Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000070 ( Pmc/Corpus ); précédent : 0000699; suivant : 0000710 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of the
<italic>Phlebiopsis gigantea</italic>
Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood</title>
<author>
<name sortKey="Hori, Chiaki" sort="Hori, Chiaki" uniqKey="Hori C" first="Chiaki" last="Hori">Chiaki Hori</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Hitoshi" sort="Suzuki, Hitoshi" uniqKey="Suzuki H" first="Hitoshi" last="Suzuki">Hitoshi Suzuki</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Master, Emma" sort="Master, Emma" uniqKey="Master E" first="Emma" last="Master">Emma Master</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferreira, Patricia" sort="Ferreira, Patricia" uniqKey="Ferreira P" first="Patricia" last="Ferreira">Patricia Ferreira</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Due As, Francisco J" sort="Ruiz Due As, Francisco J" uniqKey="Ruiz Due As F" first="Francisco J." last="Ruiz-Due As">Francisco J. Ruiz-Due As</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Held, Benjamin" sort="Held, Benjamin" uniqKey="Held B" first="Benjamin" last="Held">Benjamin Held</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Canessa, Paulo" sort="Canessa, Paulo" uniqKey="Canessa P" first="Paulo" last="Canessa">Paulo Canessa</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Larrondo, Luis F" sort="Larrondo, Luis F" uniqKey="Larrondo L" first="Luis F." last="Larrondo">Luis F. Larrondo</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmoll, Monika" sort="Schmoll, Monika" uniqKey="Schmoll M" first="Monika" last="Schmoll">Monika Schmoll</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Health and Environment Department, Austrian Institute of Technology GmbH, Tulin, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Druzhinina, Irina S" sort="Druzhinina, Irina S" uniqKey="Druzhinina I" first="Irina S." last="Druzhinina">Irina S. Druzhinina</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kubicek, Christian P" sort="Kubicek, Christian P" uniqKey="Kubicek C" first="Christian P." last="Kubicek">Christian P. Kubicek</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gaskell, Jill A" sort="Gaskell, Jill A" uniqKey="Gaskell J" first="Jill A." last="Gaskell">Jill A. Gaskell</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Phil" sort="Kersten, Phil" uniqKey="Kersten P" first="Phil" last="Kersten">Phil Kersten</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="St John, Franz" sort="St John, Franz" uniqKey="St John F" first="Franz" last="St. John">Franz St. John</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Glasner, Jeremy" sort="Glasner, Jeremy" uniqKey="Glasner J" first="Jeremy" last="Glasner">Jeremy Glasner</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Splinter Bondurant, Sandra" sort="Splinter Bondurant, Sandra" uniqKey="Splinter Bondurant S" first="Sandra" last="Splinter Bondurant">Sandra Splinter Bondurant</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Jagjit" sort="Yadav, Jagjit" uniqKey="Yadav J" first="Jagjit" last="Yadav">Jagjit Yadav</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mgbeahuruike, Anthony C" sort="Mgbeahuruike, Anthony C" uniqKey="Mgbeahuruike A" first="Anthony C." last="Mgbeahuruike">Anthony C. Mgbeahuruike</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kovalchuk, Andriy" sort="Kovalchuk, Andriy" uniqKey="Kovalchuk A" first="Andriy" last="Kovalchuk">Andriy Kovalchuk</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Asiegbu, Fred O" sort="Asiegbu, Fred O" uniqKey="Asiegbu F" first="Fred O." last="Asiegbu">Fred O. Asiegbu</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lackner, Gerald" sort="Lackner, Gerald" uniqKey="Lackner G" first="Gerald" last="Lackner">Gerald Lackner</name>
<affiliation>
<nlm:aff id="aff13">
<addr-line>Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hoffmeister, Dirk" sort="Hoffmeister, Dirk" uniqKey="Hoffmeister D" first="Dirk" last="Hoffmeister">Dirk Hoffmeister</name>
<affiliation>
<nlm:aff id="aff13">
<addr-line>Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rencoret, Jorge" sort="Rencoret, Jorge" uniqKey="Rencoret J" first="Jorge" last="Rencoret">Jorge Rencoret</name>
<affiliation>
<nlm:aff id="aff14">
<addr-line>Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gutierrez, Ana" sort="Gutierrez, Ana" uniqKey="Gutierrez A" first="Ana" last="Gutiérrez">Ana Gutiérrez</name>
<affiliation>
<nlm:aff id="aff14">
<addr-line>Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Hui" sort="Sun, Hui" uniqKey="Sun H" first="Hui" last="Sun">Hui Sun</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lindquist, Erika" sort="Lindquist, Erika" uniqKey="Lindquist E" first="Erika" last="Lindquist">Erika Lindquist</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barry, Kerrie" sort="Barry, Kerrie" uniqKey="Barry K" first="Kerrie" last="Barry">Kerrie Barry</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Riley, Robert" sort="Riley, Robert" uniqKey="Riley R" first="Robert" last="Riley">Robert Riley</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V." last="Grigoriev">Igor V. Grigoriev</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Henrissat, Bernard" sort="Henrissat, Bernard" uniqKey="Henrissat B" first="Bernard" last="Henrissat">Bernard Henrissat</name>
<affiliation>
<nlm:aff id="aff16">
<addr-line>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kues, Ursula" sort="Kues, Ursula" uniqKey="Kues U" first="Ursula" last="Kües">Ursula Kües</name>
<affiliation>
<nlm:aff id="aff17">
<addr-line>Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berka, Randy M" sort="Berka, Randy M" uniqKey="Berka R" first="Randy M." last="Berka">Randy M. Berka</name>
<affiliation>
<nlm:aff id="aff18">
<addr-line>Novozymes, Inc., Davis, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T." last="Martínez">Angel T. Martínez</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Covert, Sarah F" sort="Covert, Sarah F" uniqKey="Covert S" first="Sarah F." last="Covert">Sarah F. Covert</name>
<affiliation>
<nlm:aff id="aff19">
<addr-line>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A." last="Blanchette">Robert A. Blanchette</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25474575</idno>
<idno type="pmc">4256170</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256170</idno>
<idno type="RBID">PMC:4256170</idno>
<idno type="doi">10.1371/journal.pgen.1004759</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000070</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000070</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Analysis of the
<italic>Phlebiopsis gigantea</italic>
Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood</title>
<author>
<name sortKey="Hori, Chiaki" sort="Hori, Chiaki" uniqKey="Hori C" first="Chiaki" last="Hori">Chiaki Hori</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Hitoshi" sort="Suzuki, Hitoshi" uniqKey="Suzuki H" first="Hitoshi" last="Suzuki">Hitoshi Suzuki</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Master, Emma" sort="Master, Emma" uniqKey="Master E" first="Emma" last="Master">Emma Master</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferreira, Patricia" sort="Ferreira, Patricia" uniqKey="Ferreira P" first="Patricia" last="Ferreira">Patricia Ferreira</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Due As, Francisco J" sort="Ruiz Due As, Francisco J" uniqKey="Ruiz Due As F" first="Francisco J." last="Ruiz-Due As">Francisco J. Ruiz-Due As</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Held, Benjamin" sort="Held, Benjamin" uniqKey="Held B" first="Benjamin" last="Held">Benjamin Held</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Canessa, Paulo" sort="Canessa, Paulo" uniqKey="Canessa P" first="Paulo" last="Canessa">Paulo Canessa</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Larrondo, Luis F" sort="Larrondo, Luis F" uniqKey="Larrondo L" first="Luis F." last="Larrondo">Luis F. Larrondo</name>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmoll, Monika" sort="Schmoll, Monika" uniqKey="Schmoll M" first="Monika" last="Schmoll">Monika Schmoll</name>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Health and Environment Department, Austrian Institute of Technology GmbH, Tulin, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Druzhinina, Irina S" sort="Druzhinina, Irina S" uniqKey="Druzhinina I" first="Irina S." last="Druzhinina">Irina S. Druzhinina</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kubicek, Christian P" sort="Kubicek, Christian P" uniqKey="Kubicek C" first="Christian P." last="Kubicek">Christian P. Kubicek</name>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gaskell, Jill A" sort="Gaskell, Jill A" uniqKey="Gaskell J" first="Jill A." last="Gaskell">Jill A. Gaskell</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Phil" sort="Kersten, Phil" uniqKey="Kersten P" first="Phil" last="Kersten">Phil Kersten</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="St John, Franz" sort="St John, Franz" uniqKey="St John F" first="Franz" last="St. John">Franz St. John</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Glasner, Jeremy" sort="Glasner, Jeremy" uniqKey="Glasner J" first="Jeremy" last="Glasner">Jeremy Glasner</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Splinter Bondurant, Sandra" sort="Splinter Bondurant, Sandra" uniqKey="Splinter Bondurant S" first="Sandra" last="Splinter Bondurant">Sandra Splinter Bondurant</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Jagjit" sort="Yadav, Jagjit" uniqKey="Yadav J" first="Jagjit" last="Yadav">Jagjit Yadav</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mgbeahuruike, Anthony C" sort="Mgbeahuruike, Anthony C" uniqKey="Mgbeahuruike A" first="Anthony C." last="Mgbeahuruike">Anthony C. Mgbeahuruike</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kovalchuk, Andriy" sort="Kovalchuk, Andriy" uniqKey="Kovalchuk A" first="Andriy" last="Kovalchuk">Andriy Kovalchuk</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Asiegbu, Fred O" sort="Asiegbu, Fred O" uniqKey="Asiegbu F" first="Fred O." last="Asiegbu">Fred O. Asiegbu</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lackner, Gerald" sort="Lackner, Gerald" uniqKey="Lackner G" first="Gerald" last="Lackner">Gerald Lackner</name>
<affiliation>
<nlm:aff id="aff13">
<addr-line>Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hoffmeister, Dirk" sort="Hoffmeister, Dirk" uniqKey="Hoffmeister D" first="Dirk" last="Hoffmeister">Dirk Hoffmeister</name>
<affiliation>
<nlm:aff id="aff13">
<addr-line>Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rencoret, Jorge" sort="Rencoret, Jorge" uniqKey="Rencoret J" first="Jorge" last="Rencoret">Jorge Rencoret</name>
<affiliation>
<nlm:aff id="aff14">
<addr-line>Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gutierrez, Ana" sort="Gutierrez, Ana" uniqKey="Gutierrez A" first="Ana" last="Gutiérrez">Ana Gutiérrez</name>
<affiliation>
<nlm:aff id="aff14">
<addr-line>Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Hui" sort="Sun, Hui" uniqKey="Sun H" first="Hui" last="Sun">Hui Sun</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lindquist, Erika" sort="Lindquist, Erika" uniqKey="Lindquist E" first="Erika" last="Lindquist">Erika Lindquist</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barry, Kerrie" sort="Barry, Kerrie" uniqKey="Barry K" first="Kerrie" last="Barry">Kerrie Barry</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Riley, Robert" sort="Riley, Robert" uniqKey="Riley R" first="Robert" last="Riley">Robert Riley</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V." last="Grigoriev">Igor V. Grigoriev</name>
<affiliation>
<nlm:aff id="aff15">
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Henrissat, Bernard" sort="Henrissat, Bernard" uniqKey="Henrissat B" first="Bernard" last="Henrissat">Bernard Henrissat</name>
<affiliation>
<nlm:aff id="aff16">
<addr-line>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kues, Ursula" sort="Kues, Ursula" uniqKey="Kues U" first="Ursula" last="Kües">Ursula Kües</name>
<affiliation>
<nlm:aff id="aff17">
<addr-line>Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berka, Randy M" sort="Berka, Randy M" uniqKey="Berka R" first="Randy M." last="Berka">Randy M. Berka</name>
<affiliation>
<nlm:aff id="aff18">
<addr-line>Novozymes, Inc., Davis, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T." last="Martínez">Angel T. Martínez</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Covert, Sarah F" sort="Covert, Sarah F" uniqKey="Covert S" first="Sarah F." last="Covert">Sarah F. Covert</name>
<affiliation>
<nlm:aff id="aff19">
<addr-line>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A." last="Blanchette">Robert A. Blanchette</name>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
<affiliation>
<nlm:aff id="aff9">
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Genetics</title>
<idno type="ISSN">1553-7390</idno>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by
<italic>Phlebiopsis gigantea</italic>
, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which
<italic>P. gigantea</italic>
tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated
<italic>P. gigantea</italic>
genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The
<italic>P. gigantea</italic>
genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in
<italic>P. gigantea</italic>
's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanchette, R" uniqKey="Blanchette R">R Blanchette</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shigo, Al" uniqKey="Shigo A">AL Shigo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutierrez, A" uniqKey="Gutierrez A">A Gutierrez</name>
</author>
<author>
<name sortKey="Del Rio, Jc" uniqKey="Del Rio J">JC Del Rio</name>
</author>
<author>
<name sortKey="Martinez, At" uniqKey="Martinez A">AT Martinez</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rishbeth, J" uniqKey="Rishbeth J">J Rishbeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrendt, Cj" uniqKey="Behrendt C">CJ Behrendt</name>
</author>
<author>
<name sortKey="Blanchette, Ra" uniqKey="Blanchette R">RA Blanchette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrendt, Cj" uniqKey="Behrendt C">CJ Behrendt</name>
</author>
<author>
<name sortKey="Blanchette, Ra" uniqKey="Blanchette R">RA Blanchette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, K" uniqKey="Fischer K">K Fischer</name>
</author>
<author>
<name sortKey="Akhtar, M" uniqKey="Akhtar M">M Akhtar</name>
</author>
<author>
<name sortKey="Blanchette, Ra" uniqKey="Blanchette R">RA Blanchette</name>
</author>
<author>
<name sortKey="Burnes, Ta" uniqKey="Burnes T">TA Burnes</name>
</author>
<author>
<name sortKey="Messner, K" uniqKey="Messner K">K Messner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Inigo, Mj" uniqKey="Martinez Inigo M">MJ Martinez-Inigo</name>
</author>
<author>
<name sortKey="Immerzeel, P" uniqKey="Immerzeel P">P Immerzeel</name>
</author>
<author>
<name sortKey="Gutierrez, A" uniqKey="Gutierrez A">A Gutierrez</name>
</author>
<author>
<name sortKey="Del Rio, Jc" uniqKey="Del Rio J">JC del Rio</name>
</author>
<author>
<name sortKey="Sierra Alvarez, R" uniqKey="Sierra Alvarez R">R Sierra-Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adomas, A" uniqKey="Adomas A">A Adomas</name>
</author>
<author>
<name sortKey="Eklund, M" uniqKey="Eklund M">M Eklund</name>
</author>
<author>
<name sortKey="Johansson, M" uniqKey="Johansson M">M Johansson</name>
</author>
<author>
<name sortKey="Asiegbu, Fo" uniqKey="Asiegbu F">FO Asiegbu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baldrian, P" uniqKey="Baldrian P">P Baldrian</name>
</author>
<author>
<name sortKey="Valaskova, V" uniqKey="Valaskova V">V Valaskova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cantarel, Bl" uniqKey="Cantarel B">BL Cantarel</name>
</author>
<author>
<name sortKey="Coutinho, Pm" uniqKey="Coutinho P">PM Coutinho</name>
</author>
<author>
<name sortKey="Rancurel, C" uniqKey="Rancurel C">C Rancurel</name>
</author>
<author>
<name sortKey="Bernard, T" uniqKey="Bernard T">T Bernard</name>
</author>
<author>
<name sortKey="Lombard, V" uniqKey="Lombard V">V Lombard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hori, C" uniqKey="Hori C">C Hori</name>
</author>
<author>
<name sortKey="Gaskell, J" uniqKey="Gaskell J">J Gaskell</name>
</author>
<author>
<name sortKey="Igarashi, K" uniqKey="Igarashi K">K Igarashi</name>
</author>
<author>
<name sortKey="Samejima, M" uniqKey="Samejima M">M Samejima</name>
</author>
<author>
<name sortKey="Hibbett, D" uniqKey="Hibbett D">D Hibbett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bey, M" uniqKey="Bey M">M Bey</name>
</author>
<author>
<name sortKey="Zhou, S" uniqKey="Zhou S">S Zhou</name>
</author>
<author>
<name sortKey="Poidevin, L" uniqKey="Poidevin L">L Poidevin</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B Henrissat</name>
</author>
<author>
<name sortKey="Coutinho, Pm" uniqKey="Coutinho P">PM Coutinho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quinlan, Rj" uniqKey="Quinlan R">RJ Quinlan</name>
</author>
<author>
<name sortKey="Sweeney, Md" uniqKey="Sweeney M">MD Sweeney</name>
</author>
<author>
<name sortKey="Lo Leggio, L" uniqKey="Lo Leggio L">L Lo Leggio</name>
</author>
<author>
<name sortKey="Otten, H" uniqKey="Otten H">H Otten</name>
</author>
<author>
<name sortKey="Poulsen, Jc" uniqKey="Poulsen J">JC Poulsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westereng, B" uniqKey="Westereng B">B Westereng</name>
</author>
<author>
<name sortKey="Ishida, T" uniqKey="Ishida T">T Ishida</name>
</author>
<author>
<name sortKey="Vaaje Kolstad, G" uniqKey="Vaaje Kolstad G">G Vaaje-Kolstad</name>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M Wu</name>
</author>
<author>
<name sortKey="Eijsink, Vg" uniqKey="Eijsink V">VG Eijsink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Floudas, D" uniqKey="Floudas D">D Floudas</name>
</author>
<author>
<name sortKey="Binder, M" uniqKey="Binder M">M Binder</name>
</author>
<author>
<name sortKey="Riley, R" uniqKey="Riley R">R Riley</name>
</author>
<author>
<name sortKey="Barry, K" uniqKey="Barry K">K Barry</name>
</author>
<author>
<name sortKey="Blanchette, Ra" uniqKey="Blanchette R">RA Blanchette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Fueyo, E" uniqKey="Fernandez Fueyo E">E Fernandez-Fueyo</name>
</author>
<author>
<name sortKey="Ruiz Duenas, Fj" uniqKey="Ruiz Duenas F">FJ Ruiz-Duenas</name>
</author>
<author>
<name sortKey="Ferreira, P" uniqKey="Ferreira P">P Ferreira</name>
</author>
<author>
<name sortKey="Floudas, D" uniqKey="Floudas D">D Floudas</name>
</author>
<author>
<name sortKey="Hibbett, Ds" uniqKey="Hibbett D">DS Hibbett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgenstern, I" uniqKey="Morgenstern I">I Morgenstern</name>
</author>
<author>
<name sortKey="Klopman, S" uniqKey="Klopman S">S Klopman</name>
</author>
<author>
<name sortKey="Hibbett, Ds" uniqKey="Hibbett D">DS Hibbett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawai, S" uniqKey="Kawai S">S Kawai</name>
</author>
<author>
<name sortKey="Asukai, M" uniqKey="Asukai M">M Asukai</name>
</author>
<author>
<name sortKey="Ohya, N" uniqKey="Ohya N">N Ohya</name>
</author>
<author>
<name sortKey="Okita, K" uniqKey="Okita K">K Okita</name>
</author>
<author>
<name sortKey="Ito, T" uniqKey="Ito T">T Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourbonnais, R" uniqKey="Bourbonnais R">R Bourbonnais</name>
</author>
<author>
<name sortKey="Paice, Mg" uniqKey="Paice M">MG Paice</name>
</author>
<author>
<name sortKey="Freiermuth, B" uniqKey="Freiermuth B">B Freiermuth</name>
</author>
<author>
<name sortKey="Bodie, E" uniqKey="Bodie E">E Bodie</name>
</author>
<author>
<name sortKey="Borneman, S" uniqKey="Borneman S">S Borneman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eggert, C" uniqKey="Eggert C">C Eggert</name>
</author>
<author>
<name sortKey="Temp, U" uniqKey="Temp U">U Temp</name>
</author>
<author>
<name sortKey="Eriksson, K" uniqKey="Eriksson K">K Eriksson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, D" uniqKey="Martinez D">D Martinez</name>
</author>
<author>
<name sortKey="Larrondo, Lf" uniqKey="Larrondo L">LF Larrondo</name>
</author>
<author>
<name sortKey="Putnam, N" uniqKey="Putnam N">N Putnam</name>
</author>
<author>
<name sortKey="Sollewijn Gelpke, Md" uniqKey="Sollewijn Gelpke M">MD Sollewijn Gelpke</name>
</author>
<author>
<name sortKey="Huang, K" uniqKey="Huang K">K Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larrondo, L" uniqKey="Larrondo L">L Larrondo</name>
</author>
<author>
<name sortKey="Salas, L" uniqKey="Salas L">L Salas</name>
</author>
<author>
<name sortKey="Melo, F" uniqKey="Melo F">F Melo</name>
</author>
<author>
<name sortKey="Vicuna, R" uniqKey="Vicuna R">R Vicuna</name>
</author>
<author>
<name sortKey="Cullen, D" uniqKey="Cullen D">D Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoegger, Pj" uniqKey="Hoegger P">PJ Hoegger</name>
</author>
<author>
<name sortKey="Kilaru, S" uniqKey="Kilaru S">S Kilaru</name>
</author>
<author>
<name sortKey="James, Ty" uniqKey="James T">TY James</name>
</author>
<author>
<name sortKey="Thacker, Jr" uniqKey="Thacker J">JR Thacker</name>
</author>
<author>
<name sortKey="Kues, U" uniqKey="Kues U">U Kües</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levasseur, A" uniqKey="Levasseur A">A Levasseur</name>
</author>
<author>
<name sortKey="Drula, E" uniqKey="Drula E">E Drula</name>
</author>
<author>
<name sortKey="Lombard, V" uniqKey="Lombard V">V Lombard</name>
</author>
<author>
<name sortKey="Coutinho, Pm" uniqKey="Coutinho P">PM Coutinho</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B Henrissat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bastian, S" uniqKey="Bastian S">S Bastian</name>
</author>
<author>
<name sortKey="Rekowski, Mj" uniqKey="Rekowski M">MJ Rekowski</name>
</author>
