a plant cell: infection strategies of plant pathogenic fungi</article-title>
<source>J Plant Physiol</source>
<year>2011</year>
<volume>168</volume>
<fpage>51</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.jplph.2010.06.014</pub-id>
<pub-id pub-id-type="pmid">20674079</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guyon</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Balagué</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Roby</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Raffaele</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen
<italic>Sclerotinia sclerotiorum</italic>
</article-title>
<source>BMC Genomics</source>
<year>2014</year>
<volume>15</volume>
<fpage>336</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-15-336</pub-id>
<pub-id pub-id-type="pmid">24886033</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedersen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>van Themaat</surname>
<given-names>E</given-names>
</name>
<name>
<surname>McGuffin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Burgis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure and evolution of barley powdery mildew effector candidates</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>694</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-694</pub-id>
<pub-id pub-id-type="pmid">23231440</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sperschneider</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Gardiner</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Manners</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Advances and challenges in computational prediction of effectors from plant pathogenic fungi</article-title>
<source>PLoS Pathog</source>
<year>2015</year>
<volume>11</volume>
<fpage>e1004806</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004806</pub-id>
<pub-id pub-id-type="pmid">26020524</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burg</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>LH</given-names>
</name>
</person-group>
<article-title>Cloning and characterization of bys1, a temperature-dependent cDNA specific to the yeast phase of the pathogenic dimorphic fungus
<italic>Blastomyces dermatitidis</italic>
</article-title>
<source>Infect Immun</source>
<year>1994</year>
<volume>62</volume>
<fpage>2521</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">8188377</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bono</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Jaber</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Abuodeh</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>O’Leary-Jepson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Scalarone</surname>
<given-names>GM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic diversity and transcriptional analysis of the bys1 gene from
<italic>Blastomyces dermatitidis</italic>
</article-title>
<source>Mycopathologia</source>
<year>2001</year>
<volume>152</volume>
<fpage>113</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1023/A:1013121812329</pub-id>
<pub-id pub-id-type="pmid">11811639</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Win</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Greenwood</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Characterisation of a protein from
<italic>Venturia inaequalis</italic>
that induces necrosis in
<italic>Malus</italic>
carrying the
<italic>Vm</italic>
resistance gene</article-title>
<source>Physiol Mol Plant Pathol</source>
<year>2003</year>
<volume>62</volume>
<fpage>193</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1016/S0885-5765(03)00061-4</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chruszcz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Osinski</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Solberg</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Demas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Porebski</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Alternaria alternata</italic>
allergen Alt a 1: a unique β-barrel protein dimer found exclusively in fungi</article-title>
<source>J Allergy Clin Immunol</source>
<year>2012</year>
<volume>1</volume>
<fpage>241</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaci.2012.03.047</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kloppholz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Requena</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>A secreted fungal effector of
<italic>Glomus intraradices</italic>
promotes symbiotic biotrophy</article-title>
<source>Curr Biol</source>
<year>2011</year>
<volume>21</volume>
<fpage>1204</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2011.06.044</pub-id>
<pub-id pub-id-type="pmid">21757354</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mueller</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kahmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Trejo-Aguilar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>de Vries</surname>
<given-names>RP</given-names>
</name>
</person-group>
<article-title>The secretome of the maize pathogen
<italic>Ustilago maydis</italic>
</article-title>
<source>Fungal Genet Biol</source>
<year>2008</year>
<volume>45</volume>
<issue>Suppl 1</issue>
<fpage>S63</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/j.fgb.2008.03.012</pub-id>
<pub-id pub-id-type="pmid">18456523</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grandaubert</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Soyer</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Schoch</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Van de Wouw</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Fudal</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transposable element-assisted evolution and adaptation to host plant within the
<italic>Leptosphaeria maculans</italic>
-
<italic>Leptosphaeria biglobosa</italic>
species complex of fungal pathogens</article-title>
<source>BMC Genomics</source>
<year>2014</year>
<volume>15</volume>
<fpage>891</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-15-891</pub-id>