<author>
<name sortKey="Witte, K" uniqKey="Witte K">K Witte</name>
</author>
<author>
<name sortKey="Heckmann Pohl, Dm" uniqKey="Heckmann Pohl D">DM Heckmann-Pohl</name>
</author>
<author>
<name sortKey="Giffhorn, F" uniqKey="Giffhorn F">F Giffhorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yadav, Js" uniqKey="Yadav J">JS Yadav</name>
</author>
<author>
<name sortKey="Soellner, Mb" uniqKey="Soellner M">MB Soellner</name>
</author>
<author>
<name sortKey="Loper, Jc" uniqKey="Loper J">JC Loper</name>
</author>
<author>
<name sortKey="Mishra, Pk" uniqKey="Mishra P">PK Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syed, K" uniqKey="Syed K">K Syed</name>
</author>
<author>
<name sortKey="Porollo, A" uniqKey="Porollo A">A Porollo</name>
</author>
<author>
<name sortKey="Lam, Yw" uniqKey="Lam Y">YW Lam</name>
</author>
<author>
<name sortKey="Grimmett, Pe" uniqKey="Grimmett P">PE Grimmett</name>
</author>
<author>
<name sortKey="Yadav, Js" uniqKey="Yadav J">JS Yadav</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syed, K" uniqKey="Syed K">K Syed</name>
</author>
<author>
<name sortKey="Yadav, Js" uniqKey="Yadav J">JS Yadav</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dowd, Ca" uniqKey="Dowd C">CA Dowd</name>
</author>
<author>
<name sortKey="Buckley, Cm" uniqKey="Buckley C">CM Buckley</name>
</author>
<author>
<name sortKey="Sheehan, D" uniqKey="Sheehan D">D Sheehan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reiser, J" uniqKey="Reiser J">J Reiser</name>
</author>
<author>
<name sortKey="Muheim, A" uniqKey="Muheim A">A Muheim</name>
</author>
<author>
<name sortKey="Hardegger, M" uniqKey="Hardegger M">M Hardegger</name>
</author>
<author>
<name sortKey="Frank, G" uniqKey="Frank G">G Frank</name>
</author>
<author>
<name sortKey="Fiechter, A" uniqKey="Fiechter A">A Fiechter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hibbett, Ds" uniqKey="Hibbett D">DS Hibbett</name>
</author>
<author>
<name sortKey="Donoghue, Mj" uniqKey="Donoghue M">MJ Donoghue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigoriev, Iv" uniqKey="Grigoriev I">IV Grigoriev</name>
</author>
<author>
<name sortKey="Nordberg, H" uniqKey="Nordberg H">H Nordberg</name>
</author>
<author>
<name sortKey="Shabalov, I" uniqKey="Shabalov I">I Shabalov</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A Aerts</name>
</author>
<author>
<name sortKey="Cantor, M" uniqKey="Cantor M">M Cantor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riley, R" uniqKey="Riley R">R Riley</name>
</author>
<author>
<name sortKey="Salamov, Aa" uniqKey="Salamov A">AA Salamov</name>
</author>
<author>
<name sortKey="Brown, Dw" uniqKey="Brown D">DW Brown</name>
</author>
<author>
<name sortKey="Nagy, Lg" uniqKey="Nagy L">LG Nagy</name>
</author>
<author>
<name sortKey="Floudas, D" uniqKey="Floudas D">D Floudas</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kersten, Pj" uniqKey="Kersten P">PJ Kersten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Koker, Th" uniqKey="De Koker T">TH de Koker</name>
</author>
<author>
<name sortKey="Mozuch, Md" uniqKey="Mozuch M">MD Mozuch</name>
</author>
<author>
<name sortKey="Cullen, D" uniqKey="Cullen D">D Cullen</name>
</author>
<author>
<name sortKey="Gaskell, J" uniqKey="Gaskell J">J Gaskell</name>
</author>
<author>
<name sortKey="Kersten, Pj" uniqKey="Kersten P">PJ Kersten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giffhorn, F" uniqKey="Giffhorn F">F Giffhorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Hw" uniqKey="Sun H">HW Sun</name>
</author>
<author>
<name sortKey="Plapp, Bv" uniqKey="Plapp B">BV Plapp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, D" uniqKey="Martinez D">D Martinez</name>
</author>
<author>
<name sortKey="Challacombe, J" uniqKey="Challacombe J">J Challacombe</name>
</author>
<author>
<name sortKey="Morgenstern, I" uniqKey="Morgenstern I">I Morgenstern</name>
</author>
<author>
<name sortKey="Hibbett, D" uniqKey="Hibbett D">D Hibbett</name>
</author>
<author>
<name sortKey="Schmoll, M" uniqKey="Schmoll M">M Schmoll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eastwood, Dc" uniqKey="Eastwood D">DC Eastwood</name>
</author>
<author>
<name sortKey="Floudas, D" uniqKey="Floudas D">D Floudas</name>
</author>
<author>
<name sortKey="Binder, M" uniqKey="Binder M">M Binder</name>
</author>
<author>
<name sortKey="Majcherczyk, A" uniqKey="Majcherczyk A">A Majcherczyk</name>
</author>
<author>
<name sortKey="Schneider, P" uniqKey="Schneider P">P Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langston, Ja" uniqKey="Langston J">JA Langston</name>
</author>
<author>
<name sortKey="Shaghasi, T" uniqKey="Shaghasi T">T Shaghasi</name>
</author>
<author>
<name sortKey="Abbate, E" uniqKey="Abbate E">E Abbate</name>
</author>
<author>
<name sortKey="Xu, F" uniqKey="Xu F">F Xu</name>
</author>
<author>
<name sortKey="Vlasenko, E" uniqKey="Vlasenko E">E Vlasenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, Cm" uniqKey="Phillips C">CM Phillips</name>
</author>
<author>
<name sortKey="Beeson, Wt" uniqKey="Beeson W">WT Beeson</name>
</author>
<author>
<name sortKey="Cate, Jh" uniqKey="Cate J">JH Cate</name>
</author>
<author>
<name sortKey="Marletta, Ma" uniqKey="Marletta M">MA Marletta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macdonald, J" uniqKey="Macdonald J">J Macdonald</name>
</author>
<author>
<name sortKey="Doering, M" uniqKey="Doering M">M Doering</name>
</author>
<author>
<name sortKey="Canam, T" uniqKey="Canam T">T Canam</name>
</author>
<author>
<name sortKey="Gong, Y" uniqKey="Gong Y">Y Gong</name>
</author>
<author>
<name sortKey="Guttman, Ds" uniqKey="Guttman D">DS Guttman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorado, J" uniqKey="Dorado J">J Dorado</name>
</author>
<author>
<name sortKey="Claassen, Fw" uniqKey="Claassen F">FW Claassen</name>
</author>
<author>
<name sortKey="Van Beek, Ta" uniqKey="Van Beek T">TA van Beek</name>
</author>
<author>
<name sortKey="Lenon, G" uniqKey="Lenon G">G Lenon</name>
</author>
<author>
<name sortKey="Wijnberg, Jb" uniqKey="Wijnberg J">JB Wijnberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutierrez, A" uniqKey="Gutierrez A">A Gutierrez</name>
</author>
<author>
<name sortKey="Del Rio, Jc" uniqKey="Del Rio J">JC del Rio</name>
</author>
<author>
<name sortKey="Gonzalez Vila, Fj" uniqKey="Gonzalez Vila F">FJ Gonzalez-Vila</name>
</author>
<author>
<name sortKey="Martin, F" uniqKey="Martin F">F Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishihama, Y" uniqKey="Ishihama Y">Y Ishihama</name>
</author>
<author>
<name sortKey="Oda, Y" uniqKey="Oda Y">Y Oda</name>
</author>
<author>
<name sortKey="Tabata, T" uniqKey="Tabata T">T Tabata</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Nagasu, T" uniqKey="Nagasu T">T Nagasu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daniel, G" uniqKey="Daniel G">G Daniel</name>
</author>
<author>
<name sortKey="Volc, J" uniqKey="Volc J">J Volc</name>
</author>
<author>
<name sortKey="Filonova, L" uniqKey="Filonova L">L Filonova</name>
</author>
<author>
<name sortKey="Plihal, O" uniqKey="Plihal O">O Plihal</name>
</author>
<author>
<name sortKey="Kubatova, E" uniqKey="Kubatova E">E Kubatova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bendtsen, Jd" uniqKey="Bendtsen J">JD Bendtsen</name>
</author>
<author>
<name sortKey="Jensen, Lj" uniqKey="Jensen L">LJ Jensen</name>
</author>
<author>
<name sortKey="Blom, N" uniqKey="Blom N">N Blom</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G Von Heijne</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Beek, Ta" uniqKey="Van Beek T">TA van Beek</name>
</author>
<author>
<name sortKey="Claassen, Fw" uniqKey="Claassen F">FW Claassen</name>
</author>
<author>
<name sortKey="Dorado, J" uniqKey="Dorado J">J Dorado</name>
</author>
<author>
<name sortKey="Godejohann, M" uniqKey="Godejohann M">M Godejohann</name>
</author>
<author>
<name sortKey="Sierra Alvarez, R" uniqKey="Sierra Alvarez R">R Sierra-Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, As" uniqKey="Adams A">AS Adams</name>
</author>
<author>
<name sortKey="Aylward, Fo" uniqKey="Aylward F">FO Aylward</name>
</author>
<author>
<name sortKey="Adams, Sm" uniqKey="Adams S">SM Adams</name>
</author>
<author>
<name sortKey="Erbilgin, N" uniqKey="Erbilgin N">N Erbilgin</name>
</author>
<author>
<name sortKey="Aukema, Bh" uniqKey="Aukema B">BH Aukema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, Sv" uniqKey="Kumar S">SV Kumar</name>
</author>
<author>
<name sortKey="Phale, Ps" uniqKey="Phale P">PS Phale</name>
</author>
<author>
<name sortKey="Durani, S" uniqKey="Durani S">S Durani</name>
</author>
<author>
<name sortKey="Wangikar, Pp" uniqKey="Wangikar P">PP Wangikar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hofrichter, M" uniqKey="Hofrichter M">M Hofrichter</name>
</author>
<author>
<name sortKey="Ullrich, R" uniqKey="Ullrich R">R Ullrich</name>
</author>
<author>
<name sortKey="Pecyna, Mj" uniqKey="Pecyna M">MJ Pecyna</name>
</author>
<author>
<name sortKey="Liers, C" uniqKey="Liers C">C Liers</name>
</author>
<author>
<name sortKey="Lundell, T" uniqKey="Lundell T">T Lundell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liers, C" uniqKey="Liers C">C Liers</name>
</author>
<author>
<name sortKey="Pecyna, Mj" uniqKey="Pecyna M">MJ Pecyna</name>
</author>
<author>
<name sortKey="Kellner, H" uniqKey="Kellner H">H Kellner</name>
</author>
<author>
<name sortKey="Worrich, A" uniqKey="Worrich A">A Worrich</name>
</author>
<author>
<name sortKey="Zorn, H" uniqKey="Zorn H">H Zorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaaje Kolstad, G" uniqKey="Vaaje Kolstad G">G Vaaje-Kolstad</name>
</author>
<author>
<name sortKey="Westereng, B" uniqKey="Westereng B">B Westereng</name>
</author>
<author>
<name sortKey="Horn, Sj" uniqKey="Horn S">SJ Horn</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
<author>
<name sortKey="Zhai, H" uniqKey="Zhai H">H Zhai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Wymelenberg, A" uniqKey="Vanden Wymelenberg A">A Vanden Wymelenberg</name>
</author>
<author>
<name sortKey="Minges, P" uniqKey="Minges P">P Minges</name>
</author>
<author>
<name sortKey="Sabat, G" uniqKey="Sabat G">G Sabat</name>
</author>
<author>
<name sortKey="Martinez, D" uniqKey="Martinez D">D Martinez</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A Aerts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Lim, L" uniqKey="Lim L">L Lim</name>
</author>
<author>
<name sortKey="Diguistini, S" uniqKey="Diguistini S">S DiGuistini</name>
</author>
<author>
<name sortKey="Robertson, G" uniqKey="Robertson G">G Robertson</name>
</author>
<author>
<name sortKey="Bohlmann, J" uniqKey="Bohlmann J">J Bohlmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuzaki, F" uniqKey="Matsuzaki F">F Matsuzaki</name>
</author>
<author>
<name sortKey="Shimizu, M" uniqKey="Shimizu M">M Shimizu</name>
</author>
<author>
<name sortKey="Wariishi, H" uniqKey="Wariishi H">H Wariishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimizu, M" uniqKey="Shimizu M">M Shimizu</name>
</author>
<author>
<name sortKey="Yuda, N" uniqKey="Yuda N">N Yuda</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
<author>
<name sortKey="Tanaka, H" uniqKey="Tanaka H">H Tanaka</name>
</author>
<author>
<name sortKey="Wariishi, H" uniqKey="Wariishi H">H Wariishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Annesi, T" uniqKey="Annesi T">T Annesi</name>
</author>
<author>
<name sortKey="Curcio, G" uniqKey="Curcio G">G Curcio</name>
</author>
<author>
<name sortKey="D Amico, L" uniqKey="D Amico L">L D'Amico</name>
</author>
<author>
<name sortKey="Motta, E" uniqKey="Motta E">E Motta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munir, E" uniqKey="Munir E">E Munir</name>
</author>
<author>
<name sortKey="Yoon, Jj" uniqKey="Yoon J">JJ Yoon</name>
</author>
<author>
<name sortKey="Tokimatsu, T" uniqKey="Tokimatsu T">T Tokimatsu</name>
</author>
<author>
<name sortKey="Hattori, T" uniqKey="Hattori T">T Hattori</name>
</author>
<author>
<name sortKey="Shimada, M" uniqKey="Shimada M">M Shimada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanchette, Ra" uniqKey="Blanchette R">RA Blanchette</name>
</author>
<author>
<name sortKey="Held, Bw" uniqKey="Held B">BW Held</name>
</author>
<author>
<name sortKey="Arenz, Be" uniqKey="Arenz B">BE Arenz</name>
</author>
<author>
<name sortKey="Jurgens, Ja" uniqKey="Jurgens J">JA Jurgens</name>
</author>
<author>
<name sortKey="Baltes, Nj" uniqKey="Baltes N">NJ Baltes</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parra, G" uniqKey="Parra G">G Parra</name>
</author>
<author>
<name sortKey="Bradnam, K" uniqKey="Bradnam K">K Bradnam</name>
</author>
<author>
<name sortKey="Korf, I" uniqKey="Korf I">I Korf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Wymelenberg, A" uniqKey="Vanden Wymelenberg A">A Vanden Wymelenberg</name>
</author>
<author>
<name sortKey="Gaskell, J" uniqKey="Gaskell J">J Gaskell</name>
</author>
<author>
<name sortKey="Mozuch, Md" uniqKey="Mozuch M">MD Mozuch</name>
</author>
<author>
<name sortKey="Sabat, G" uniqKey="Sabat G">G Sabat</name>
</author>
<author>
<name sortKey="Ralph, J" uniqKey="Ralph J">J Ralph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryu, Js" uniqKey="Ryu J">JS Ryu</name>
</author>
<author>
<name sortKey="Shary, S" uniqKey="Shary S">S Shary</name>
</author>
<author>
<name sortKey="Houtman, Cj" uniqKey="Houtman C">CJ Houtman</name>
</author>
<author>
<name sortKey="Panisko, Ea" uniqKey="Panisko E">EA Panisko</name>
</author>
<author>
<name sortKey="Korripally, P" uniqKey="Korripally P">P Korripally</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nesvizhskii, Ai" uniqKey="Nesvizhskii A">AI Nesvizhskii</name>
</author>
<author>
<name sortKey="Keller, A" uniqKey="Keller A">A Keller</name>
</author>
<author>
<name sortKey="Kolker, E" uniqKey="Kolker E">E Kolker</name>
</author>
<author>
<name sortKey="Aebersold, R" uniqKey="Aebersold R">R Aebersold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Wymelenberg, A" uniqKey="Vanden Wymelenberg A">A Vanden Wymelenberg</name>
</author>
<author>
<name sortKey="Gaskell, J" uniqKey="Gaskell J">J Gaskell</name>
</author>
<author>
<name sortKey="Mozuch, Md" uniqKey="Mozuch M">MD Mozuch</name>
</author>
<author>
<name sortKey="Kersten, P" uniqKey="Kersten P">P Kersten</name>
</author>
<author>
<name sortKey="Sabat, G" uniqKey="Sabat G">G Sabat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olson, A" uniqKey="Olson A">A Olson</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A Aerts</name>
</author>
<author>
<name sortKey="Asiegbu, F" uniqKey="Asiegbu F">F Asiegbu</name>
</author>
<author>
<name sortKey="Belbahri, L" uniqKey="Belbahri L">L Belbahri</name>
</author>
<author>
<name sortKey="Bouzid, O" uniqKey="Bouzid O">O Bouzid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Wymelenberg, A" uniqKey="Vanden Wymelenberg A">A Vanden Wymelenberg</name>
</author>
<author>
<name sortKey="Sabat, G" uniqKey="Sabat G">G Sabat</name>
</author>
<author>
<name sortKey="Mozuch, Md" uniqKey="Mozuch M">MD Mozuch</name>
</author>
<author>
<name sortKey="Kersten, P" uniqKey="Kersten P">P Kersten</name>
</author>
<author>
<name sortKey="Cullen, D" uniqKey="Cullen D">D Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aspeborg, H" uniqKey="Aspeborg H">H Aspeborg</name>
</author>
<author>
<name sortKey="Coutinho, Pm" uniqKey="Coutinho P">PM Coutinho</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Brumer, H" uniqKey="Brumer H">H Brumer</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B Henrissat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rzhetsky, A" uniqKey="Rzhetsky A">A Rzhetsky</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitou, N" uniqKey="Saitou N">N Saitou</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J Dudley</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guillen, F" uniqKey="Guillen F">F Guillen</name>
</author>
<author>
<name sortKey="Evans, Cs" uniqKey="Evans C">CS Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferreira, P" uniqKey="Ferreira P">P Ferreira</name>
</author>
<author>
<name sortKey="Ruiz Duenas, Fj" uniqKey="Ruiz Duenas F">FJ Ruiz-Duenas</name>
</author>
<author>
<name sortKey="Martinez, Mj" uniqKey="Martinez M">MJ Martinez</name>
</author>
<author>
<name sortKey="Van Berkel, Wj" uniqKey="Van Berkel W">WJ van Berkel</name>
</author>
<author>
<name sortKey="Martinez, At" uniqKey="Martinez A">AT Martinez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavener, Dr" uniqKey="Cavener D">DR Cavener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Jd" uniqKey="Thompson J">JD Thompson</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
<author>
<name sortKey="Gibson, Tj" uniqKey="Gibson T">TJ Gibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hallberg, Bm" uniqKey="Hallberg B">BM Hallberg</name>
</author>
<author>
<name sortKey="Henriksson, G" uniqKey="Henriksson G">G Henriksson</name>
</author>
<author>
<name sortKey="Pettersson, G" uniqKey="Pettersson G">G Pettersson</name>
</author>
<author>
<name sortKey="Vasella, A" uniqKey="Vasella A">A Vasella</name>
</author>
<author>
<name sortKey="Divne, C" uniqKey="Divne C">C Divne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lettera, V" uniqKey="Lettera V">V Lettera</name>
</author>
<author>
<name sortKey="Piscitelli, A" uniqKey="Piscitelli A">A Piscitelli</name>
</author>
<author>
<name sortKey="Leo, G" uniqKey="Leo G">G Leo</name>
</author>
<author>
<name sortKey="Birolo, L" uniqKey="Birolo L">L Birolo</name>
</author>
<author>
<name sortKey="Pezzella, C" uniqKey="Pezzella C">C Pezzella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilaru, S" uniqKey="Kilaru S">S Kilaru</name>
</author>
<author>
<name sortKey="Hoegger, Pj" uniqKey="Hoegger P">PJ Hoegger</name>
</author>
<author>
<name sortKey="Kues, U" uniqKey="Kues U">U Kües</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruhl, M" uniqKey="Ruhl M">M Rühl</name>
</author>
<author>
<name sortKey="Majcherczyk, A" uniqKey="Majcherczyk A">A Majcherczyk</name>
</author>
<author>
<name sortKey="Kues, U" uniqKey="Kues U">U Kues</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kues, U" uniqKey="Kues U">U Kües</name>
</author>
<author>
<name sortKey="Ruhl, M" uniqKey="Ruhl M">M Rühl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Madden, Tl" uniqKey="Madden T">TL Madden</name>
</author>
<author>
<name sortKey="Schaffer, Aa" uniqKey="Schaffer A">AA Schaffer</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D Peterson</name>
</author>
<author>
<name sortKey="Peterson, N" uniqKey="Peterson N">N Peterson</name>
</author>
<author>
<name sortKey="Stecher, G" uniqKey="Stecher G">G Stecher</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Genet</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Genet</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosgen</journal-id>
<journal-title-group>
<journal-title>PLoS Genetics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-7390</issn>
<issn pub-type="epub">1553-7404</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25474575</article-id>
<article-id pub-id-type="pmc">4256170</article-id>
<article-id pub-id-type="publisher-id">PGENETICS-D-14-01046</article-id>
<article-id pub-id-type="doi">10.1371/journal.pgen.1004759</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteomics</subject>
<subj-group>
<subject>Proteomic Databases</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Biotechnology</subject>
<subj-group>
<subject>Applied Microbiology</subject>
<subj-group>
<subject>Biodegradation</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Environmental Biotechnology</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Computational Biology</subject>
<subj-group>
<subject>Genome Analysis</subject>
<subj-group>
<subject>Transcriptome Analysis</subject>
<subj-group>
<subject>Genome Expression Analysis</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Genetics</subject>
<subj-group>
<subject>Gene Expression</subject>
<subj-group>
<subject>Gene Regulation</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Genomics</subject>
<subj-group>
<subject>Functional Genomics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Gene Identification and Analysis</subject>
<subject>Molecular Genetics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Microbiology</subject>
</subj-group>
<subj-group>
<subject>Molecular Biology</subject>
<subj-group>
<subject>Molecular Biology Techniques</subject>
<subj-group>
<subject>Sequencing Techniques</subject>
<subj-group>
<subject>Genome Sequencing</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Mycology</subject>
<subj-group>
<subject>Fungal Biochemistry</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Fungi</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Analysis of the
<italic>Phlebiopsis gigantea</italic>
Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood</article-title>
<alt-title alt-title-type="running-head">
<italic>Phlebiopsis gigantea</italic>
Colonization of Conifers</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hori</surname>
<given-names>Chiaki</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ishida</surname>
<given-names>Takuya</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Igarashi</surname>
<given-names>Kiyohiko</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Samejima</surname>
<given-names>Masahiro</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Suzuki</surname>
<given-names>Hitoshi</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Master</surname>
<given-names>Emma</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ferreira</surname>
<given-names>Patricia</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ruiz-Dueñas</surname>
<given-names>Francisco J.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Held</surname>
<given-names>Benjamin</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Canessa</surname>
<given-names>Paulo</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Larrondo</surname>
<given-names>Luis F.</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schmoll</surname>
<given-names>Monika</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Druzhinina</surname>
<given-names>Irina S.</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kubicek</surname>
<given-names>Christian P.</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gaskell</surname>
<given-names>Jill A.</given-names>
</name>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kersten</surname>
<given-names>Phil</given-names>
</name>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>St. John</surname>
<given-names>Franz</given-names>
</name>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Glasner</surname>
<given-names>Jeremy</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sabat</surname>
<given-names>Grzegorz</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Splinter BonDurant</surname>
<given-names>Sandra</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Syed</surname>
<given-names>Khajamohiddin</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yadav</surname>
<given-names>Jagjit</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mgbeahuruike</surname>
<given-names>Anthony C.</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kovalchuk</surname>
<given-names>Andriy</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Asiegbu</surname>
<given-names>Fred O.</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lackner</surname>
<given-names>Gerald</given-names>
</name>
<xref ref-type="aff" rid="aff13">
<sup>13</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hoffmeister</surname>
<given-names>Dirk</given-names>
</name>
<xref ref-type="aff" rid="aff13">
<sup>13</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rencoret</surname>
<given-names>Jorge</given-names>
</name>
<xref ref-type="aff" rid="aff14">
<sup>14</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gutiérrez</surname>
<given-names>Ana</given-names>
</name>
<xref ref-type="aff" rid="aff14">
<sup>14</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sun</surname>
<given-names>Hui</given-names>
</name>
<xref ref-type="aff" rid="aff15">
<sup>15</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lindquist</surname>
<given-names>Erika</given-names>
</name>
<xref ref-type="aff" rid="aff15">
<sup>15</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barry</surname>
<given-names>Kerrie</given-names>
</name>
<xref ref-type="aff" rid="aff15">
<sup>15</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Riley</surname>
<given-names>Robert</given-names>
</name>
<xref ref-type="aff" rid="aff15">
<sup>15</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grigoriev</surname>
<given-names>Igor V.</given-names>
</name>
<xref ref-type="aff" rid="aff15">
<sup>15</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Henrissat</surname>
<given-names>Bernard</given-names>
</name>
<xref ref-type="aff" rid="aff16">
<sup>16</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kües</surname>
<given-names>Ursula</given-names>
</name>
<xref ref-type="aff" rid="aff17">
<sup>17</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Berka</surname>
<given-names>Randy M.</given-names>
</name>
<xref ref-type="aff" rid="aff18">
<sup>18</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Martínez</surname>
<given-names>Angel T.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Covert</surname>
<given-names>Sarah F.</given-names>
</name>
<xref ref-type="aff" rid="aff19">
<sup>19</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Blanchette</surname>
<given-names>Robert A.</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cullen</surname>
<given-names>Daniel</given-names>
</name>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>Health and Environment Department, Austrian Institute of Technology GmbH, Tulin, Austria</addr-line>
</aff>
<aff id="aff8">
<label>8</label>
<addr-line>Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria</addr-line>
</aff>
<aff id="aff9">
<label>9</label>
<addr-line>USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America</addr-line>
</aff>
<aff id="aff10">
<label>10</label>
<addr-line>University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America</addr-line>
</aff>
<aff id="aff11">
<label>11</label>
<addr-line>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America</addr-line>
</aff>
<aff id="aff12">
<label>12</label>
<addr-line>Department of Forest Sciences, University of Helsinki, Helsinki, Finland</addr-line>
</aff>
<aff id="aff13">
<label>13</label>
<addr-line>Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany</addr-line>
</aff>
<aff id="aff14">
<label>14</label>
<addr-line>Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain</addr-line>
</aff>
<aff id="aff15">
<label>15</label>
<addr-line>US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America</addr-line>
</aff>
<aff id="aff16">
<label>16</label>
<addr-line>Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France</addr-line>
</aff>
<aff id="aff17">
<label>17</label>
<addr-line>Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany</addr-line>
</aff>
<aff id="aff18">
<label>18</label>
<addr-line>Novozymes, Inc., Davis, California, United States of America</addr-line>
</aff>
<aff id="aff19">
<label>19</label>
<addr-line>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Copenhaver</surname>
<given-names>Gregory P.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>The University of North Carolina at Chapel Hill, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>dcullen@wisc.edu</email>
</corresp>
<fn fn-type="conflict">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: ATM SFC RAB DC. Performed the experiments: CH JAG GS SSB EL JR AG SFC RAB DC. Analyzed the data: CH TI KI MSa HSuz EM PF FJRD BHel PC LFL MSc ISD CPK JAG PK FSJ JG KS JY ACM AK FOA GL DH HSun JR AG EL KB RR IVG BHen UK RMB ATM SFC RAB DC. Wrote the paper: CH KI MSa HSuz EM PF FJRD PC LFL MSc ISD CPK PK FSJ KS JY AK FOA GL DH RR IVG BHen UK RMB ATM SFC RAB DC.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>12</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>4</day>
<month>12</month>
<year>2014</year>
</pub-date>
<volume>10</volume>
<issue>12</issue>
<elocation-id>e1004759</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>4</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-year>2014</copyright-year>
<license xlink:href="https://creativecommons.org/publicdomain/zero/1.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.</license-p>
</license>
</permissions>
<abstract>
<p>Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by
<italic>Phlebiopsis gigantea</italic>
, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which
<italic>P. gigantea</italic>
tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated
<italic>P. gigantea</italic>
genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The
<italic>P. gigantea</italic>
genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in
<italic>P. gigantea</italic>
's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>The wood decay fungus
<italic>Phlebiopsis gigantea</italic>
degrades all components of plant cell walls and is uniquely able to rapidly colonize freshly exposed conifer sapwood. However, mechanisms underlying its conversion of lignocellulose and resinous extractives have not been explored. We report here analyses of the genetic repertoire, transcriptome and secretome of
<italic>P. gigantea</italic>
. Numerous highly expressed hydrolases, together with lytic polysaccharide monooxygenases were implicated in
<italic>P. gigantea</italic>
'
<italic>s</italic>
attack on cellulose, and an array of ligninolytic peroxidases and auxiliary enzymes were also identified. Comparisons of woody substrates with and without extractives revealed differentially expressed genes predicted to be involved in the transformation of resin. These expression patterns are likely key to the pioneer colonization of conifers by
<italic>P. gigantea</italic>
.</p>
</abstract>
<funding-group>
<funding-statement>The major portions of this work were performed under US Department of Agriculture Cooperative State, Research, Education, and Extension Service Grant 2007-35504-18257 (to DC and RAB). The US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231. This work was also supported by the HIPOP (BIO2011-26694) project of the Spanish Ministry of Economy and Competitiveness (MINECO) (to FJRD), the PEROXICATS (KBBE-2010-4-265397) and INDOX (KBBE-2013-.3.3-04-613549) European projects (to ATM), and the Chilean National Fund for Scientific and Technological Development Grant 1131030 (to LFL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="20"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>The most abundant source of terrestrial carbon is plant biomass, composed primarily of cellulose, hemicellulose, and lignin. Numerous microbes utilize cellulose and hemicellulose, but a much smaller group of filamentous fungi has the capacity to degrade lignin, the most recalcitrant component of plant cell walls. Uniquely, such ‘white-rot’ fungi efficiently depolymerize lignin to access cell wall carbohydrates for carbon and energy sources. As such, white-rot fungi play a key role in the carbon cycle.</p>
<p>White-rot basidiomycetes may differ in their substrate preference and morphological patterns of decay (for review see
<xref rid="pgen.1004759-Blanchette1" ref-type="bibr">[1]</xref>
,
<xref rid="pgen.1004759-Eriksson1" ref-type="bibr">[2]</xref>
). The majority of lignin-degrading fungi, including
<italic>Phanerochaete chrysosporium</italic>
and
<italic>Ceriporiopsis subvermispora</italic>
, are unable to colonize freshly cut wood unless inhibitory compounds (extractives) are removed or transformed
<xref rid="pgen.1004759-Eriksson1" ref-type="bibr">[2]</xref>
<xref rid="pgen.1004759-Shigo1" ref-type="bibr">[5]</xref>
. A few basidiomycetes, including
<italic>Phlebiopsis gigantea</italic>
, are pioneer colonizers of softwood because they tolerate and utilize resinous extractives (e.g., resin acids, triglycerides, long chain fatty acids, see
<xref ref-type="fig" rid="pgen-1004759-g001">Figure 1</xref>
) which cause pitch deposits in paper pulp manufacturing
<xref rid="pgen.1004759-Gutierrez1" ref-type="bibr">[6]</xref>
. It is this unusual capability that also led to the development of
<italic>P. gigantea</italic>
as a biocontrol agent against subsequent colonization of cut stumps by the root rot pathogen
<italic>Heterobasidium annosum</italic>
sensu lato (now considered several species)
<xref rid="pgen.1004759-Garbelotto1" ref-type="bibr">[7]</xref>
,
<xref rid="pgen.1004759-Rishbeth1" ref-type="bibr">[8]</xref>
and of harvested wood by blue stain fungi
<xref rid="pgen.1004759-Behrendt1" ref-type="bibr">[9]</xref>
,
<xref rid="pgen.1004759-Behrendt2" ref-type="bibr">[10]</xref>
. It seems likely that when applied to freshly cut wood,
<italic>P. gigantea</italic>
is able to rapidly metabolize accessible extractives and hemicellulose. As the hyphae continue to invade tracheids and ray parenchyma cells, the more recalcitrant cell wall polymers (cellulose, lignin;
<xref ref-type="fig" rid="pgen-1004759-g001">Figure 1</xref>
) are eroded. Little is known of how some white-rot fungi degrade conifer extractives
<xref rid="pgen.1004759-Fischer1" ref-type="bibr">[11]</xref>
,
<xref rid="pgen.1004759-MartinezInigo1" ref-type="bibr">[12]</xref>
or interact with other fungi such as
<italic>H. annosum</italic>
<xref rid="pgen.1004759-Adomas1" ref-type="bibr">[13]</xref>
.</p>
<fig id="pgen-1004759-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Schematic representations of lignocellulose components in cell walls of pine wood.</title>
<p>Panel A: The extractives (long chain fatty acids, triglycerides, resin acids and terpenes) are found primarily in the resin ducts, but damage to pine wood causes the release of these compounds across wounded areas. Panel B: In tracheid cell walls, the amorphous, phenylpropanoid polymer lignin (brown) form a matrix around the more structured carbohydrate polymers, hemicellulose (yellow and green) and cellulose (blue).</p>
</caption>
<graphic xlink:href="pgen.1004759.g001"></graphic>
</fig>
<p>White-rot fungi degrade major cell wall polymers through concerted action of hydrolytic and oxidative enzymes (reviewed in
<xref rid="pgen.1004759-Kersten1" ref-type="bibr">[14]</xref>
,
<xref rid="pgen.1004759-Baldrian1" ref-type="bibr">[15]</xref>
). Cellulose is attacked by a combination of exo-cellobiohydrolases and endoglucanases assigned to glycoside hydrolase families GH5, GH6, GH7 and possibly GH9, GH12, GH44 and GH45
<xref rid="pgen.1004759-Cantarel1" ref-type="bibr">[16]</xref>
,
<xref rid="pgen.1004759-Hori1" ref-type="bibr">[17]</xref>
. In addition to these hydrolases, recent evidence strongly supports the involvement of lytic polysaccharide monooxygenases (LPMOs) in cellulose degradation
<xref rid="pgen.1004759-Bey1" ref-type="bibr">[18]</xref>
<xref rid="pgen.1004759-Westereng1" ref-type="bibr">[20]</xref>
. Lignin degradation is catalyzed by an array of oxidative enzymes, especially lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP) belonging to class II of the plant-fungal-prokaryotic peroxidase superfamily. Recent genome investigations reveal that all efficient lignin degraders possess some combination of these class II ligninolytic peroxidases
<xref rid="pgen.1004759-Floudas1" ref-type="bibr">[21]</xref>
,
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
. In
<italic>P. gigantea</italic>
, four MnP sequences were previously identified
<xref rid="pgen.1004759-Morgenstern1" ref-type="bibr">[23]</xref>
.</p>
<p>In addition to peroxidases, laccases have been implicated in lignin degradation
<xref rid="pgen.1004759-Kawai1" ref-type="bibr">[24]</xref>
<xref rid="pgen.1004759-Eggert1" ref-type="bibr">[26]</xref>
. To date, multiple laccase isozymes and/or the corresponding genes have been characterized from most white-rot fungi except
<italic>P. chrysosporium</italic>
, an efficient lignocellulose degrader that lacks such enzymes
<xref rid="pgen.1004759-Martinez1" ref-type="bibr">[27]</xref>
<xref rid="pgen.1004759-Hoegger1" ref-type="bibr">[29]</xref>
. The mechanism(s) by which laccases might degrade lignin remain unclear as the enzyme lacks sufficient oxidation potential to cleave non-phenolic linkages within the polymer. Interestingly, laccase activity has not been reported in
<italic>P. gigantea</italic>
.</p>
<p>Additional ‘auxiliary activities’
<xref rid="pgen.1004759-Levasseur1" ref-type="bibr">[30]</xref>
commonly ascribed to ligninolytic systems include extracellular enzymes capable of generating H
<sub>2</sub>
O
<sub>2</sub>
. These enzymes may be physiologically coupled to peroxidases. Among them, aryl-alcohol oxidase (AAO), methanol oxidase (MOX), pyranose 2-oxidase (P2O), and copper radical oxidases (such as glyoxal oxidase, GLX) have been extensively studied. With the exception of P2O
<xref rid="pgen.1004759-Bastian1" ref-type="bibr">[31]</xref>
, none of these activities have been reported in
<italic>P. gigantea</italic>
cultures. In short, the repertoire of extracellular enzymes produced by
<italic>P. gigantea</italic>
is largely unknown, and its mechanism(s) for cell wall degradation remain unexplored.</p>
<p>Beyond extracellular systems, the complete degradation of lignin requires many intracellular enzymes for the complete mineralization of monomers to CO
<sub>2</sub>
and H
<sub>2</sub>
O. Examples of enzymes that have been characterized from
<italic>P. chrysosporium</italic>
include cytochromes P450 (CYPs)
<xref rid="pgen.1004759-Yadav1" ref-type="bibr">[32]</xref>
<xref rid="pgen.1004759-Syed2" ref-type="bibr">[34]</xref>
, glutathione transferases
<xref rid="pgen.1004759-Dowd1" ref-type="bibr">[35]</xref>
, and aryl alcohol dehydrogenase (AAD)
<xref rid="pgen.1004759-Reiser1" ref-type="bibr">[36]</xref>
. The role of such enzymes in
<italic>P. gigantea</italic>
, if any, is unknown.</p>
<p>Herein, we report analysis of the
<italic>P. gigantea</italic>
draft genome. Gene annotation, transcriptome analyses and secretome profiles identified numerous genes involved in lignocellulose degradation and in the metabolism of conifer extractives.</p>
</sec>
<sec id="s2">
<title>Results</title>
<sec id="s2a">
<title>Genome assembly and annotation</title>
<p>Following an assessment of wood decay properties (
<xref ref-type="fig" rid="pgen-1004759-g002">Figure 2</xref>
),
<italic>P. gigantea</italic>
single basidiospore strain 5–6 was selected for sequencing using Illumina reads assembled with AllPathsLG. Genome size was estimated to be approximately 30 Mbp (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
), somewhat lower than closely related members of the ‘
<italic>Phlebia</italic>
clade’
<xref rid="pgen.1004759-Morgenstern1" ref-type="bibr">[23]</xref>
,
<xref rid="pgen.1004759-Hibbett1" ref-type="bibr">[37]</xref>
such as
<italic>C. subvermispora</italic>
(39 Mbp) and
<italic>P. chrysosporium</italic>
(35 Mbp)
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
,
<xref rid="pgen.1004759-Martinez1" ref-type="bibr">[27]</xref>
. Aided by 17,915 mapped EST clusters, the JGI annotation pipeline predicted 11,891 genes. Proteins were assigned to 6412, 5615, 6932 and 2253 KOG categories, GO terms, pfam domains and EC numbers, respectively. Significant synteny with
<italic>P. chrysosporium</italic>
was observed (
<xref ref-type="supplementary-material" rid="pgen.1004759.s001">Figure S1</xref>
). Detailed information on the assembly and annotations is available via the JGI portal MycoCosm
<xref rid="pgen.1004759-Grigoriev1" ref-type="bibr">[38]</xref>
.</p>
<fig id="pgen-1004759-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Wood decay characteristics.</title>
<p>Comparative weight loss of parental strain 11061 and single basidiospore derivatives on colonized loblolly pine wood (
<italic>Pinus taeda</italic>
) wood wafers were determined after 4, 8 and 12 weeks incubation (bottom left panel) as described in Methods. Single basidiospore strain 5–6 also aggressively decayed birch and spruce (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
) and was selected for sequencing. Upper panels show scanning electron microscopy
<xref rid="pgen.1004759-Blanchette2" ref-type="bibr">[68]</xref>
of radial (left) and transverse (right) sections of pine wood tracheids that were substantially eroded or completely degraded by
<italic>P. gigantea</italic>
strain 5–6 by week twelve. Transverse section of sound wood (bottom photo) provides comparison. (Bar  = 40 µm).</p>
</caption>
<graphic xlink:href="pgen.1004759.g002"></graphic>
</fig>
</sec>
<sec id="s2b">
<title>Gene families</title>
<p>Principal component analysis (PCA), based on 73 and 12 families of carbohydrate active enzymes (CAZys,
<xref rid="pgen.1004759-Cantarel1" ref-type="bibr">[16]</xref>
) and auxiliary activities (AAs),
<xref rid="pgen.1004759-Levasseur1" ref-type="bibr">[30]</xref>
), respectively, clustered
<italic>P. gigantea</italic>
with other efficient lignin degraders (
<xref rid="pgen.1004759-Riley1" ref-type="bibr">[39]</xref>
,
<xref ref-type="fig" rid="pgen-1004759-g003">Figures 3A</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s002">S2</xref>
). Gene numbers were extracted from 21 fungal genomes and excluded genes encoding putative GMC oxidases such as methanol oxidase, alcohol oxidase and glucose oxidase (
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
). Highest contribution of PC1 (50% of variance separating white-rot and brown-rot fungi) and PC2 (13.0% of variance)) values were those genes associated with degradation of plant cell wall polysaccharides and lignin, respectively (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
). Hierarchical clustering analysis with this dataset also categorized
<italic>P. gigantea</italic>
into a clade of white-rot fungi that included the polypore
<italic>P. chrysosporium</italic>
. The precise number and distribution of
<italic>P. gigantea</italic>
genes likely involved in lignocellulose degradation were similar, but not identical, to other polypores such as
<italic>P. chrysosporium</italic>
and
<italic>C. subvermispora</italic>
(
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
). Like
<italic>P. chrysosporium</italic>
and
<italic>Phanerochaete flavido-alba</italic>
,
<italic>P. gigantea</italic>
had no laccase
<italic>sensu stricto</italic>
genes. Interestingly, while both
<italic>P. gigantea</italic>
and the white-rot Russulales
<italic>H. annosum</italic>
are adapted to colonization of conifers, significant numbers of laccase
<italic>sensu stricto</italic>
genes were only observed in
<italic>H. annosum</italic>
(
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
). This important conifer pathogen also lacked GLX, LiP and representatives of GH5 subfamiles 15 and 31.</p>
<fig id="pgen-1004759-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Comparative analysis of gene repertoires associated with degradation of plant cell wall polymers and extractives in 21 fungal genomes.</title>
<p>(A) Principal component analysis (PCA) of 21 fungi using 73 CAZy and 12 AA families (
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
). GMC oxidoreductases methanol oxidase, glucose oxidase and aryl alcohol oxidase were excluded because confident functional assignments could not be made and/or their inclusion did not contribute to separation of white- and brown-rot species. (B) PCA of 21 fungi using genes encoding 14 enzymes involved in lipid metabolism (KEGG reference pathway 00071,
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
). There is no significant segregation of white-rot and brown-rot fungi although
<italic>P. gigantea</italic>
was positioned in the third quadrant with
<italic>B. adusta</italic>
and
<italic>P. carnosa</italic>
. Symbols for white rot and brown rot fungi appear in blue and red, respectively.