<pub-id pub-id-type="pmid">25306241</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raffaele</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Genome evolution in filamentous plant pathogens: why bigger can be better</article-title>
<source>Nat Rev Microbiol</source>
<year>2012</year>
<volume>10</volume>
<fpage>417</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">22565130</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bourras</surname>
<given-names>S</given-names>
</name>
<name>
<surname>McNally</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Ben-David</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Parlange</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Roffler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Praz</surname>
<given-names>CR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multiple avirulence loci and allele-specific effector recognition control the
<italic>Pm3</italic>
race-specific resistance of wheat to powdery mildew</article-title>
<source>Plant Cell</source>
<year>2015</year>
<volume>27</volume>
<fpage>2991</fpage>
<lpage>3012</lpage>
<pub-id pub-id-type="pmid">26452600</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sacristán</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vigouroux</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Skamnioti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Thordal-Christensen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Micali</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons</article-title>
<source>PLoS One</source>
<year>2009</year>
<volume>4</volume>
<fpage>e7463</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0007463</pub-id>
<pub-id pub-id-type="pmid">19829700</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spanu</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Amselem</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Burgis</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Soanes</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Stüber</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism</article-title>
<source>Science</source>
<year>2010</year>
<volume>330</volume>
<fpage>1543</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1126/science.1194573</pub-id>
<pub-id pub-id-type="pmid">21148392</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Guillen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ortiz-Vallejo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gracy</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fournier</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kroj</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Padilla</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi</article-title>
<source>PLoS Pathog</source>
<year>2015</year>
<volume>11</volume>
<fpage>e1005228</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1005228</pub-id>
<pub-id pub-id-type="pmid">26506000</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kubicek</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gamauf</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kenerley</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Druzhinina</surname>
<given-names>IS</given-names>
</name>
</person-group>
<article-title>Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete
<italic>Trichoderma</italic>
/
<italic>Hypocrea</italic>
</article-title>
<source>BMC Evol Biol</source>
<year>2008</year>
<volume>8</volume>
<fpage>4</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-8-4</pub-id>
<pub-id pub-id-type="pmid">18186925</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwan</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Winefield</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Sunde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Haverkamp</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structural basis for rodlet assembly in fungal hydrophobins</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2006</year>
<volume>103</volume>
<fpage>3621</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0505704103</pub-id>
<pub-id pub-id-type="pmid">16537446</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ohno</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Evolution by gene duplication</source>
<year>1970</year>
<publisher-loc>London</publisher-loc>
<publisher-name>George Allen & Unwin Ltd</publisher-name>
</element-citation>
</ref>
<ref id="CR130">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution</article-title>
<source>Genetics</source>
<year>2005</year>
<volume>169</volume>
<fpage>1157</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.104.037051</pub-id>
<pub-id pub-id-type="pmid">15654095</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Houterman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Schreiver</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Amyotte</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chellappan</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MITEs in the promoters of effector genes allow prediction of novel virulence genes in
<italic>Fusarium oxysporum</italic>
</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>119</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-119</pub-id>
<pub-id pub-id-type="pmid">23432788</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaack</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Feschotte</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution</article-title>
<source>Trends Ecol Evol</source>
<year>2010</year>
<volume>25</volume>
<fpage>537</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.tree.2010.06.001</pub-id>
<pub-id pub-id-type="pmid">20591532</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliver</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Genomic tillage and the harvest of fungal phytopathogens</article-title>
<source>New Phytol</source>
<year>2012</year>
<volume>196</volume>
<fpage>1015</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2012.04330.x</pub-id>
<pub-id pub-id-type="pmid">22998436</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chuma</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Isobe</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hotta</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ibaragi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Futamata</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kusaba</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multiple translocation of the
<italic>AVR-Pita</italic>
effector gene among chromosomes of the Rice Blast fungus
<italic>Magnaporthe oryzae</italic>
and related species</article-title>
<source>PLoS Pathog</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002147</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002147</pub-id>
<pub-id pub-id-type="pmid">21829350</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foss</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Garrett</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Kinsey</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Selker</surname>
<given-names>EU</given-names>
</name>
</person-group>
<article-title>Specificity of repeat-induced point mutation (RIP) in
<italic>Neurospora</italic>
: sensitivity of non-
<italic>Neurospora</italic>
sequences, a natural diverged tandem duplication, and unique DNA adjacent to a duplicated region</article-title>
<source>Genetics</source>
<year>1991</year>
<volume>127</volume>
<fpage>711</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">1827630</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hane</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Taranto</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>RP</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>van den Berg</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Maruthachalam</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Repeat-induced point mutation: a fungal-specific, endogenous mutagenesis process</article-title>
<source>Genetic transformation systems in fungi</source>
<year>2015</year>
<publisher-loc>Berlin</publisher-loc>
<publisher-name>Springer</publisher-name>
<fpage>55</fpage>
<lpage>68</lpage>
</element-citation>
</ref>
<ref id="CR137">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broggini</surname>
<given-names>GAL</given-names>
</name>
<name>
<surname>Bus</surname>
<given-names>VGM</given-names>
</name>
<name>
<surname>Parravicini</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Groenwold</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gessler</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of
<italic>Venturia inaequalis</italic>
</article-title>
<source>Fungal Genet Biol</source>
<year>2011</year>
<volume>48</volume>
<fpage>166</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1016/j.fgb.2010.09.001</pub-id>
<pub-id pub-id-type="pmid">20837155</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stehmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pennycook</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Molecular identification of a sexual interloper: the pear pathogen,
<italic>Venturia pirina</italic>
, has sex on apple</article-title>
<source>Phytopathology</source>
<year>2001</year>
<volume>91</volume>
<fpage>633</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2001.91.7.633</pub-id>
<pub-id pub-id-type="pmid">18942992</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parker</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Hilber</surname>
<given-names>UW</given-names>
</name>
<name>
<surname>Bodmer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>FD</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Köller</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Production and transformation of conidia of
<italic>Venturia inaequalis</italic>
</article-title>
<source>Phytopathology</source>
<year>1995</year>
<volume>85</volume>
<fpage>87</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1094/Phyto-85-87</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Puryear</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cairney</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A simple and efficient method for isolating RNA from pine trees</article-title>
<source>Plant Mol Biol Rep</source>
<year>1993</year>
<volume>11</volume>
<fpage>113</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1007/BF02670468</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martínez-Alcántara</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ballesteros</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rojas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koshinsky</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fofanov</surname>
<given-names>VY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PIQA: pipeline for Illumina G1 genome analyzer data quality assessment</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<fpage>2438</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp429</pub-id>
<pub-id pub-id-type="pmid">19602525</pub-id>
</element-citation>
</ref>
<ref id="CR142">
<label>142.</label>
<mixed-citation publication-type="other">FASTX toolkit v0.0.13.
<ext-link ext-link-type="uri" xlink:href="http://hannonlab.cshl.edu/fastx_toolkit/">http://hannonlab.cshl.edu/fastx_toolkit/</ext-link>
. Accessed 21 Aug 2012.</mixed-citation>
</ref>
<ref id="CR143">
<label>143.</label>
<mixed-citation publication-type="other">FastQC.
<ext-link ext-link-type="uri" xlink:href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</ext-link>
. Accessed 21 Aug 2012.</mixed-citation>
</ref>
<ref id="CR144">
<label>144.</label>
<mixed-citation publication-type="other">fastq-mcf.
<ext-link ext-link-type="uri" xlink:href="https://expressionanalysis.github.io/ea-utils/">https://expressionanalysis.github.io/ea-utils/</ext-link>
. Accessed 21 Aug 2012.</mixed-citation>
</ref>
<ref id="CR145">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>De novo</italic>
assembly of human genomes with massively parallel short read sequencing</article-title>
<source>Genome Res</source>
<year>2010</year>
<volume>20</volume>
<fpage>265</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1101/gr.097261.109</pub-id>
<pub-id pub-id-type="pmid">20019144</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146.</label>
<mixed-citation publication-type="other">Genome completeness: a novel approach using core genes.