<italic>Tremella mesenterica</italic>
is a mycoparasite. For raw data and contributions of the top 20 families see
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
,
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s002">Figures S2</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s003">S3</xref>
.</p>
</caption>
<graphic xlink:href="pgen.1004759.g003"></graphic>
</fig>
<fig id="pgen-1004759-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Number of genes identified in white rot fungi
<italic>P. gigantea</italic>
(Phlgi),
<italic>P. chrysosporium</italic>
(Phach)
<xref rid="pgen.1004759-Martinez1" ref-type="bibr">[27]</xref>
,
<italic>C. subvermispora</italic>
(Cersu)
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
, and
<italic>H. annosum</italic>
(Hetan)
<xref rid="pgen.1004759-Olson1" ref-type="bibr">[75]</xref>
, and the brown rot fungus
<italic>P. placenta</italic>
(Pospl)
<xref rid="pgen.1004759-Martinez2" ref-type="bibr">[45]</xref>
.</title>
<p>CROs were distinguished as previously described
<xref rid="pgen.1004759-VandenWymelenberg4" ref-type="bibr">[76]</xref>
. Lytic polysaccharide monooxygenases were formerly classified as GH61 within the CAZy system (
<ext-link ext-link-type="uri" xlink:href="http://www.cazy.org/">http://www.cazy.org/</ext-link>
;
<xref rid="pgen.1004759-Cantarel1" ref-type="bibr">[16]</xref>
). Glycoside hydrolase family GH5 was subdivided as described
<xref rid="pgen.1004759-Aspeborg1" ref-type="bibr">[77]</xref>
(
<xref ref-type="supplementary-material" rid="pgen.1004759.s022">Figure S22</xref>
).</p>
</caption>
<graphic xlink:href="pgen.1004759.g004"></graphic>
</fig>
<p>With regard to hemicellulose degradation, the genomes of conifer-adapted
<italic>P. gigantea</italic>
and
<italic>H. annosum</italic>
revealed increased numbers of genes involved in pectin degradation such as GH28 polygalacturonase, CE8 pectin methylesterase and CE12 rhamnogalacturonan acetylesterase (
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
). The major hemicellulose of conifer is galactoglucomannan (
<xref rid="pgen.1004759-Sjstrm1" ref-type="bibr">[40]</xref>
,
<xref ref-type="fig" rid="pgen-1004759-g001">Figure 1</xref>
) but, in the case of mannan degradation, no significant increase in genes encoding GH2 β-mannosidase, GH5_7 endo-mannanase and GH27 α-galactosidase was observed relative to other wood decay fungi (
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
). Similarly, no significant differences in the number of genes involved in arabinoglucuronoxylan hydrolysis were identified, except for two transcriptionally convergent GH11 genes present in
<italic>P. gigantea</italic>
(
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
). Encoding putative endo-1,4-β-xylanases, wood decay fungi typically harbor one or no GH11 genes.
<italic>Auricularia delicata</italic>
is another exception with three of these endoxylanases. Also unusual among white-rot fungi, none of the
<italic>P. gigantea</italic>
protein models were assigned to GH95 (
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
). This family includes 1,2-α-fucosidases that hydrolyze the α-Fuc-1,2-Gal linkages in plant xyloglucans.</p>
<p>The
<italic>P. gigantea</italic>
genome includes representatives for all the peroxidase families reported in basidiomycetes, including LiP, MnP, heme-thiolate peroxidases, and dye-decolorizing type peroxidases (DyP), with the only exception of VP (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s008">Figures S8</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s013">S13</xref>
). MnP gene expansion is similar to that found in the
<italic>C. subvermispora</italic>
and
<italic>H. annosum</italic>
genomes. Beyond class II peroxidases and multicopper oxidases (MCOs), genes encoding auxiliary enzymes involved in ligninolysis were also found such as GMC oxidoreductases (
<xref ref-type="supplementary-material" rid="pgen.1004759.s014">Figures S14</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s019">S19</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s040">Table S5</xref>
) and copper radical oxidases (CRO,
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s039">Table S4</xref>
). Among the latter group, GLX is coupled to
<italic>P. chrysosporium</italic>
LiPs via extracellular H
<sub>2</sub>
O
<sub>2</sub>
generation
<xref rid="pgen.1004759-Kersten2" ref-type="bibr">[41]</xref>
. Consistent with this physiological connection, the
<italic>P. gigantea</italic>
genome features both GLX- and LiP-encoding genes. GMC genes encoding putative AAO, MOX and glucose oxidase (GOX) may also be involved in H
<sub>2</sub>
O
<sub>2</sub>
production by oxidation of low molecular weight aliphatic and aromatic alcohols. The P2O gene (protein model Phlgi1_130349) lies immediately adjacent to a putative pyranosone dehydratase (Phlgi1_16096) gene. This arrangement is conserved in several wood decay fungi and, in addition to peroxide generation, suggests a route for conversion of glucose to the pyrone antibiotic, cortalcerone
<xref rid="pgen.1004759-deKoker1" ref-type="bibr">[42]</xref>
,
<xref rid="pgen.1004759-Giffhorn1" ref-type="bibr">[43]</xref>
. Genes encoding AAD, members of the zinc-type alcohol dehydrogenase superfamily
<xref rid="pgen.1004759-Sun1" ref-type="bibr">[44]</xref>
, are also abundant in
<italic>P. gigantea</italic>
. Relatively few genes were predicted to encode CYPs which are generally considered important in the intracellular metabolism of lignin derivatives and related aromatic compounds (
<xref ref-type="supplementary-material" rid="pgen.1004759.s019">Figure S19</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
).</p>
<p>The repertoire of
<italic>P. gigantea</italic>
genes contrasts sharply with that of brown-rot polypores, such as
<italic>Postia placenta</italic>
<xref rid="pgen.1004759-Martinez2" ref-type="bibr">[45]</xref>
, which lack ligninolytic class II peroxidases, cellobiohydrolases (GH6, GH7), and endoglucanases fused to cellulose binding modules
<xref rid="pgen.1004759-Floudas1" ref-type="bibr">[21]</xref>
,
<xref rid="pgen.1004759-Eastwood1" ref-type="bibr">[46]</xref>
(
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
). Unlike
<italic>P. gigantea</italic>
and other white-rot fungi, brown-rot fungi often lack genes encoding cellobiose dehydrogenase (CDH) and have relatively few lytic polysaccharide monooxygenase genes (LPMOs). Formerly classified as GH61 ‘hydrolases’, the LPMOs are now known to be copper-dependent monooxygenases
<xref rid="pgen.1004759-Bey1" ref-type="bibr">[18]</xref>
<xref rid="pgen.1004759-Westereng1" ref-type="bibr">[20]</xref>
capable of enhancing cellulose attack by CDH and cellobiohydrolase (CBH)
<xref rid="pgen.1004759-Langston1" ref-type="bibr">[47]</xref>
,
<xref rid="pgen.1004759-Phillips1" ref-type="bibr">[48]</xref>
. With the exception of
<italic>Gloeophyllum trabeum</italic>
, genes encoding GH74 enzymes have not been found in brown-rot fungi. Two such xyloglucanase genes were identified in
<italic>P. gigantea</italic>
(
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
).</p>
<p>In contrast to analysis of genes involved in lignocellulose degradation (
<xref ref-type="fig" rid="pgen-1004759-g003">Figure 3A</xref>
), white-rot and brown-rot fungi were not clearly separated by principal component analysis of 14 enzymes involved in lipid metabolism (
<xref ref-type="fig" rid="pgen-1004759-g003">Figures 3B</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s003">S3</xref>
). However,
<italic>P. gigantea</italic>
was grouped near
<italic>B. adusta</italic>
and
<italic>P. carnosa.</italic>
These associations seem in line with the preferential colonization of softwood substrates by
<italic>P. carnosa</italic>
<xref rid="pgen.1004759-Macdonald1" ref-type="bibr">[49]</xref>
and with the efficient degradation of conifer extractives by
<italic>B. adusta</italic>
culture supernatants
<xref rid="pgen.1004759-Dorado1" ref-type="bibr">[50]</xref>
.The highest contribution to PC1 (26.0% variance) and PC2 (6.8% variance) were aldehyde dehydrogenase and long chain fatty acid CoA ligase, respectively (
<xref ref-type="fig" rid="pgen-1004759-g003">Figures 3A</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s003">S3</xref>
,
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
). Also potentially involved in intracellular lipid metabolism, CYP52 and CYP505 clans of cytochrome P450s are associated with degradation of fatty acids and alkanes. Relative to other white-rot fungi,
<italic>P. gigantea</italic>
had a slightly greater number of CYP52-encoding genes whereas CYP505 gene numbers were similar (
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s031">Figures S31</xref>
,
<xref ref-type="supplementary-material" rid="pgen.1004759.s032">S32</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s048">Tables S13</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s050">S15</xref>
).</p>
<p>
<italic>P. gigantea</italic>
also diverges from other Agaricomycetes with respect to genes encoding proteins that are more distantly connected to lignocellulose degradation, including hydrophobins (
<xref ref-type="supplementary-material" rid="pgen.1004759.s033">Figures S33</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s034">S34</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s052">Tables S17</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s054">S19</xref>
), transporters (
<xref ref-type="supplementary-material" rid="pgen.1004759.s055">Table S20</xref>
) and non laccase MCOs (
<xref ref-type="supplementary-material" rid="pgen.1004759.s020">Figure S20</xref>
). Detailed analyses are provided for CAZys (
<xref ref-type="supplementary-material" rid="pgen.1004759.s042">Tables S7</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s045">S10</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s022">Figures S22</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s030">S30</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s058">Dataset S1</xref>
), peroxidases (
<xref ref-type="supplementary-material" rid="pgen.1004759.s008">Figures S8</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s013">S13</xref>
), auxiliary proteins, cytochrome P450s (
<xref ref-type="supplementary-material" rid="pgen.1004759.s031">Figures S31</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s032">S32</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s048">Table S13</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s050">S15</xref>
), potential regulatory genes (
<xref ref-type="supplementary-material" rid="pgen.1004759.s004">Figures S4</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s007">S7</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s038">Tables S3</xref>
,
<xref ref-type="supplementary-material" rid="pgen.1004759.s039">S11</xref>
<xref ref-type="supplementary-material" rid="pgen.1004759.s040">S12</xref>
) and genes involved in secondary metabolite synthesis (
<xref ref-type="supplementary-material" rid="pgen.1004759.s051">Table S16</xref>
).</p>
</sec>
<sec id="s2c">
<title>Differential gene expression of
<italic>P. gigantea</italic>
in response to substrate</title>
<p>Transcript levels were determined in cultures in which the sole carbon source was glucose (Glc), freshly harvested loblolly pine wood (
<italic>Pinus taeda</italic>
; LP) extracted with acetone (ELP), or freshly harvested but not extracted loblolly pine wood (NELP) (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
). GC-MS analysis
<xref rid="pgen.1004759-Gutierrez2" ref-type="bibr">[51]</xref>
identified the major extract components as resin acids (46%), triglycerides (13%) and fatty acids (11%) (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s035">Figure S35</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s056">Table S21</xref>
).</p>
<p>Excluding genes with relatively low transcript levels (RPKM values <10) in LP-containing media, transcripts of 187 genes were increased>2-fold (p<0.05) in NELP or ELP relative to Glc. Of those Glc-derived transcripts with RPKM values>10, 146 genes had higher transcripts in Glc relative to NELP or ELP (
<xref ref-type="fig" rid="pgen-1004759-g005">Figure 5</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
).</p>
<fig id="pgen-1004759-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g005</object-id>
<label>Figure 5</label>
<caption>
<title>
<italic>P. gigantea</italic>
transcriptome.</title>
<p>Scatterplots show the distribution of RNA-seq RPKM values (log
<sub>2</sub>
) for 11,376
<italic>P. gigantea</italic>
genes when grown on basal salts containing A, acetone-extracted loblolly pine wood (ELP) or B, non-extracted loblolly pine wood (NELP) relative to glucose (Glc). Plot lines define 2-fold borders and best fit regression. Darkened points represent 164 (A) and 145 (B) transcripts accumulating>4-fold at p<0.01. Venn diagram (C) illustrates genes with RPKM signals>10 and upregulated>4-fold in NELP or ELP relative to Glc.</p>
</caption>
<graphic xlink:href="pgen.1004759.g005"></graphic>
</fig>
<p>Mass spectrometry (nanoLC-MS/MS) identified extracellular peptides corresponding to a total of 319 gene products in NELP and ELP cultures (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). Most proteins were observed in both NELP and ELP culture filtrates, which contained 294 and 268 proteins, respectively. Approximate protein abundance, expressed as the exponentially modified protein abundance index (emPAI)
<xref rid="pgen.1004759-Ishihama1" ref-type="bibr">[52]</xref>
, varied substantially within samples. As expected, gene products with predicted secretion signals and high transcript levels were often detected. Other detected proteins (e.g. MOX model Phlgi1_120749;
<xref rid="pgen.1004759-Daniel1" ref-type="bibr">[53]</xref>
) may be loosely associated with cell walls and/or secreted via ‘non-classical’ mechanisms (
<xref rid="pgen.1004759-Bendtsen1" ref-type="bibr">[54]</xref>
;
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/SecretomeP">www.cbs.dtu.dk/services/SecretomeP</ext-link>
). Still other peptides correspond to true intracellular proteins released by cell lysis, e.g. ribosomal proteins (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
).</p>
<p>Glycoside hydrolase gene expression was heavily influenced by media composition with transcripts corresponding to 76 genes increasing>2-fold in NELP- or ELP-containing media relative to glucose medium (
<xref ref-type="fig" rid="pgen-1004759-g006">Figure 6</xref>
). Some of these genes were highly expressed with RPKM values well over 100. For example, transcript and peptide levels matching GH7 cellobiohydrolase (CBH1; model Phlgi1_34136) were among the ten most highly expressed genes (
<xref ref-type="table" rid="pgen-1004759-t001">Table 1</xref>
). Indicative of a complete cellulolytic system, this CBH1 was accompanied by upregulated transcripts and extracellular proteins corresponding to another CBH1 (Phlgi1_13298), a GH6 family member CBH2 (Phlgi1_17701) and GH5_5 β-1,4 endoglucanases (EGs; Phlgi1_86144, Phlgi1_84111), all of which feature a family 1 carbohydrate binding module (CBM1). Also highly expressed were putative β-glucosidases (Phlgi1_127564, Phlgi1_18210) and a GH12 (Phlgi1_34479). Other glycoside hydrolases likely involved in degradation of cell wall hemicelluloses include GH5_7 endomannanases (Phlgi1_97727, Phlgi1_110296), a GH74 xyloglucanase (Phlgi1_98770), a GH27 α-galactosidase (Phlgi1_72848) and a GH10 endoxylanase (Phlgi1_85016).</p>
<fig id="pgen-1004759-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Number and expression of genes likely involved in lignocellulose degradation.</title>
<p>The number of genes encoding mass spectrometry-identified proteins was limited to those matching≥2 unique peptides after 5–9 days growth in media containing NELP or ELP. RPKM values>100 for RNA derived from these cultures were arbitrarily selected as the threshold for high transcript levels. Genes designated as ‘regulated’ showed significant accumulation (p<0.05;>2-fold) in NELP or ELP relative to glucose containing media. Methods and complete data are presented in
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
.</p>
</caption>
<graphic xlink:href="pgen.1004759.g006"></graphic>
</fig>
<table-wrap id="pgen-1004759-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.t001</object-id>
<label>Table 1</label>
<caption>
<title>Differentially regulated genes in media containing non-extracted loblolly pine wood (NELP), solvent extracted loblolly pine wood (ELP), or glucose (Glc) as sole carbon source.</title>
</caption>
<alternatives>
<graphic id="pgen-1004759-t001-1" xlink:href="pgen.1004759.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="6" align="left" rowspan="1">emPAI value of filtrates from pine cultures</td>
<td colspan="3" align="left" rowspan="1">RNA-seq 5 Day</td>
<td colspan="6" align="left" rowspan="1">Transcript ratios (R) & probabilities (P)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="3" align="left" rowspan="1">NELP</td>
<td colspan="3" align="left" rowspan="1">ELP</td>
<td colspan="3" align="left" rowspan="1">RPKM value</td>
<td colspan="2" align="left" rowspan="1">NELP/Glc</td>
<td colspan="2" align="left" rowspan="1">NELP/ELP</td>
<td colspan="2" align="left" rowspan="1">ELP/Glc</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PRO id</td>
<td align="left" rowspan="1" colspan="1">Putative function</td>
<td align="left" rowspan="1" colspan="1">5 Day</td>
<td align="left" rowspan="1" colspan="1">7 Day</td>
<td align="left" rowspan="1" colspan="1">9 Day</td>
<td align="left" rowspan="1" colspan="1">5 Day</td>
<td align="left" rowspan="1" colspan="1">7 Day</td>
<td align="left" rowspan="1" colspan="1">9 Day</td>
<td align="left" rowspan="1" colspan="1">NELP</td>
<td align="left" rowspan="1" colspan="1">ELP</td>
<td align="left" rowspan="1" colspan="1">Glc</td>
<td align="left" rowspan="1" colspan="1">Prob</td>
<td align="left" rowspan="1" colspan="1">R</td>
<td align="left" rowspan="1" colspan="1">Prob</td>
<td align="left" rowspan="1" colspan="1">R</td>
<td align="left" rowspan="1" colspan="1">Prob</td>
<td align="left" rowspan="1" colspan="1">R</td>
</tr>
</thead>
<tbody>
<tr>
<td colspan="17" align="left" rowspan="1">Fifteen highly expressed (>100 RPKM) genes exhibiting significant transcript accumulation (p<0.01;>4-fold) in NELP medium relative to Glc medium:</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">79150</td>
<td align="left" rowspan="1" colspan="1">GH61 LPMO</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">114</td>
<td align="left" rowspan="1" colspan="1">51</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">58.6</td>
<td align="left" rowspan="1" colspan="1">0.286</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
<td align="left" rowspan="1" colspan="1">0.021</td>
<td align="left" rowspan="1" colspan="1">26.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">74623</td>
<td align="left" rowspan="1" colspan="1">Carotenoid ester lipase</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.39</td>
<td align="left" rowspan="1" colspan="1">0.18</td>
<td align="left" rowspan="1" colspan="1">0.36</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">313</td>
<td align="left" rowspan="1" colspan="1">159</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">40.5</td>
<td align="left" rowspan="1" colspan="1">0.046</td>
<td align="left" rowspan="1" colspan="1">2.0</td>
<td align="left" rowspan="1" colspan="1">0.013</td>
<td align="left" rowspan="1" colspan="1">20.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">128120</td>
<td align="left" rowspan="1" colspan="1">GH15 Glucoamylase</td>
<td align="left" rowspan="1" colspan="1">3.06</td>
<td align="left" rowspan="1" colspan="1">1.45</td>
<td align="left" rowspan="1" colspan="1">0.53</td>
<td align="left" rowspan="1" colspan="1">2.35</td>
<td align="left" rowspan="1" colspan="1">4.76</td>
<td align="left" rowspan="1" colspan="1">4.75</td>
<td align="left" rowspan="1" colspan="1">170</td>
<td align="left" rowspan="1" colspan="1">47</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">32.2</td>
<td align="left" rowspan="1" colspan="1">0.010</td>
<td align="left" rowspan="1" colspan="1">3.6</td>
<td align="left" rowspan="1" colspan="1">0.023</td>
<td align="left" rowspan="1" colspan="1">8.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20514</td>
<td align="left" rowspan="1" colspan="1">Cytochrome P450
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">368</td>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">27.2</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">12.3</td>
<td align="left" rowspan="1" colspan="1">0.037</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">88425</td>
<td align="left" rowspan="1" colspan="1">GH55 β- 1,3 glucanase</td>
<td align="left" rowspan="1" colspan="1">0.76</td>
<td align="left" rowspan="1" colspan="1">1.48</td>
<td align="left" rowspan="1" colspan="1">0.68</td>
<td align="left" rowspan="1" colspan="1">0.55</td>
<td align="left" rowspan="1" colspan="1">0.81</td>
<td align="left" rowspan="1" colspan="1">0.74</td>
<td align="left" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">49</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">26.3</td>