<ext-link ext-link-type="uri" xlink:href="http://korflab.ucdavis.edu/Datasets/genome_completeness/">http://korflab.ucdavis.edu/Datasets/genome_completeness/</ext-link>
. Accessed 28 Sept 2012.</mixed-citation>
</ref>
<ref id="CR147">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boetzer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Henkel</surname>
<given-names>CV</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pirovano</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Scaffolding pre-assembled contigs using SSPACE</article-title>
<source>Bioinformatics</source>
<year>2011</year>
<volume>27</volume>
<fpage>578</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btq683</pub-id>
<pub-id pub-id-type="pmid">21149342</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kapitonov</surname>
<given-names>VV</given-names>
</name>
<name>
<surname>Pavlicek</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Klonowski</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kohany</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Walichiewicz</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Repbase Update, a database of eukaryotic repetitive elements</article-title>
<source>Cytogenet Genome Res</source>
<year>2005</year>
<volume>110</volume>
<fpage>462</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1159/000084979</pub-id>
<pub-id pub-id-type="pmid">16093699</pub-id>
</element-citation>
</ref>
<ref id="CR149">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Pevzner</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>De novo identification of repeat families in large genomes</article-title>
<source>Bioinformatics</source>
<year>2005</year>
<volume>21</volume>
<issue>Suppl. 1</issue>
<fpage>i351</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bti1018</pub-id>
<pub-id pub-id-type="pmid">15961478</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benson</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Tandem repeats finder: a program to analyze DNA sequences</article-title>
<source>Nucleic Acids Res</source>
<year>1999</year>
<volume>27</volume>
<fpage>573</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1093/nar/27.2.573</pub-id>
<pub-id pub-id-type="pmid">9862982</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrusan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Grundmann</surname>
<given-names>N</given-names>
</name>
<name>
<surname>DeMeester</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Makalowski</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>TEclass: a tool for automated classification of unknown eukaryotic transposable elements</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<fpage>1329</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp084</pub-id>
<pub-id pub-id-type="pmid">19349283</pub-id>
</element-citation>
</ref>
<ref id="CR152">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slater</surname>
<given-names>GSC</given-names>
</name>
<name>
<surname>Birney</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Automated generation of heuristics for biological sequence comparison</article-title>
<source>BMC Bioinformatics</source>
<year>2005</year>
<volume>6</volume>
<fpage>31</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-6-31</pub-id>
<pub-id pub-id-type="pmid">15713233</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diekhans</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baertsch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Haussler</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Using native and syntenically mapped cDNA alignments to improve
<italic>de novo</italic>
gene finding</article-title>
<source>Bioinformatics</source>
<year>2008</year>
<volume>24</volume>
<fpage>637</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btn013</pub-id>
<pub-id pub-id-type="pmid">18218656</pub-id>
</element-citation>
</ref>
<ref id="CR154">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pachter</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>TopHat: discovering splice junctions with RNA-Seq</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<fpage>1105</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp120</pub-id>
<pub-id pub-id-type="pmid">19289445</pub-id>
</element-citation>
</ref>
<ref id="CR155">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Pertea</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mortazavi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kwan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>van Baren</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation</article-title>
<source>Nat Biotechnol</source>
<year>2010</year>
<volume>28</volume>
<fpage>511</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1038/nbt.1621</pub-id>
<pub-id pub-id-type="pmid">20436464</pub-id>
</element-citation>
</ref>