<td align="left" rowspan="1" colspan="1">0.120</td>
<td align="left" rowspan="1" colspan="1">3.0</td>
<td align="left" rowspan="1" colspan="1">0.057</td>
<td align="left" rowspan="1" colspan="1">8.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">109878</td>
<td align="left" rowspan="1" colspan="1">SDH</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">510</td>
<td align="left" rowspan="1" colspan="1">1000</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">26.0</td>
<td align="left" rowspan="1" colspan="1">0.474</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" rowspan="1" colspan="1">0.025</td>
<td align="left" rowspan="1" colspan="1">51.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">88507</td>
<td align="left" rowspan="1" colspan="1">GH18 Chitinase
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">409</td>
<td align="left" rowspan="1" colspan="1">88</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">21.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">4.7</td>
<td align="left" rowspan="1" colspan="1">0.046</td>
<td align="left" rowspan="1" colspan="1">4.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">123837</td>
<td align="left" rowspan="1" colspan="1">Zn finger domain
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">8223</td>
<td align="left" rowspan="1" colspan="1">1745</td>
<td align="left" rowspan="1" colspan="1">436</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">18.9</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">4.7</td>
<td align="left" rowspan="1" colspan="1">0.057</td>
<td align="left" rowspan="1" colspan="1">4.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36218</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1">2.48</td>
<td align="left" rowspan="1" colspan="1">0.57</td>
<td align="left" rowspan="1" colspan="1">0.19</td>
<td align="left" rowspan="1" colspan="1">0.85</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">3992</td>
<td align="left" rowspan="1" colspan="1">2334</td>
<td align="left" rowspan="1" colspan="1">227</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">17.6</td>
<td align="left" rowspan="1" colspan="1">0.209</td>
<td align="left" rowspan="1" colspan="1">1.7</td>
<td align="left" rowspan="1" colspan="1">0.014</td>
<td align="left" rowspan="1" colspan="1">10.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">123273</td>
<td align="left" rowspan="1" colspan="1">Epoxide hydrolase</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">139</td>
<td align="left" rowspan="1" colspan="1">112</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">13.8</td>
<td align="left" rowspan="1" colspan="1">0.767</td>
<td align="left" rowspan="1" colspan="1">1.2</td>
<td align="left" rowspan="1" colspan="1">0.044</td>
<td align="left" rowspan="1" colspan="1">11.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">125213</td>
<td align="left" rowspan="1" colspan="1">GH61 (LPMO)
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1291</td>
<td align="left" rowspan="1" colspan="1">306</td>
<td align="left" rowspan="1" colspan="1">109</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">11.8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">4.2</td>
<td align="left" rowspan="1" colspan="1">0.058</td>
<td align="left" rowspan="1" colspan="1">2.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30343</td>
<td align="left" rowspan="1" colspan="1">AAD-like OR
<xref ref-type="table-fn" rid="nt102">1</xref>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">308</td>
<td align="left" rowspan="1" colspan="1">168</td>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">9.2</td>
<td align="left" rowspan="1" colspan="1">0.364</td>
<td align="left" rowspan="1" colspan="1">1.8</td>
<td align="left" rowspan="1" colspan="1">0.083</td>
<td align="left" rowspan="1" colspan="1">5.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36293</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">371</td>
<td align="left" rowspan="1" colspan="1">352</td>
<td align="left" rowspan="1" colspan="1">46</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">8.1</td>
<td align="left" rowspan="1" colspan="1">0.885</td>
<td align="left" rowspan="1" colspan="1">1.1</td>
<td align="left" rowspan="1" colspan="1">0.012</td>
<td align="left" rowspan="1" colspan="1">7.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">105051</td>
<td align="left" rowspan="1" colspan="1">Peptidase M</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">176</td>
<td align="left" rowspan="1" colspan="1">51</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">7.3</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">3.4</td>
<td align="left" rowspan="1" colspan="1">0.065</td>
<td align="left" rowspan="1" colspan="1">2.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">107268</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">110</td>
<td align="left" rowspan="1" colspan="1">69</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">7.3</td>
<td align="left" rowspan="1" colspan="1">0.035</td>
<td align="left" rowspan="1" colspan="1">1.6</td>
<td align="left" rowspan="1" colspan="1">0.013</td>
<td align="left" rowspan="1" colspan="1">4.6</td>
</tr>
<tr>
<td colspan="17" align="left" rowspan="1">Thirty highly expressed genes (RPKM>100) exhibiting significant transcript accumulation (p<0.01;>4-fold) in NELP and ELP medium relative to Glc medium:</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34136</td>
<td align="left" rowspan="1" colspan="1">GH7 Cellobiohydrolase</td>
<td align="left" rowspan="1" colspan="1">16.85</td>
<td align="left" rowspan="1" colspan="1">5.77</td>
<td align="left" rowspan="1" colspan="1">2.91</td>
<td align="left" rowspan="1" colspan="1">35.76</td>
<td align="left" rowspan="1" colspan="1">0.82</td>
<td align="left" rowspan="1" colspan="1">2.91</td>
<td align="left" rowspan="1" colspan="1">3927</td>
<td align="left" rowspan="1" colspan="1">2931</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">97.7</td>
<td align="left" rowspan="1" colspan="1">0.218</td>
<td align="left" rowspan="1" colspan="1">1.3</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">72.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">98430</td>
<td align="left" rowspan="1" colspan="1">Hexose transporter</td>
<td align="left" rowspan="1" colspan="1">0.08</td>
<td align="left" rowspan="1" colspan="1">0.06</td>
<td align="left" rowspan="1" colspan="1">0.06</td>
<td align="left" rowspan="1" colspan="1">0.37</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">2213</td>
<td align="left" rowspan="1" colspan="1">1794</td>
<td align="left" rowspan="1" colspan="1">63</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">35.4</td>
<td align="left" rowspan="1" colspan="1">0.323</td>
<td align="left" rowspan="1" colspan="1">1.2</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">28.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19028</td>
<td align="left" rowspan="1" colspan="1">Lipase
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td align="left" rowspan="1" colspan="1">6.86</td>
<td align="left" rowspan="1" colspan="1">1.20</td>
<td align="left" rowspan="1" colspan="1">0.76</td>
<td align="left" rowspan="1" colspan="1">1.79</td>
<td align="left" rowspan="1" colspan="1">1.92</td>
<td align="left" rowspan="1" colspan="1">1.34</td>
<td align="left" rowspan="1" colspan="1">1903</td>
<td align="left" rowspan="1" colspan="1">274</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">87.7</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">7.0</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">12.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">110296</td>
<td align="left" rowspan="1" colspan="1">GH5-7 Mannanase</td>
<td align="left" rowspan="1" colspan="1">5.29</td>
<td align="left" rowspan="1" colspan="1">24.92</td>
<td align="left" rowspan="1" colspan="1">19.23</td>
<td align="left" rowspan="1" colspan="1">2.12</td>
<td align="left" rowspan="1" colspan="1">0.68</td>
<td align="left" rowspan="1" colspan="1">0.87</td>
<td align="left" rowspan="1" colspan="1">1448</td>
<td align="left" rowspan="1" colspan="1">1243</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">97.0</td>
<td align="left" rowspan="1" colspan="1">0.597</td>
<td align="left" rowspan="1" colspan="1">1.2</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">83.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">101670</td>
<td align="left" rowspan="1" colspan="1">Peptidase M35</td>
<td align="left" rowspan="1" colspan="1">1.39</td>
<td align="left" rowspan="1" colspan="1">0.54</td>
<td align="left" rowspan="1" colspan="1">0.28</td>
<td align="left" rowspan="1" colspan="1">0.80</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">1232</td>
<td align="left" rowspan="1" colspan="1">583</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">56.8</td>
<td align="left" rowspan="1" colspan="1">0.146</td>
<td align="left" rowspan="1" colspan="1">2.1</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">26.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">69030</td>
<td align="left" rowspan="1" colspan="1">Aquaporin</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1080</td>
<td align="left" rowspan="1" colspan="1">518</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">58.7</td>
<td align="left" rowspan="1" colspan="1">0.011</td>
<td align="left" rowspan="1" colspan="1">2.1</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">28.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17701</td>
<td align="left" rowspan="1" colspan="1">GH6 Cellobiohydrolase</td>
<td align="left" rowspan="1" colspan="1">3.68</td>
<td align="left" rowspan="1" colspan="1">2.17</td>
<td align="left" rowspan="1" colspan="1">1.06</td>
<td align="left" rowspan="1" colspan="1">2.92</td>
<td align="left" rowspan="1" colspan="1">0.21</td>
<td align="left" rowspan="1" colspan="1">0.19</td>
<td align="left" rowspan="1" colspan="1">699</td>
<td align="left" rowspan="1" colspan="1">436</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">79.9</td>
<td align="left" rowspan="1" colspan="1">0.244</td>
<td align="left" rowspan="1" colspan="1">1.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">49.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">99876</td>
<td align="left" rowspan="1" colspan="1">CDH</td>
<td align="left" rowspan="1" colspan="1">5.31</td>
<td align="left" rowspan="1" colspan="1">1.37</td>
<td align="left" rowspan="1" colspan="1">0.63</td>
<td align="left" rowspan="1" colspan="1">5.63</td>
<td align="left" rowspan="1" colspan="1">0.12</td>
<td align="left" rowspan="1" colspan="1">0.23</td>
<td align="left" rowspan="1" colspan="1">602</td>
<td align="left" rowspan="1" colspan="1">327</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">50.4</td>
<td align="left" rowspan="1" colspan="1">0.065</td>
<td align="left" rowspan="1" colspan="1">1.8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">27.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">97727</td>
<td align="left" rowspan="1" colspan="1">GH5-7 Mannanase</td>
<td align="left" rowspan="1" colspan="1">1.16</td>
<td align="left" rowspan="1" colspan="1">0.60</td>
<td align="left" rowspan="1" colspan="1">0.24</td>
<td align="left" rowspan="1" colspan="1">0.89</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">538</td>
<td align="left" rowspan="1" colspan="1">721</td>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">34.5</td>
<td align="left" rowspan="1" colspan="1">0.130</td>
<td align="left" rowspan="1" colspan="1">0.7</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">46.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13298</td>
<td align="left" rowspan="1" colspan="1">GH7 Cellobiohydrolase</td>
<td align="left" rowspan="1" colspan="1">1.00</td>
<td align="left" rowspan="1" colspan="1">1.05</td>
<td align="left" rowspan="1" colspan="1">0.59</td>
<td align="left" rowspan="1" colspan="1">0.64</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.17</td>
<td align="left" rowspan="1" colspan="1">418</td>
<td align="left" rowspan="1" colspan="1">296</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">45.3</td>
<td align="left" rowspan="1" colspan="1">0.215</td>
<td align="left" rowspan="1" colspan="1">1.4</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">32.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">98770</td>
<td align="left" rowspan="1" colspan="1">GH74 Xyloglucanase</td>
<td align="left" rowspan="1" colspan="1">3.53</td>
<td align="left" rowspan="1" colspan="1">1.82</td>
<td align="left" rowspan="1" colspan="1">0.76</td>
<td align="left" rowspan="1" colspan="1">4.36</td>
<td align="left" rowspan="1" colspan="1">0.23</td>
<td align="left" rowspan="1" colspan="1">0.69</td>
<td align="left" rowspan="1" colspan="1">373</td>
<td align="left" rowspan="1" colspan="1">446</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">43.4</td>
<td align="left" rowspan="1" colspan="1">0.307</td>
<td align="left" rowspan="1" colspan="1">0.8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">51.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">227588</td>
<td align="left" rowspan="1" colspan="1">GH61 (LPMO)
<xref ref-type="table-fn" rid="nt103">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">0.61</td>
<td align="left" rowspan="1" colspan="1">0.44</td>
<td align="left" rowspan="1" colspan="1">0.09</td>
<td align="left" rowspan="1" colspan="1">0.19</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">367</td>
<td align="left" rowspan="1" colspan="1">592</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">34.5</td>
<td align="left" rowspan="1" colspan="1">0.276</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">55.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18264</td>
<td align="left" rowspan="1" colspan="1">GH61 (LPMO)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">344</td>
<td align="left" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">92.2</td>
<td align="left" rowspan="1" colspan="1">0.209</td>
<td align="left" rowspan="1" colspan="1">2.3</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">40.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">127564</td>
<td align="left" rowspan="1" colspan="1">GH3 β-glucosidase</td>
<td align="left" rowspan="1" colspan="1">5.02</td>
<td align="left" rowspan="1" colspan="1">5.89</td>
<td align="left" rowspan="1" colspan="1">4.87</td>
<td align="left" rowspan="1" colspan="1">4.84</td>
<td align="left" rowspan="1" colspan="1">0.48</td>
<td align="left" rowspan="1" colspan="1">0.33</td>
<td align="left" rowspan="1" colspan="1">279</td>
<td align="left" rowspan="1" colspan="1">191</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">35.6</td>
<td align="left" rowspan="1" colspan="1">0.134</td>
<td align="left" rowspan="1" colspan="1">1.5</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">24.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">72848</td>
<td align="left" rowspan="1" colspan="1">GH27 α-galactosidase</td>
<td align="left" rowspan="1" colspan="1">0.70</td>
<td align="left" rowspan="1" colspan="1">1.25</td>
<td align="left" rowspan="1" colspan="1">0.53</td>
<td align="left" rowspan="1" colspan="1">0.74</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">244</td>
<td align="left" rowspan="1" colspan="1">232</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">8.8</td>
<td align="left" rowspan="1" colspan="1">0.850</td>
<td align="left" rowspan="1" colspan="1">1.0</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">8.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">86144</td>
<td align="left" rowspan="1" colspan="1">GH5-5 Endoglucanase</td>
<td align="left" rowspan="1" colspan="1">5.89</td>
<td align="left" rowspan="1" colspan="1">1.29</td>
<td align="left" rowspan="1" colspan="1">0.61</td>
<td align="left" rowspan="1" colspan="1">2.69</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">238</td>
<td align="left" rowspan="1" colspan="1">223</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">62.2</td>
<td align="left" rowspan="1" colspan="1">0.901</td>
<td align="left" rowspan="1" colspan="1">1.1</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">58.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23523</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">216</td>
<td align="left" rowspan="1" colspan="1">285</td>
<td align="left" rowspan="1" colspan="1">50</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">4.3</td>
<td align="left" rowspan="1" colspan="1">0.169</td>
<td align="left" rowspan="1" colspan="1">0.8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">5.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34479</td>
<td align="left" rowspan="1" colspan="1">GH12 Endoglucanase</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">197</td>
<td align="left" rowspan="1" colspan="1">114</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">87.0</td>
<td align="left" rowspan="1" colspan="1">0.210</td>
<td align="left" rowspan="1" colspan="1">1.7</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">50.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">85016</td>
<td align="left" rowspan="1" colspan="1">GH10 Endoxylanase</td>
<td align="left" rowspan="1" colspan="1">34.64</td>
<td align="left" rowspan="1" colspan="1">19.63</td>
<td align="left" rowspan="1" colspan="1">4.82</td>
<td align="left" rowspan="1" colspan="1">18.22</td>
<td align="left" rowspan="1" colspan="1">0.75</td>
<td align="left" rowspan="1" colspan="1">2.62</td>
<td align="left" rowspan="1" colspan="1">175</td>
<td align="left" rowspan="1" colspan="1">173</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">68.0</td>
<td align="left" rowspan="1" colspan="1">0.977</td>
<td align="left" rowspan="1" colspan="1">1.0</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">67.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33910</td>
<td align="left" rowspan="1" colspan="1">Transporter</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">166</td>
<td align="left" rowspan="1" colspan="1">284</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">16.9</td>
<td align="left" rowspan="1" colspan="1">0.057</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">28.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18210</td>
<td align="left" rowspan="1" colspan="1">GH1 β-glucosidase</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">164</td>
<td align="left" rowspan="1" colspan="1">207</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">17.2</td>
<td align="left" rowspan="1" colspan="1">0.342</td>
<td align="left" rowspan="1" colspan="1">0.8</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">21.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">77281</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">158</td>
<td align="left" rowspan="1" colspan="1">339</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">34.1</td>
<td align="left" rowspan="1" colspan="1">0.043</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">73.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">44970</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">157</td>
<td align="left" rowspan="1" colspan="1">141</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">10.6</td>
<td align="left" rowspan="1" colspan="1">0.709</td>
<td align="left" rowspan="1" colspan="1">1.1</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">9.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">84111</td>
<td align="left" rowspan="1" colspan="1">GH5-5 Endoglucanase</td>
<td align="left" rowspan="1" colspan="1">25.88</td>
<td align="left" rowspan="1" colspan="1">12.32</td>
<td align="left" rowspan="1" colspan="1">3.50</td>
<td align="left" rowspan="1" colspan="1">27.46</td>
<td align="left" rowspan="1" colspan="1">1.40</td>
<td align="left" rowspan="1" colspan="1">1.96</td>
<td align="left" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">146</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">15.8</td>
<td align="left" rowspan="1" colspan="1">0.971</td>
<td align="left" rowspan="1" colspan="1">1.0</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">15.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27734</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">142</td>
<td align="left" rowspan="1" colspan="1">200</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">13.7</td>
<td align="left" rowspan="1" colspan="1">0.045</td>
<td align="left" rowspan="1" colspan="1">0.7</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">19.3</td>
</tr>
<tr>
<td colspan="17" align="left" rowspan="1">Nine highly expressed genes (>100 RPKM) exhibiting significant transcript accumulation (p<0.01;>4-fold) in ELP medium relative to Glc medium:</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">424549</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">65</td>
<td align="left" rowspan="1" colspan="1">115</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.014</td>
<td align="left" rowspan="1" colspan="1">24.7</td>
<td align="left" rowspan="1" colspan="1">0.060</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">44.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37108</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">78</td>
<td align="left" rowspan="1" colspan="1">135</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">0.015</td>
<td align="left" rowspan="1" colspan="1">16.6</td>
<td align="left" rowspan="1" colspan="1">0.258</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">28.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">124522</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">88</td>
<td align="left" rowspan="1" colspan="1">164</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">0.014</td>
<td align="left" rowspan="1" colspan="1">7.2</td>
<td align="left" rowspan="1" colspan="1">0.113</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">13.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">85295</td>
<td align="left" rowspan="1" colspan="1">Heroxidase DyP</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="left" rowspan="1" colspan="1">145</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">0.050</td>
<td align="left" rowspan="1" colspan="1">3.4</td>
<td align="left" rowspan="1" colspan="1">0.015</td>
<td align="left" rowspan="1" colspan="1">0.3</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">12.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">100874</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">295</td>
<td align="left" rowspan="1" colspan="1">415</td>
<td align="left" rowspan="1" colspan="1">63</td>
<td align="left" rowspan="1" colspan="1">0.018</td>
<td align="left" rowspan="1" colspan="1">4.7</td>
<td align="left" rowspan="1" colspan="1">0.072</td>
<td align="left" rowspan="1" colspan="1">0.7</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">6.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">125316</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">140</td>
<td align="left" rowspan="1" colspan="1">201</td>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">0.009</td>
<td align="left" rowspan="1" colspan="1">3.9</td>
<td align="left" rowspan="1" colspan="1">0.060</td>
<td align="left" rowspan="1" colspan="1">0.7</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">5.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">128752</td>
<td align="left" rowspan="1" colspan="1">Histidine kinase</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">135</td>
<td align="left" rowspan="1" colspan="1">225</td>
<td align="left" rowspan="1" colspan="1">44</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">3.1</td>
<td align="left" rowspan="1" colspan="1">0.060</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">5.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">63338</td>
<td align="left" rowspan="1" colspan="1">PIPkin III</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">71</td>
<td align="left" rowspan="1" colspan="1">137</td>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">0.036</td>
<td align="left" rowspan="1" colspan="1">2.4</td>
<td align="left" rowspan="1" colspan="1">0.016</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">4.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22173</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">68</td>
<td align="left" rowspan="1" colspan="1">111</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">0.024</td>
<td align="left" rowspan="1" colspan="1">2.5</td>
<td align="left" rowspan="1" colspan="1">0.021</td>
<td align="left" rowspan="1" colspan="1">0.6</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
<td align="left" rowspan="1" colspan="1">4.0</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label></label>
<p>Abbreviations: SDH, short chain dehydrogenase; LPMO, lytic polysaccharide monooxygenase; AAD, aryl alcohol dehydrogenase; CDH, cellobiose dehydrogenase; OR, oxidoreductase; DyP, dye decolorizing peroxidase; PIPkin-III, phosphatidylinositol-3-phosphate 5-kinase.</p>
</fn>
<fn id="nt102">
<label>1</label>
<p>Oxidoreductase is 53% identical to
<italic>S. pombe</italic>
AAD (Q9P7U2).</p>
</fn>
<fn id="nt103">
<label>2</label>
<p>GH61 LPMO model Phlgi1_227588 is 3′-truncated.</p>
</fn>
<fn id="nt104">
<label></label>
<p>*Protein models cross listed with
<xref ref-type="table" rid="pgen-1004759-t002">Tables 2</xref>
and
<xref ref-type="table" rid="pgen-1004759-t003">3</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Expression of oxidative enzymes implicated in lignocellulose degradation was also influenced by growth on LP-media (NELP or ELP) relative to Glc-containing media. Transcripts corresponding to five LPMO-encoding genes showed significant regulation (P<0.01) in LP-medium, and three LPMO proteins were detected (Phlgi1_227588, Phlgi1_227560, Phlgi1_37310). An AAD-like oxidoreductase (Phlgi1_30343), possibly involved in the transformation of lignin metabolites, was also upregulated. However, we did not observe high expression of class II peroxidases under the conditions tested (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). On the other hand, a DyP (Phlgi1_85295) was significantly upregulated in certain LP-containing media (
<xref ref-type="table" rid="pgen-1004759-t001">Table 1</xref>
). The importance of these peroxidases is further supported by the high protein levels of another DyP, Phlgi1_122124. Specifically, the latter protein showed emPAI values>17 after 5 days growth on LP media and, relative to Glc medium, its transcript ratios were>5-fold higher (p<0.04) (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). High DyP gene expression has been observed in white-rot fungi
<italic>Trametes versicolor</italic>
and
<italic>Dichomitus squalens</italic>
<xref rid="pgen.1004759-Floudas1" ref-type="bibr">[21]</xref>
, but no genes for these proteins are present in
<italic>P. chrysosporium</italic>
and
<italic>C. subvermispora</italic>
(
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4</xref>
). The
<italic>P. gigantea</italic>
DyP (Phlgi1_122124) was also abundant in media containing microcrystalline cellulose (Avicel) as the sole carbon source (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
).</p>
<p>To identify enzymes involved in tolerance to and/or degradation of extractives, comparisons were made of gene expression in ground loblolly pine wood that had been extensively extracted with acetone (ELP) versus non-extracted loblolly pine wood (NELP) (
<xref ref-type="fig" rid="pgen-1004759-g007">Figure 7A</xref>
). In general, this treatment had little impact on gene expression. For example, glycoside hydrolase transcript and protein patterns showed only minor differences (
<xref ref-type="fig" rid="pgen-1004759-g008">Figure 8</xref>
). Nevertheless, transcripts corresponding to 22 genes showed significantly increased levels (>4-fold; p<0.01) in NELP relative to ELP (
<xref ref-type="fig" rid="pgen-1004759-g007">Figure 7B</xref>
;
<xref ref-type="table" rid="pgen-1004759-t002">Table 2</xref>
). Of particular interest were genes potentially involved in metabolism of resin acids (e.g. CYPs;
<xref rid="pgen.1004759-vanBeek1" ref-type="bibr">[55]</xref>
), in altering the accessibility of cell wall components (e.g., an endoxylanase), and in regulating gene expression (e.g. proteins containing putative Zn finger domains or HMG-Box transcription factors). Integration of transcript profiles of genes involved in intracellular lipid and oxalate metabolism, together with TCA and glyoxylate cycles, strongly supports a central role for β-oxidation in triglyceride and terpenoid transformation by
<italic>P. gigantea</italic>
(
<xref ref-type="fig" rid="pgen-1004759-g009">Figure 9</xref>
).</p>
<fig id="pgen-1004759-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g007</object-id>
<label>Figure 7</label>
<caption>
<title>
<italic>P. gigantea</italic>
transcriptome.</title>
<p>Scatterplot (A) shows the distribution of RNA-seq RPKM values (log
<sub>2</sub>
) for 11,376
<italic>P. gigantea</italic>
genes when grown on basal salts containing acetone-extracted loblolly pine wood (ELP) or non-extracted loblolly pine wood (NELP). Lines define 2-fold borders and best fit regression. Darkened points represent 44 transcripts accumulating>4-fold at p<0.01. Venn diagram (B) illustrates genes with RPKM signals>10 and upregulated>4-fold in NELP relative to ELP. Twenty-two genes showed significant transcript accumulation in NELP relative to ELP suggesting potential response to resin and pitch content. Under these stringent thresholds (p<0.01;>4-fold), only one gene, a MCO model Phlgi1_129839, showed significant transcript accumulation in ELP relative to NELP. Additional detail appears in
<xref ref-type="table" rid="pgen-1004759-t001">Tables 1</xref>
-
<xref ref-type="table" rid="pgen-1004759-t003">3</xref>
. Detailed methods and complete data are presented in
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
.</p>
</caption>
<graphic xlink:href="pgen.1004759.g007"></graphic>
</fig>
<fig id="pgen-1004759-g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g008</object-id>
<label>Figure 8</label>
<caption>
<title>Glycoside hydrolase encoding genes show similar patterns of expression in media containing freshly ground and non-extracted loblolly pine wood (NELP) relative to the same substrate but extracted with acetone (ELP) to remove pitch and resins.</title>
<p>Proteins (upper panel) and transcripts (lower panel) were identified by LC-MS/MS and RNA-seq, respectively. Protein identification was limited to those with>2 unique peptides after five days incubation. Transcript upregulation was limited to significant accumulation (p<0.05;>2-fold) on NELP or ELP relative to glucose-containing medium. Secretome and transcriptome experimental details and complete data are presented in
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
.</p>
</caption>
<graphic xlink:href="pgen.1004759.g008"></graphic>
</fig>
<fig id="pgen-1004759-g009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.g009</object-id>
<label>Figure 9</label>
<caption>
<title>Glyoxalate shunt and proposed relationship to lipid oxidation when
<italic>P. gigantea</italic>
is cultivated on wood-containing media (ELP or NELP) relative to Glc medium.</title>
<p>Enzymes encoded by upregulated genes are black highlighted and associated with thickened arrows. Abbreviations: ABC-G1, ABC transporter associated with monoterpene tolerance; ADH/AO, Acyl-CoA dehydrogenase/oxidase; AH, Aconitate hydratase; CoA ligase, long fatty acid-CoA ligase; DLAT, Dihydrolipoyllysine-residue acetyltransferase; DLST, Dihydrolipoyllysine-residue succinyltransferase; EH, Enoyl-CoA hydratase; FDH, Formate dehydrogenase; FH, Fumarate hydratase; KT, Ketothiolase (acetyl-CoA C-acyltransferase); HAD, 3-Hydroxyacyl-CoA dehydrogenase; ICL, Isocitrate lyase; IDH, Isocitrate dehydrogenase; MDH, Malate dehydrogenase; MS, Malate synthase; ODH, Oxoglutarate dehydrogenase; OXA, Oxaloacetase; OXDC, Oxalate decarboxylase; OXO, Oxalate oxidase; PC, Pyruvate carboxylase; PDH, Pyruvate dehydrogenase; PEP, Phosphoenolpyruvate; PEPCK, Phosphoenolpyruvate carboxykinase; PEPK, Phosphoenolpyruvate kinase; SDH, succinate dehydrogenase. See
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
for detailed gene expression data.</p>
</caption>
<graphic xlink:href="pgen.1004759.g009"></graphic>
</fig>
<table-wrap id="pgen-1004759-t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.t002</object-id>
<label>Table 2</label>
<caption>
<title>Transcripts accumulating>4-fold in non-extracted loblolly pine wood (NELP) relative to extracted loblolly pine wood (ELP).
<xref ref-type="table-fn" rid="nt105">1</xref>
</title>
</caption>
<alternatives>
<graphic id="pgen-1004759-t002-2" xlink:href="pgen.1004759.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">RPKM</td>
<td align="left" rowspan="1" colspan="1">Ratio</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PRO ID
<xref ref-type="table-fn" rid="nt107">3</xref>
</td>
<td align="left" rowspan="1" colspan="1">Putative function</td>
<td align="left" rowspan="1" colspan="1">Comments</td>
<td align="left" rowspan="1" colspan="1">NELP</td>
<td align="left" rowspan="1" colspan="1">ELP</td>
<td align="left" rowspan="1" colspan="1">NELP/ELP</td>
<td align="left" rowspan="1" colspan="1">Probability</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">385265</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">174.01</td>
<td align="left" rowspan="1" colspan="1">10.84</td>
<td align="left" rowspan="1" colspan="1">16.058</td>
<td align="left" rowspan="1" colspan="1">0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20514*</td>
<td align="left" rowspan="1" colspan="1">Hytochrome P450</td>
<td align="left" rowspan="1" colspan="1">CYP512B</td>
<td align="left" rowspan="1" colspan="1">368.06</td>
<td align="left" rowspan="1" colspan="1">29.90</td>
<td align="left" rowspan="1" colspan="1">12.310</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">118355</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1">72 aa; IVS</td>
<td align="left" rowspan="1" colspan="1">132.48</td>
<td align="left" rowspan="1" colspan="1">10.98</td>
<td align="left" rowspan="1" colspan="1">12.068</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21241</td>
<td align="left" rowspan="1" colspan="1">GH11 endo-β-1,4-xylanase</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">133.85</td>
<td align="left" rowspan="1" colspan="1">12.68</td>
<td align="left" rowspan="1" colspan="1">10.559</td>
<td align="left" rowspan="1" colspan="1">0.006</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">118300</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1">84 aa</td>
<td align="left" rowspan="1" colspan="1">210.69</td>
<td align="left" rowspan="1" colspan="1">28.40</td>
<td align="left" rowspan="1" colspan="1">7.419</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">119094</td>
<td align="left" rowspan="1" colspan="1">Cytochrome P450</td>
<td align="left" rowspan="1" colspan="1">CYP5148A</td>
<td align="left" rowspan="1" colspan="1">180.08</td>
<td align="left" rowspan="1" colspan="1">31.01</td>
<td align="left" rowspan="1" colspan="1">5.808</td>
<td align="left" rowspan="1" colspan="1">0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">128107</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">53.61</td>
<td align="left" rowspan="1" colspan="1">10.25</td>
<td align="left" rowspan="1" colspan="1">5.229</td>
<td align="left" rowspan="1" colspan="1">0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35298</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">204.88</td>
<td align="left" rowspan="1" colspan="1">40.46</td>
<td align="left" rowspan="1" colspan="1">5.064</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">75047</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">178.94</td>
<td align="left" rowspan="1" colspan="1">35.38</td>
<td align="left" rowspan="1" colspan="1">5.057</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">116265</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">61.31</td>
<td align="left" rowspan="1" colspan="1">12.38</td>
<td align="left" rowspan="1" colspan="1">4.954</td>
<td align="left" rowspan="1" colspan="1">0.002</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">99997</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">162.61</td>
<td align="left" rowspan="1" colspan="1">33.31</td>
<td align="left" rowspan="1" colspan="1">4.882</td>
<td align="left" rowspan="1" colspan="1">0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19184</td>
<td align="left" rowspan="1" colspan="1">Cytochrome P450</td>
<td align="left" rowspan="1" colspan="1">CYP5136A</td>
<td align="left" rowspan="1" colspan="1">99.22</td>
<td align="left" rowspan="1" colspan="1">20.33</td>
<td align="left" rowspan="1" colspan="1">4.880</td>
<td align="left" rowspan="1" colspan="1">0.002</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19877</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">57.37</td>
<td align="left" rowspan="1" colspan="1">11.83</td>
<td align="left" rowspan="1" colspan="1">4.849</td>
<td align="left" rowspan="1" colspan="1">0.007</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">123837*</td>
<td align="left" rowspan="1" colspan="1">Zn finger domain protein</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">8222.76</td>
<td align="left" rowspan="1" colspan="1">1745.42</td>
<td align="left" rowspan="1" colspan="1">4.711</td>
<td align="left" rowspan="1" colspan="1">0.002</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">340250</td>
<td align="left" rowspan="1" colspan="1">HMG-Box transcription factor</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">295.72</td>
<td align="left" rowspan="1" colspan="1">63.02</td>
<td align="left" rowspan="1" colspan="1">4.693</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">88507*</td>
<td align="left" rowspan="1" colspan="1">GH18 Chitinase</td>
<td align="left" rowspan="1" colspan="1">CBM5</td>
<td align="left" rowspan="1" colspan="1">409.32</td>
<td align="left" rowspan="1" colspan="1">87.55</td>
<td align="left" rowspan="1" colspan="1">4.675</td>
<td align="left" rowspan="1" colspan="1">0.002</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">122504</td>
<td align="left" rowspan="1" colspan="1">Hypothetical</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">245.20</td>
<td align="left" rowspan="1" colspan="1">55.28</td>
<td align="left" rowspan="1" colspan="1">4.436</td>
<td align="left" rowspan="1" colspan="1">0.006</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">125213*</td>
<td align="left" rowspan="1" colspan="1">GH61 LPMO
<xref ref-type="table-fn" rid="nt106">2</xref>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1290.80</td>
<td align="left" rowspan="1" colspan="1">305.62</td>
<td align="left" rowspan="1" colspan="1">4.223</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36458</td>
<td align="left" rowspan="1" colspan="1">HMG-Box transcription factor</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">256.76</td>
<td align="left" rowspan="1" colspan="1">61.38</td>
<td align="left" rowspan="1" colspan="1">4.183</td>
<td align="left" rowspan="1" colspan="1">0.001</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt105">
<label>1</label>
<p>Listing limited to genes with RPKM values>10 and high confidence differential expression (p<0.01). Complete listings for 11,892 genes provided in
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
. Abbreviations: aa, amino acids; CYP, cytochrome P450; IVS, long intervening sequence in gene model; CBM, carbohydrate binding module;</p>
</fn>
<fn id="nt106">
<label>2</label>
<p>Truncated gene model predicts incomplete protein (117aa).</p>
</fn>
<fn id="nt107">
<label>3</label>
<p>Nineteen of 22 accumulating in NELP relative to ELP as illustrated in
<xref ref-type="fig" rid="pgen-1004759-g004">Figure 4B</xref>
. Three additional upregulated genes were associated with LC-MS/MS-detected proteins and listed in
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
. Proteins with asterisks are also listed in
<xref ref-type="table" rid="pgen-1004759-t002">Table 2</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Relaxing the transcript fold-change threshold (>2-fold; p<0.01) and focusing on mass spectrometry-identified proteins revealed 14 additional genes potentially involved in metabolism and/or tolerance to loblolly pine wood extractives (
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
).Among these extract-induced genes, lipases Phlgi1_19028 and Phlgi1_36659 likely hydrolyze the significant levels of triglycerides. The substrate specificity of aldehyde dehydrogenases such as Phlgi1_115040 is difficult to assess based on sequence, although several have been implicated in the degradation of pine wood resins by bacteria
<xref rid="pgen.1004759-Adams1" ref-type="bibr">[56]</xref>
. Secretome patterns in media containing microcrystalline cellulose (Avicel) as sole carbon source generally supported the importance of the same proteins in the metabolism of pine wood extractives (
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
,
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). Specifically, lipases Phlgi1_19028 and Phlgi1_36659 and aldehyde dehydrogenase Phlg1_115040 were more abundant in loblolly pine wood and in Avicel media relative to the same media without extractives. The role of peroxiredoxin (Phlgi1_95619) and glutathione S-transferase (Phlgi1_113065) are less clear, but transformations involving H
<sub>2</sub>
O
<sub>2</sub>
reduction and glutathione conjugation are possible. A single MCO (Phlgi1_129839) and its corresponding transcripts, were observed to be upregulated in ELP relative to NELP. Although lacking the L2 signature common to laccases
<xref rid="pgen.1004759-Kumar1" ref-type="bibr">[57]</xref>
, the MCO4 protein may have iron oxidase activity provided that an imperfectly aligned Glu residue serves in catalysis (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s020">Figures S20</xref>
and
<xref ref-type="supplementary-material" rid="pgen.1004759.s021">S21</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s041">Table S6</xref>
).</p>
<table-wrap id="pgen-1004759-t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pgen.1004759.t003</object-id>
<label>Table 3</label>
<caption>
<title>Genes encoding LC-MS/MS detected proteins and exhibiting>2-fold regulation in comparisons of NELP and ELP cultures.