<ref id="CR156">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grabherr</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Haas</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Yassour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Amit</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Full-length transcriptome assembly from RNA-Seq data without a reference genome</article-title>
<source>Nat Biotechnol</source>
<year>2011</year>
<volume>29</volume>
<fpage>644</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1038/nbt.1883</pub-id>
<pub-id pub-id-type="pmid">21572440</pub-id>
</element-citation>
</ref>
<ref id="CR157">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haas</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Papanicolaou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yassour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grabherr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Blood</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Bowden</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>De novo</italic>
transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis</article-title>
<source>Nat Protoc</source>
<year>2013</year>
<volume>8</volume>
<fpage>1494</fpage>
<lpage>512</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2013.084</pub-id>
<pub-id pub-id-type="pmid">23845962</pub-id>
</element-citation>
</ref>
<ref id="CR158">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schulz</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Zerbino</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Vingron</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Birney</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Oases: robust
<italic>de novo</italic>
RNA-seq assembly across the dynamic range of expression levels</article-title>
<source>Bioinformatics</source>
<year>2012</year>
<volume>28</volume>
<fpage>1086</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bts094</pub-id>
<pub-id pub-id-type="pmid">22368243</pub-id>
</element-citation>
</ref>
<ref id="CR159">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dewey</surname>
<given-names>CN</given-names>
</name>
</person-group>
<article-title>RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome</article-title>
<source>BMC Bioinformatics</source>
<year>2011</year>
<volume>12</volume>
<fpage>323</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-12-323</pub-id>
<pub-id pub-id-type="pmid">21816040</pub-id>
</element-citation>
</ref>
<ref id="CR160">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>McCarthy</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Smyth</surname>
<given-names>GK</given-names>
</name>
</person-group>
<article-title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</article-title>
<source>Bioinformatics</source>
<year>2010</year>
<volume>26</volume>
<fpage>139</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp616</pub-id>
<pub-id pub-id-type="pmid">19910308</pub-id>
</element-citation>
</ref>
<ref id="CR161">
<label>161.</label>
<mixed-citation publication-type="other">Bioconductor version 2.12.
<ext-link ext-link-type="uri" xlink:href="http://www.bioconductor.org/">http://www.bioconductor.org/</ext-link>
. Accessed 29 Sept 2012.</mixed-citation>
</ref>
<ref id="CR162">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>SignalP 4.0: discriminating signal peptides from transmembrane regions</article-title>
<source>Nat Methods</source>
<year>2011</year>
<volume>8</volume>
<fpage>785</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1701</pub-id>
<pub-id pub-id-type="pmid">21959131</pub-id>
</element-citation>
</ref>
<ref id="CR163">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bendtsen</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>N</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Feature-based prediction of non-classical and leaderless protein secretion</article-title>
<source>Protein Eng Des Sel</source>
<year>2004</year>
<volume>17</volume>
<fpage>349</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1093/protein/gzh037</pub-id>
<pub-id pub-id-type="pmid">15115854</pub-id>
</element-citation>
</ref>
<ref id="CR164">
<label>164.</label>
<mixed-citation publication-type="other">The TMHMM server.
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/TMHMM/">http://www.cbs.dtu.dk/services/TMHMM/</ext-link>
. Accessed 10 Sept 2015.</mixed-citation>
</ref>
<ref id="CR165">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emanuelsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Predicting subcellular localization of proteins based on their N-terminal amino acid sequence</article-title>
<source>J Mol Biol</source>
<year>2000</year>
<volume>300</volume>
<fpage>1005</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2000.3903</pub-id>
<pub-id pub-id-type="pmid">10891285</pub-id>
</element-citation>
</ref>
<ref id="CR166">
<label>166.</label>
<mixed-citation publication-type="other">ProtComp v 9.0.
<ext-link ext-link-type="uri" xlink:href="http://www.softberry.com/berry.phtml?topic=protcomppl&group=programs&subgroup=proloc">http://www.softberry.com/berry.phtml?topic=protcomppl&group=programs&subgroup=proloc</ext-link>
. Accessed 14 Sept 2015.</mixed-citation>
</ref>
<ref id="CR167">
<label>167.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horton</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>K-J</given-names>
</name>
<name>
<surname>Obayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Adams-Collier</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>WoLF PSORT: protein localization predictor</article-title>
<source>Nucleic Acids Res</source>
<year>2007</year>
<volume>35</volume>
<fpage>W585</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkm259</pub-id>
<pub-id pub-id-type="pmid">17517783</pub-id>
</element-citation>
</ref>
<ref id="CR168">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tatusova</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ciufo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fedorov</surname>
<given-names>B</given-names>
</name>
<name>
<surname>O’Neill</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tolstoy</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>RefSeq microbial genomes database: new representation and annotation strategy</article-title>
<source>Nucleic Acids Res</source>
<year>2014</year>
<volume>42</volume>
<issue>Database issue</issue>
<fpage>D553</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt1274</pub-id>
<pub-id pub-id-type="pmid">24316578</pub-id>
</element-citation>
</ref>
<ref id="CR169">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitchell</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H-Y</given-names>
</name>
<name>
<surname>Daugherty</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The InterPro protein families database: the classification resource after 15 years</article-title>
<source>Nucleic Acids Res</source>
<year>2015</year>
<volume>43</volume>
<issue>Database Issue</issue>
<fpage>D213</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gku1243</pub-id>
<pub-id pub-id-type="pmid">25428371</pub-id>
</element-citation>
</ref>
<ref id="CR170">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzek</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>McGarvey</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CH</given-names>
</name>
<collab>The UniProt Consortium</collab>
</person-group>
<article-title>UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches</article-title>
<source>Bioinformatics</source>
<year>2015</year>
<volume>31</volume>
<fpage>926</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btu739</pub-id>
<pub-id pub-id-type="pmid">25398609</pub-id>
</element-citation>
</ref>
<ref id="CR171">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>The UniProt Consortium</collab>
</person-group>
<article-title>UniProt: a hub for protein information</article-title>
<source>Nucleic Acids Res</source>
<year>2015</year>
<volume>43</volume>
<issue>Database Issue</issue>
<fpage>D204</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gku989</pub-id>
<pub-id pub-id-type="pmid">25348405</pub-id>
</element-citation>
</ref>
<ref id="CR172">
<label>172.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sigrist</surname>
<given-names>CJA</given-names>
</name>
<name>
<surname>de Castro</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cerutti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cuche</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Hulo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bridge</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New and continuing developments at PROSITE</article-title>
<source>Nucleic Acids Res</source>
<year>2013</year>
<volume>41</volume>
<issue>Database Issue</issue>
<fpage>D344</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gks1067</pub-id>
<pub-id pub-id-type="pmid">23161676</pub-id>
</element-citation>
</ref>
<ref id="CR173">
<label>173.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>van Dongen</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Graph clustering by flow simulation</source>
<year>2000</year>
<publisher-loc>The Netherlands</publisher-loc>
<publisher-name>University of Utrecht</publisher-name>
</element-citation>
</ref>
<ref id="CR174">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goujon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McWilliam</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Valentin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Squizzato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Paern</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A new bioinformatics analysis tools framework at EMBL-EBI</article-title>
<source>Nucleic Acids Res</source>
<year>2010</year>
<volume>38</volume>
<issue>Web Server Issue</issue>
<fpage>W695</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkq313</pub-id>
<pub-id pub-id-type="pmid">20439314</pub-id>
</element-citation>
</ref>
<ref id="CR175">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McWilliam</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Uludag</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Squizzato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Buso</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analysis Tool Web Services from the EMBL-EBI</article-title>
<source>Nucleic Acids Res</source>
<year>2013</year>
<volume>41</volume>
<issue>Web Server Issue</issue>
<fpage>W597</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt376</pub-id>
<pub-id pub-id-type="pmid">23671338</pub-id>
</element-citation>
</ref>
<ref id="CR176">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Holm</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Rapid automatic detection and alignment of repeats in protein sequences</article-title>
<source>Proteins</source>
<year>2000</year>
<volume>41</volume>
<fpage>224</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1002/1097-0134(20001101)41:2<224::AID-PROT70>3.0.CO;2-Z</pub-id>
<pub-id pub-id-type="pmid">10966575</pub-id>
</element-citation>
</ref>