<xref ref-type="table-fn" rid="nt108">1</xref>
</title>
</caption>
<alternatives>
<graphic id="pgen-1004759-t003-3" xlink:href="pgen.1004759.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="6" align="left" rowspan="1">Pine emPAI values</td>
<td colspan="3" align="left" rowspan="1">RNA-seq 5 days</td>
<td colspan="6" align="left" rowspan="1">Transcript ratio (R) & Probabilities (Prob)</td>
<td colspan="2" align="left" rowspan="1">emPAI values</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="3" align="left" rowspan="1">Days in NELP</td>
<td colspan="3" align="left" rowspan="1">Days in ELP</td>
<td colspan="3" align="left" rowspan="1">RPKM</td>
<td colspan="2" align="left" rowspan="1">NELP/Glc</td>
<td colspan="2" align="left" rowspan="1">NELP/ELP</td>
<td colspan="2" align="left" rowspan="1">ELP/Glc</td>
<td colspan="2" align="left" rowspan="1">5 day Avicel</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PRO id</td>
<td align="left" rowspan="1" colspan="1">Putative function</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">NELP</td>
<td align="left" rowspan="1" colspan="1">ELP</td>
<td align="left" rowspan="1" colspan="1">Glc</td>
<td align="left" rowspan="1" colspan="1">Prob</td>
<td align="left" rowspan="1" colspan="1">R</td>
<td align="left" rowspan="1" colspan="1">Prob</td>
<td align="left" rowspan="1" colspan="1">R</td>
<td align="left" rowspan="1" colspan="1">Prob</td>
<td align="left" rowspan="1" colspan="1">R</td>
<td align="left" rowspan="1" colspan="1">+ extr</td>
<td align="left" rowspan="1" colspan="1">- extr</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">19028</td>
<td align="left" rowspan="1" colspan="1">Lipase</td>
<td align="left" rowspan="1" colspan="1">6.86</td>
<td align="left" rowspan="1" colspan="1">1.20</td>
<td align="left" rowspan="1" colspan="1">0.76</td>
<td align="left" rowspan="1" colspan="1">1.79</td>
<td align="left" rowspan="1" colspan="1">1.92</td>
<td align="left" rowspan="1" colspan="1">1.34</td>
<td align="left" rowspan="1" colspan="1">1903</td>
<td align="left" rowspan="1" colspan="1">274</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">0.001</td>
<td align="left" rowspan="1" colspan="1">87.7</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">7.0</td>
<td align="left" rowspan="1" colspan="1">0.007</td>
<td align="left" rowspan="1" colspan="1">12.6</td>
<td align="left" rowspan="1" colspan="1">2.24</td>
<td align="left" rowspan="1" colspan="1">0.80</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">126044</td>
<td align="left" rowspan="1" colspan="1">Cyclophilin</td>
<td align="left" rowspan="1" colspan="1">6.77</td>
<td align="left" rowspan="1" colspan="1">0.70</td>
<td align="left" rowspan="1" colspan="1">0.34</td>
<td align="left" rowspan="1" colspan="1">3.63</td>
<td align="left" rowspan="1" colspan="1">0.58</td>
<td align="left" rowspan="1" colspan="1">0.54</td>
<td align="left" rowspan="1" colspan="1">272</td>
<td align="left" rowspan="1" colspan="1">56</td>
<td align="left" rowspan="1" colspan="1">195</td>
<td align="left" rowspan="1" colspan="1">0.637</td>
<td align="left" rowspan="1" colspan="1">1.4</td>
<td align="left" rowspan="1" colspan="1">0.007</td>
<td align="left" rowspan="1" colspan="1">4.9</td>
<td align="left" rowspan="1" colspan="1">0.124</td>
<td align="left" rowspan="1" colspan="1">0.3</td>
<td align="left" rowspan="1" colspan="1">5.89</td>
<td align="left" rowspan="1" colspan="1">8.78</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22176</td>
<td align="left" rowspan="1" colspan="1">Malate dehydrogenase</td>
<td align="left" rowspan="1" colspan="1">0.44</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.07</td>
<td align="left" rowspan="1" colspan="1">0.14</td>
<td align="left" rowspan="1" colspan="1">1.34</td>
<td align="left" rowspan="1" colspan="1">0.27</td>
<td align="left" rowspan="1" colspan="1">64</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">51</td>
<td align="left" rowspan="1" colspan="1">0.705</td>
<td align="left" rowspan="1" colspan="1">1.3</td>
<td align="left" rowspan="1" colspan="1">0.003</td>
<td align="left" rowspan="1" colspan="1">4.2</td>
<td align="left" rowspan="1" colspan="1">0.092</td>
<td align="left" rowspan="1" colspan="1">0.3</td>
<td align="left" rowspan="1" colspan="1">3.70</td>
<td align="left" rowspan="1" colspan="1">7.12</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26602</td>
<td align="left" rowspan="1" colspan="1">GH17 β-(1-6) endohydrolase</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.09</td>
<td align="left" rowspan="1" colspan="1">0.09</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">478</td>
<td align="left" rowspan="1" colspan="1">124</td>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">0.119</td>
<td align="left" rowspan="1" colspan="1">15.9</td>
<td align="left" rowspan="1" colspan="1">0.003</td>
<td align="left" rowspan="1" colspan="1">3.8</td>
<td align="left" rowspan="1" colspan="1">0.331</td>
<td align="left" rowspan="1" colspan="1">4.1</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">95619</td>
<td align="left" rowspan="1" colspan="1">Peroxiredoxin</td>
<td align="left" rowspan="1" colspan="1">0.26</td>
<td align="left" rowspan="1" colspan="1">0.19</td>
<td align="left" rowspan="1" colspan="1">0.23</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">98</td>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">108</td>
<td align="left" rowspan="1" colspan="1">0.773</td>
<td align="left" rowspan="1" colspan="1">0.9</td>
<td align="left" rowspan="1" colspan="1">0.001</td>
<td align="left" rowspan="1" colspan="1">3.8</td>
<td align="left" rowspan="1" colspan="1">0.023</td>
<td align="left" rowspan="1" colspan="1">0.2</td>
<td align="left" rowspan="1" colspan="1">1.35</td>
<td align="left" rowspan="1" colspan="1">1.35</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">113065</td>
<td align="left" rowspan="1" colspan="1">Glutathione S-transferase</td>
<td align="left" rowspan="1" colspan="1">0.97</td>
<td align="left" rowspan="1" colspan="1">0.69</td>
<td align="left" rowspan="1" colspan="1">0.05</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">52</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">45</td>
<td align="left" rowspan="1" colspan="1">0.569</td>
<td align="left" rowspan="1" colspan="1">1.2</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">3.6</td>
<td align="left" rowspan="1" colspan="1">0.023</td>
<td align="left" rowspan="1" colspan="1">0.3</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36659</td>
<td align="left" rowspan="1" colspan="1">Lipase</td>
<td align="left" rowspan="1" colspan="1">0.93</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.12</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">285</td>
<td align="left" rowspan="1" colspan="1">86</td>
<td align="left" rowspan="1" colspan="1">178</td>
<td align="left" rowspan="1" colspan="1">0.473</td>
<td align="left" rowspan="1" colspan="1">1.6</td>
<td align="left" rowspan="1" colspan="1">0.005</td>
<td align="left" rowspan="1" colspan="1">3.3</td>
<td align="left" rowspan="1" colspan="1">0.292</td>
<td align="left" rowspan="1" colspan="1">0.5</td>
<td align="left" rowspan="1" colspan="1">0.66</td>
<td align="left" rowspan="1" colspan="1">0.22</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33454</td>
<td align="left" rowspan="1" colspan="1">GH13-CBM20 α-amylase</td>
<td align="left" rowspan="1" colspan="1">1.23</td>
<td align="left" rowspan="1" colspan="1">1.44</td>
<td align="left" rowspan="1" colspan="1">0.67</td>
<td align="left" rowspan="1" colspan="1">0.78</td>
<td align="left" rowspan="1" colspan="1">1.34</td>
<td align="left" rowspan="1" colspan="1">2.16</td>
<td align="left" rowspan="1" colspan="1">501</td>
<td align="left" rowspan="1" colspan="1">186</td>
<td align="left" rowspan="1" colspan="1">168</td>
<td align="left" rowspan="1" colspan="1">0.405</td>
<td align="left" rowspan="1" colspan="1">3.0</td>
<td align="left" rowspan="1" colspan="1">0.005</td>
<td align="left" rowspan="1" colspan="1">2.7</td>
<td align="left" rowspan="1" colspan="1">0.941</td>
<td align="left" rowspan="1" colspan="1">1.1</td>
<td align="left" rowspan="1" colspan="1">0.68</td>
<td align="left" rowspan="1" colspan="1">0.77</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">115040</td>
<td align="left" rowspan="1" colspan="1">Aldehyde dehydrogenase</td>
<td align="left" rowspan="1" colspan="1">0.60</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.02</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">101</td>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">0.012</td>
<td align="left" rowspan="1" colspan="1">7.4</td>
<td align="left" rowspan="1" colspan="1">0.001</td>
<td align="left" rowspan="1" colspan="1">2.7</td>
<td align="left" rowspan="1" colspan="1">0.057</td>
<td align="left" rowspan="1" colspan="1">2.8</td>
<td align="left" rowspan="1" colspan="1">1.89</td>
<td align="left" rowspan="1" colspan="1">0.51</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">64365</td>
<td align="left" rowspan="1" colspan="1">Ribonuclease T2</td>
<td align="left" rowspan="1" colspan="1">0.64</td>
<td align="left" rowspan="1" colspan="1">0.25</td>
<td align="left" rowspan="1" colspan="1">0.15</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">1.06</td>
<td align="left" rowspan="1" colspan="1">0.98</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">0.015</td>
<td align="left" rowspan="1" colspan="1">4.5</td>
<td align="left" rowspan="1" colspan="1">0.009</td>
<td align="left" rowspan="1" colspan="1">2.5</td>
<td align="left" rowspan="1" colspan="1">0.107</td>
<td align="left" rowspan="1" colspan="1">1.8</td>
<td align="left" rowspan="1" colspan="1">0.69</td>
<td align="left" rowspan="1" colspan="1">2.31</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">70525</td>
<td align="left" rowspan="1" colspan="1">ATP synthase</td>
<td align="left" rowspan="1" colspan="1">0.54</td>
<td align="left" rowspan="1" colspan="1">0.12</td>
<td align="left" rowspan="1" colspan="1">0.04</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">0.246</td>
<td align="left" rowspan="1" colspan="1">0.8</td>
<td align="left" rowspan="1" colspan="1">0.004</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
<td align="left" rowspan="1" colspan="1">0.020</td>
<td align="left" rowspan="1" colspan="1">0.3</td>
<td align="left" rowspan="1" colspan="1">0.91</td>
<td align="left" rowspan="1" colspan="1">1.37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36220</td>
<td align="left" rowspan="1" colspan="1">Glycoprotein</td>
<td align="left" rowspan="1" colspan="1">0.17</td>
<td align="left" rowspan="1" colspan="1">0.17</td>
<td align="left" rowspan="1" colspan="1">0.04</td>
<td align="left" rowspan="1" colspan="1">0.12</td>
<td align="left" rowspan="1" colspan="1">0.38</td>
<td align="left" rowspan="1" colspan="1">0.23</td>
<td align="left" rowspan="1" colspan="1">106</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">365</td>
<td align="left" rowspan="1" colspan="1">0.204</td>
<td align="left" rowspan="1" colspan="1">0.3</td>
<td align="left" rowspan="1" colspan="1">0.009</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
<td align="left" rowspan="1" colspan="1">0.071</td>
<td align="left" rowspan="1" colspan="1">0.1</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19596</td>
<td align="left" rowspan="1" colspan="1">Uncharacterized protein</td>
<td align="left" rowspan="1" colspan="1">0.97</td>
<td align="left" rowspan="1" colspan="1">0.69</td>
<td align="left" rowspan="1" colspan="1">0.40</td>
<td align="left" rowspan="1" colspan="1">0.45</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">1937</td>
<td align="left" rowspan="1" colspan="1">900</td>
<td align="left" rowspan="1" colspan="1">2056</td>
<td align="left" rowspan="1" colspan="1">0.807</td>
<td align="left" rowspan="1" colspan="1">0.9</td>
<td align="left" rowspan="1" colspan="1">0.002</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
<td align="left" rowspan="1" colspan="1">0.035</td>
<td align="left" rowspan="1" colspan="1">0.4</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">129839</td>
<td align="left" rowspan="1" colspan="1">Multicopper oxidase (MCO4)</td>
<td align="left" rowspan="1" colspan="1">1.45</td>
<td align="left" rowspan="1" colspan="1">1.03</td>
<td align="left" rowspan="1" colspan="1">0.25</td>
<td align="left" rowspan="1" colspan="1">2.61</td>
<td align="left" rowspan="1" colspan="1">8.79</td>
<td align="left" rowspan="1" colspan="1">6.10</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">209</td>
<td align="left" rowspan="1" colspan="1">180</td>
<td align="left" rowspan="1" colspan="1">0.091</td>
<td align="left" rowspan="1" colspan="1">0.2</td>
<td align="left" rowspan="1" colspan="1">0.010</td>
<td align="left" rowspan="1" colspan="1">0.2</td>
<td align="left" rowspan="1" colspan="1">0.852</td>
<td align="left" rowspan="1" colspan="1">1.2</td>
<td align="left" rowspan="1" colspan="1">0.50</td>
<td align="left" rowspan="1" colspan="1">1.02</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt108">
<label>1</label>
<p>Listing limited to genes with RPKM values>10 and, in comparisons of NELP and ELP cultures, with high confidence of differential expression (p<0.01). Transcript values for cultures grown on microcrystalline cellulose (Avicel) as sole carbon source unavailable. The composition of loblolly pine wood extract (extr) is listed in
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
. Complete listings for 11,892 genes provided in
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec id="s3">
<title>Discussion</title>
<p>The distinctive repertoire and regulation of
<italic>P. gigantea</italic>
genes underlie a unique and efficient system for degrading all components of conifer sapwood. Transcriptome and proteome analyses demonstrate an active system of hydrolases and LPMOs involved in the complete deconstruction of cellulose and hemicellulose. The overall enzymatic strategy is therefore similar to most cellulolytic microbes, but unlike closely related brown-rot decay Agaricomycetes such as
<italic>P. placenta</italic>
.</p>
<p>With regard to ligninolysis, key genes were identified including LiPs, MnPs, CROs and GMC oxidoreductases. As in
<italic>P. chrysosporium</italic>
, the presence of both LiP- and GLX-encoding genes is consistent with a close physiological connection involving peroxide generation
<xref rid="pgen.1004759-Kersten2" ref-type="bibr">[41]</xref>
. We also annotated non-class II peroxidases HTPs and DyPs some of which have been implicated in metabolism of lignin derivatives
<xref rid="pgen.1004759-Hofrichter1" ref-type="bibr">[58]</xref>
,
<xref rid="pgen.1004759-Liers1" ref-type="bibr">[59]</xref>
. The distribution and expression of DyP-encoding genes are notable; with no genes present in
<italic>P. chrysosporium</italic>
and
<italic>C. subvermispora</italic>
but several highly expressed genes in
<italic>T. versicolor, D. squalens</italic>
<xref rid="pgen.1004759-Floudas1" ref-type="bibr">[21]</xref>
and
<italic>P. gigantea</italic>
(
<xref ref-type="table" rid="pgen-1004759-t002">Table 2</xref>
). Physiological roles of DyP are likely diverse, but oxidation of lignin-related aromatic compounds has been demonstrated
<xref rid="pgen.1004759-Liers1" ref-type="bibr">[59]</xref>
.</p>
<p>In addition to lignin, oxidative mechanisms likely play a central role in
<italic>P. gigantea</italic>
cellulose attack. Of 15 LPMO-encoding genes, transcripts of six genes were regulated (>2-fold; p<0.01) and peptides corresponding to three were unambiguously identified in NELP- or ELP-containing media. Our inability to detect any LPMO proteins in Avicel media (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
) suggests induction by substrates other than cellulose
<xref rid="pgen.1004759-Agger1" ref-type="bibr">[60]</xref>
. Beyond this, the CDH gene was highly expressed (transcripts and protein) in LP media. The observed coordinate expression of CDH and LPMO may reflect oxidative ‘boosting’ as recently demonstrated
<xref rid="pgen.1004759-Quinlan1" ref-type="bibr">[19]</xref>
,
<xref rid="pgen.1004759-Westereng1" ref-type="bibr">[20]</xref>
,
<xref rid="pgen.1004759-Langston1" ref-type="bibr">[47]</xref>
,
<xref rid="pgen.1004759-VaajeKolstad1" ref-type="bibr">[61]</xref>
. However, we did not detect elevated transcripts or peptides corresponding to the two
<italic>P. gigantea</italic>
aldose 1-epimerase genes even though these were previously observed in culture filtrates of various white-rot fungi
<xref rid="pgen.1004759-Floudas1" ref-type="bibr">[21]</xref>
,
<xref rid="pgen.1004759-VandenWymelenberg1" ref-type="bibr">[62]</xref>
, including
<italic>Bjerkandera adusta, Ganoderma</italic>
sp, and
<italic>Phlebia brevispora</italic>
<xref rid="pgen.1004759-Hori1" ref-type="bibr">[17]</xref>
. Thus, it seems unlikely that enzymatic conversion of oligosaccharides to their β-anomers is necessary for efficient CDH catalysis.</p>
<p>Softwood hemicellulose composition typically includes 15-20% galactoglucomannan while hardwoods contain 15–30% glucuronoxylan
<xref rid="pgen.1004759-Sjstrm1" ref-type="bibr">[40]</xref>
. Consistent with an adaption to conifer hemicellulose, GH5_7 β-mannanases were highly expressed in both NELP and ELP cultures, together with a GH27 α-galactosidase (
<xref ref-type="table" rid="pgen-1004759-t001">Table 1</xref>
). GH11 endoxylanase and CE carbohydrate esterase peptides were also detected in the pine wood-containing media, but not in Avicel cultures (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). In aggregate, these results demonstrate
<italic>P. gigantea</italic>
adaptation to conifer hemicellulose degradation.</p>
<p>
<italic>P. gigantea</italic>
's gene expression patterns reveal multiple strategies for overcoming the challenging composition of resinous sapwood. Tolerance to monoterpenes may be mediated in part by a putative ABC efflux transporter (Phlbi1_130987,
<xref ref-type="fig" rid="pgen-1004759-g009">Figure 9</xref>
). Of the 51 ABC proteins of
<italic>P. gigantea</italic>
, this protein is most closely related to the
<italic>GcABC-G1</italic>
gene of the ascomycete
<italic>Grosmannia clavigera</italic>
, a pathogen of
<italic>Pinus contorta</italic>
<xref rid="pgen.1004759-Wang1" ref-type="bibr">[63]</xref>
. The
<italic>GcABC-G1</italic>
gene is upregulated in response to various terpenes and appears to be a key element against the host defenses. Consistent with a similar function, our analysis showed the
<italic>P. gigantea</italic>