<ref id="CR177">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duckert</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Prediction of proprotein convertase cleavage sites</article-title>
<source>Protein Eng Des Sel</source>
<year>2004</year>
<volume>17</volume>
<fpage>107</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1093/protein/gzh013</pub-id>
<pub-id pub-id-type="pmid">14985543</pub-id>
</element-citation>
</ref>
<ref id="CR178">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zdobnov</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Apweiler</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>InterProScan - an integration platform for the signature-recognition methods in InterPro</article-title>
<source>Bioinformatics</source>
<year>2001</year>
<volume>17</volume>
<fpage>847</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/17.9.847</pub-id>
<pub-id pub-id-type="pmid">11590104</pub-id>
</element-citation>
</ref>
<ref id="CR179">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>She</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>JS-C</given-names>
</name>
<name>
<surname>Uyar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>genBlastG: using BLAST searches to build homologous gene models</article-title>
<source>Bioinformatics</source>
<year>2011</year>
<volume>27</volume>
<fpage>2141</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btr342</pub-id>
<pub-id pub-id-type="pmid">21653517</pub-id>
</element-citation>
</ref>
<ref id="CR180">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Notredame</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Heringa</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>T-coffee: a novel method for fast and accurate multiple sequence alignment</article-title>
<source>J Mol Biol</source>
<year>2000</year>
<volume>302</volume>
<fpage>205</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2000.4042</pub-id>
<pub-id pub-id-type="pmid">10964570</pub-id>
</element-citation>
</ref>
<ref id="CR181">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallace</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>O’Sullivan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Notredame</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>M-Coffee: combining multiple sequence alignment methods with T-Coffee</article-title>
<source>Nucleic Acids Res</source>
<year>2006</year>
<volume>34</volume>
<fpage>1692</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkl091</pub-id>
<pub-id pub-id-type="pmid">16556910</pub-id>
</element-citation>
</ref>
<ref id="CR182">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beitz</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>TeXshade: shading and labeling of multiple sequence alignments using LaTeX2e</article-title>
<source>Bioinformatics</source>
<year>2000</year>
<volume>16</volume>
<fpage>135</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/16.2.135</pub-id>
<pub-id pub-id-type="pmid">10842735</pub-id>
</element-citation>
</ref>
<ref id="CR183">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Accelerated Profile HMM Searches</article-title>
<source>PLoS Comput Biol</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002195</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1002195</pub-id>
<pub-id pub-id-type="pmid">22039361</pub-id>
</element-citation>
</ref>
<ref id="CR184">
<label>184.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<collab>R Core Team</collab>
</person-group>
<source>R: a language and environment for statistical computing</source>
<year>2015</year>
<publisher-loc>Vienna</publisher-loc>
<publisher-name>R Foundation for Statistical Computing</publisher-name>
</element-citation>
</ref>
<ref id="CR185">
<label>185.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>DGO</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Raffaele</surname>
<given-names>S</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Birch</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bos</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Two-dimensional data binning for the analysis of genome architecture in filamentous plant pathogens and other eukaryotes</article-title>
<source>Plant-pathogen interactions: methods and protocols</source>
<year>2014</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Springer Science + Business Media</publisher-name>
<fpage>29</fpage>
<lpage>51</lpage>
</element-citation>
</ref>
<ref id="CR186">
<label>186.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flutre</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Duprat</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feuillet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Quesneville</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Considering transposable element diversification in
<italic>de novo</italic>
annotation approaches</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e16526</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0016526</pub-id>
<pub-id pub-id-type="pmid">21304975</pub-id>
</element-citation>
</ref>
<ref id="CR187">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caffier</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Patocchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Expert</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bellanger</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Durel</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Hilber-Bodmer</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virulence characterization of
<italic>Venturia inaequalis</italic>
reference isolates on the differential set of
<italic>Malus</italic>
hosts</article-title>
<source>Plant Dis</source>
<year>2015</year>
<volume>99</volume>
<fpage>370</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1094/PDIS-07-14-0708-RE</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000154 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000154 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5412055
   |texte=   Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28464870" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020