homolog to be upregulated>4.9-fold (p = 0.02) in NELP relative to ELP media (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). Other transcripts accumulating in NELP-derived mycelia included three CYPs (
<xref ref-type="table" rid="pgen-1004759-t002">Table 2</xref>
) potentially involved in the hydroxylation of diterpenoids and related resin acids
<xref rid="pgen.1004759-vanBeek1" ref-type="bibr">[55]</xref>
. Differential regulation also implicates glutathione S-transferase, aldehyde dehydrogenase and peroxiredoxin in the transformation and detoxification of extractives (
<xref ref-type="table" rid="pgen-1004759-t002">Table 2</xref>
). Three putative transcription regulators were similarly regulated (
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
). Aldehyde dehydrogenase- and AAD-encoding genes, some of which are upregulated in
<italic>P. gigantea</italic>
LP cultures relative to Glc cultures (
<xref ref-type="table" rid="pgen-1004759-t001">Tables 1</xref>
), are induced by aromatic compounds in
<italic>P. chrysosporium</italic>
<xref rid="pgen.1004759-Matsuzaki1" ref-type="bibr">[64]</xref>
,
<xref rid="pgen.1004759-Shimizu1" ref-type="bibr">[65]</xref>
.</p>
<p>Predicted to degrade triglycerides, a total of nine lipase-encoding genes were identified in the
<italic>P. gigantea</italic>
genome and four of these were upregulated>2-fold (p<0.01) in LP media compared to Glc medium (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). Two lipases displayed similar patterns of transcript and protein upregulation on NELP relative to ELP (
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
), and the pine wood extractive also induced accumulation of these lipases in Avicel media (
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
). Further metabolism of triglycerides is uncertain, although a putative glycerol uptake facilitator (Phlbi1_99331) was highly expressed (RPKM value of 2532) and significantly (p<0.02) upregulated (2.1-fold) in NELP compared to ELP (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). Fatty acids activation and β-oxidation can be inferred by the expression of fatty acid CoA ligase (Phlgi1_107548, Phlgi1_126556, Phlgi1_89325), β-ketothiolase (Phlgi1_27649, Phlgi1_130767), and fatty acid desaturase (Phlgi1_100083, Phlgi1_115799). Upregulation of a mitochondrial malate dehydrogenase (Phlgi1_22176,
<xref ref-type="table" rid="pgen-1004759-t003">Table 3</xref>
), together with relatively high transcript levels of other TCA cycle components (citrate synthases Phlgi1_126205, Phlgi1_100215; 2-oxoglutarate dehydrogenase, Phlgi1_126652) may complete fatty acid oxidation. In this connection, we also observed high expression of isocitrate lyase (Phlgi1_21482, Phlgi1_93159) and malate synthase (Phlgi1_27815), which partially explain oxalate accumulation
<xref rid="pgen.1004759-Annesi1" ref-type="bibr">[66]</xref>
and strongly support an active glyoxylate shunt
<xref rid="pgen.1004759-Martinez2" ref-type="bibr">[45]</xref>
,
<xref rid="pgen.1004759-Munir1" ref-type="bibr">[67]</xref>
(
<xref ref-type="fig" rid="pgen-1004759-g009">Figure 9</xref>
). Upregulation of glycoside hydrolases, transcription factors, cyclophilins, ATP synthase and ribonuclease may also reflect broad shifts in metabolism or reduced accessibility of the unextracted substrate (
<xref ref-type="table" rid="pgen-1004759-t002">Tables 2</xref>
and
<xref ref-type="table" rid="pgen-1004759-t003">3</xref>
).</p>
<p>Beyond genetic regulation, certain constitutively expressed genes are also likely involved in the degradation of all plant cell wall components, including complex resins and triglycerides. For example MOX (Phlgi1_120749) is among the most abundant transcripts in both NELP and ELP (
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
), suggesting an important role in H
<sub>2</sub>
O
<sub>2</sub>
production associated with lignin demethylation
<xref rid="pgen.1004759-Daniel1" ref-type="bibr">[53]</xref>
. Extracellular peroxide generation is key to peroxidase activity, and MOX fulfills this role along with CRO, AAO, and P2O. Along these lines, we also observed high extracellular protein levels of DyP (Phlgi1_122124) under all culture conditions.</p>
<p>Most problematic, many
<italic>P. gigantea</italic>
genes and proteins exhibited little or no homology to NCBI NR or Swiss-Prot entries. Some of these ‘hypothetical’ or ‘uncharacterized’ proteins are undoubtedly important, particularly those that are highly expressed, regulated and/or secreted. For example, of 92 genes upregulated (>2-fold; p<0.01) in NELP relative to ELP, 51 were designated as hypothetical (
<xref ref-type="table" rid="pgen-1004759-t002">Table 2</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
). Three of these featured predicted secretion signals and peptides were detected in one case. In the absence of biochemical characterization and/or genetic evidence, assigning function to these genes represents a major undertaking. Nevertheless, high throughput transcript and secretome profiling substantially filtered the number of potential targets from a genome-wide estimate of 4744 ‘hypothetical’ genes to the more manageable numbers reported here. More broadly, the results advance understanding of the early and exclusive colonization of coniferous wood by
<italic>P. gigantea</italic>
and also provide a framework for developing effective wood protection strategies, improving biocontrol agents and identifying useful enzymes
<xref rid="pgen.1004759-Gutierrez1" ref-type="bibr">[6]</xref>
,
<xref rid="pgen.1004759-Behrendt1" ref-type="bibr">[9]</xref>
,
<xref rid="pgen.1004759-Behrendt2" ref-type="bibr">[10]</xref>
.</p>
</sec>
<sec sec-type="methods" id="s4">
<title>Methods</title>
<sec id="s4a">
<title>Wood colonization assays</title>
<p>Wood wafers (1 cm by 1 cm by 2 mm) were cut from the sapwood of aspen (
<italic>Populus tremuloides</italic>
), pine (
<italic>P. taeda</italic>
) and spruce (
<italic>Picea glauca</italic>
) and sterilized by autoclaving. Following inoculation by contact with mycelium growing on malt extract agar (15 g malt extract [Difco, Detroit, MI] and 15 g agar per liter of water) in Petri dishes, colonized wafers were harvested 30, 60 and 90 days. Noninoculated wood wafers placed on the same media in Petri dishes served as controls. Wafers were removed 30, 60 or 90 days later, weighed and percent weight loss was determined. Additional wafers were removed at the same time period, immediately frozen to −20°C and prepared for scanning electron microscopy as previously described
<xref rid="pgen.1004759-Blanchette2" ref-type="bibr">[68]</xref>
.</p>
</sec>
<sec id="s4b">
<title>Sequencing and annotation</title>
<p>The genome was sequenced using Illumina and annotated using the JGI Annotation Pipeline
<xref rid="pgen.1004759-Grigoriev2" ref-type="bibr">[69]</xref>
. Assembly and annotations are available from JGI portal MycoCosm
<xref rid="pgen.1004759-Grigoriev1" ref-type="bibr">[38]</xref>
and deposited to DDBJ/EMBL/GenBank under accession AZAG00000000. The version described in this paper is version AZAG01000000. The completeness of the
<italic>P. gigantea</italic>
genome was assessed by finding 99.1% of CEGMA proteins conserved across sequenced genomes of eukaryotes
<xref rid="pgen.1004759-Parra1" ref-type="bibr">[70]</xref>
(
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
;
<xref ref-type="supplementary-material" rid="pgen.1004759.s036">Tables S1</xref>
,
<xref ref-type="supplementary-material" rid="pgen.1004759.s037">S2</xref>
).</p>
</sec>
<sec id="s4c">
<title>RNA-seq</title>
<p>Mycelium was derived from triplicate cultures of 250 ml basal salts containing: i. 1.25 g freshly-harvested, ground (1mm mesh) loblolly pine wood that had been ‘spiked’ with acetone and thoroughly dried (NELP); or ii. the same material following extended acetone extraction in a Soxhlet apparatus and drying (ELP). The composition of the extract (
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
) was determined by GC-MS
<xref rid="pgen.1004759-Gutierrez2" ref-type="bibr">[51]</xref>
. Duplicate cultures of basal salts medium with glucose as sole carbon source served as a reference. After 5 days incubation, total RNA was purified from frozen mycelium as described
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
,
<xref rid="pgen.1004759-VandenWymelenberg2" ref-type="bibr">[71]</xref>
. Multiplexed libraries were constructed and sequenced on an Illumina HiSeq2000. DNAStar Inc (Madison, WI) modules SeqNGen and Qseq were used for mapping reads and statistical analysis. Transcriptome data was deposited to the NCBI Gene Expression Omnibus (GEO) database and assigned accession GSE53112 (Reviewer access via
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ilovmswixtajjez&acc=GSE53112">http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ilovmswixtajjez&acc=GSE53112</ext-link>
). Experimental details are provided in
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
and all transcriptome analyses are summarized in
<xref ref-type="supplementary-material" rid="pgen.1004759.s059">Dataset S2</xref>
.</p>
</sec>
<sec id="s4d">
<title>Secretome analysis</title>
<p>With minor modification, NanoLC-MS/MS analysis identified extracellular proteins in culture filtrates as described
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
,
<xref rid="pgen.1004759-Ryu1" ref-type="bibr">[72]</xref>
. For each of the two woody substrates (e.g NELP and ELP), cultures were harvested after 5, 7 and 9 days. Mass spectrometric protein identifications were accepted if they could be established at greater than 95.0% probability within 0.9% False Discovery Rate and contained at least two identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm
<xref rid="pgen.1004759-Nesvizhskii1" ref-type="bibr">[73]</xref>
. To verify the effects of pine wood extractives in a well-defined substrate, media containing microcrystalline cellulose (Avicel) were also employed
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
,
<xref rid="pgen.1004759-Martinez2" ref-type="bibr">[45]</xref>
,
<xref rid="pgen.1004759-VandenWymelenberg3" ref-type="bibr">[74]</xref>
. Filtrates from these cultures, with or without addition of loblolly pine wood acetone extract, were collected after 5 days and analyzed. Approximate protein abundance in each of the cultures was expressed as the number of unique peptide and the exponentially modified protein abundance index (emPAI) value
<xref rid="pgen.1004759-Ishihama1" ref-type="bibr">[52]</xref>
(See
<xref ref-type="supplementary-material" rid="pgen.1004759.s057">Text S1</xref>
for detailed methods).</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pgen.1004759.s001">
<label>Figure S1</label>
<caption>
<p>Vista dot plot illustrating syntenic relationship between 12 longest scaffolds of
<italic>P. gigantea</italic>
and
<italic>P. chrysosporium</italic>
.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s001.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s002">
<label>Figure S2</label>
<caption>
<p>Top 20 families of contributing to PC1 and PC2 values in
<xref ref-type="fig" rid="pgen-1004759-g003">Figure 3A</xref>
. The x-axis designates each enzyme family and y-axis indicates the squared rotation values for PC1 and PC2. As shown in
<xref ref-type="fig" rid="pgen-1004759-g002">Figure 2</xref>
, the PC2 value mainly separated the white- and brown-rot fungi.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s002.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s003">
<label>Figure S3</label>
<caption>
<p>Ten genes encoding enzymes potentially involved in lipid metabolism contributing to PC1 and PC2 values in
<xref ref-type="fig" rid="pgen-1004759-g003">Figure 3B</xref>
. The x-axis designates each enzyme family and y-axis indicates the squared rotation values for PC1 and PC2.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s003.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s004">
<label>Figure S4</label>
<caption>
<p>Phylogenetic analysis of opsin genes from
<italic>P. gigantea</italic>
(Phlgi),
<italic>C. subvermispora</italic>
(Cersu),
<italic>P. placenta</italic>
(Pospl),
<italic>A. nidulans</italic>
(AN),
<italic>Sordaria macrospora</italic>
(SM) and
<italic>Neurospora crassa</italic>
(NCU). The evolutionary history was inferred using the Minimum Evolution method
<xref rid="pgen.1004759-Rzhetsky1" ref-type="bibr">[78]</xref>
. The bootstrap consensus tree inferred from 500 replicates (MEGA4) is taken to represent the evolutionary history of the taxa analyzed (MEGA4). Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches (MEGA4). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method
<xref rid="pgen.1004759-Zuckerkandl1" ref-type="bibr">[79]</xref>
and are in the units of the number of amino acid substitutions per site. The ME tree was searched using the Close-Neighbor-Interchange (CNI) algorithm
<xref rid="pgen.1004759-Kaarik1" ref-type="bibr">[4]</xref>
at a search level of 1. The Neighbor-joining algorithm
<xref rid="pgen.1004759-Saitou1" ref-type="bibr">[80]</xref>
was used to generate the initial tree. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). There were a total of 183 positions in the final dataset. Phylogenetic analyses were conducted in MEGA4
<xref rid="pgen.1004759-Tamura1" ref-type="bibr">[81]</xref>
.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s004.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s005">
<label>Figure S5</label>
<caption>
<p>Phylogenetic analysis of putative photoreceptors of
<italic>Ceriporiopsis subvermispora</italic>
(Cersu),
<italic>Phlebiopsis gigantea</italic>
(Phlgi),
<italic>Postia placenta</italic>
(Pospl),
<italic>Cryptococcus neoformans</italic>
(CN),
<italic>Laccaria bicolor</italic>
(LB),
<italic>Phycomyces blakesleeanus</italic>
(PB),
<italic>Neurospora crassa</italic>
(NCU),
<italic>Aspergillus nidulans</italic>
(ANIDU) and
<italic>Trichoderma reesei</italic>
(TR). Along with the species, the name is given of the respective protein (if known) and the GenBank accession number or protein ID in JGI genome databases.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s005.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s006">
<label>Figure S6</label>
<caption>
<p>Alignment of the homologous region comprising the PAS/LOV domain (NCRFLQ) in photoreceptor orthologues. LOV signatures are highlighted.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s006.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s007">
<label>Figure S7</label>
<caption>
<p>Genomic locus comprising the cluster of response regulator genes.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s007.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s008">
<label>Figure S8</label>
<caption>
<p>Homology models for the molecular structures of class II heme peroxidases from the
<italic>P. gigantea</italic>
genome. Ligninolytic peroxidases, including LiP models -
<bold>A</bold>
) 150531 peroxidase,
<bold>B</bold>
) 121662 peroxidase and
<bold>C</bold>
) 30372 peroxidase - harboring an exposed tryptophan potentially involved in oxidation of high redox-potential substrates, and
<bold>MnP</bold>
models -
<bold>D</bold>
) 75566 peroxidase,
<bold>E</bold>
) 75572 peroxidase,
<bold>F</bold>
) 115591 peroxidase,
<bold>G</bold>
) 115592 peroxidase and
<bold>H</bold>
) 117668 peroxidase - harboring a putative Mn
<sup>2+</sup>
oxidation site (formed by two glutamates and one aspartate); and
<bold>I</bold>
) manually curated GP (32509). Note that an alanine and an asparagine residues in the LiP models occupy the position of the catalytic glutamate and aspartate involved in Mn
<sup>2+</sup>
oxidation by MnP, and a serine residue in the MnP models occupies the position of the putative catalytic tryptophan characterizing LiP. The amino acid numbering refers to putative mature sequences, after manual processing of their peptide sequences.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s008.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s009">
<label>Figure S9</label>
<caption>
<p>Dendrogram showing evolutionary relationships among 478 basidiomycete heme peroxidases, including structural-functional classification based on Ruiz-Dueñas et al. (2) (GeneBank and JGI references in parentheses and
<italic>P. gigantea</italic>
genome references on yellow background). Amino-acid sequence comparisons as Poisson distances and clustering based on UPGMA and "pairwise deletion" option of MEGA5
<xref rid="pgen.1004759-Tamura1" ref-type="bibr">[81]</xref>
. Compressed sub-trees are shown to facilitate the
<italic>P. gigantea</italic>
peroxidases analysis. Numbers on branches represent bootstrap values (based on 1000 replications) supporting that branch; only the values ≥50% are presented.
<bold>Fungal abbreviations:</bold>
AGABI,
<italic>Agaricus bisporus</italic>
; AURDE,
<italic>Auricularia delicata</italic>
; BJEAD,
<italic>Bjerkandera adusta</italic>
; CERSU,
<italic>Ceriporiopsis subvermispora</italic>
-B; COPCI,
<italic>Coprinopsis cinerea</italic>
; DACSP,
<italic>Dacryopinax</italic>
sp.; DICSQ,
<italic>Dichomitus squalens</italic>
v1.0; FOMME,
<italic>Fomitiporia mediterranea</italic>
v1.0; FOMPI,
<italic>Fomitopsis pinicola</italic>
SS1 v1.0; IZU, basidiomycete IZU-154; LACBI,
<italic>Laccaria bicolor v2.0</italic>
; LENED,
<italic>Lentinula edodes</italic>
; PHACH,
<italic>Phanerochaete chrysosporium</italic>
; PHASO,
<italic>Phanerochaete sordida</italic>
; PHLBR,
<italic>Phlebia brevispora</italic>
HHB-7030 SS6 v1.0; PHLGI,
<italic>Phlebiopsis gigantea</italic>
; POSPL,
<italic>Postia placenta</italic>
; PUNST,
<italic>Punctularia strigosozonata</italic>
v1.0; SERLA,
<italic>Serpula lacrymans</italic>
; SPOSP,
<italic>Spongipellis</italic>
sp.; STEHI,
<italic>Stereum hirsutum</italic>
FP-91666 SS1 v1.0; TRACE,
<italic>Trametopsis cervina</italic>
; TREME,
<italic>Tremella mesenterica</italic>
; USTMA,
<italic>Ustilago maydis</italic>
. Most of the sequences included in the dendrogram were obtained from the analysis of fungal genome sequences. The genome version from which the peroxidase sequence was obtained is in some cases indicated as v1.0 and v2.0.
<bold>Peroxidase abbreviations</bold>
: i) GP, generic peroxidase; ii) MnP-short, MnP-long and MnP-extralong, three different mangenese peroxidase (MnP) subfamilies including a typical Mn(II)-oxidation site, formed by two glutamates and one aspartate residues, and differing in the length of their C-terminal tails; iii) LiP, lignin peroxidase harboring an exposed tryptophan residue located at the same position described for the catalytic Trp171 of
<italic>P. chrysosporium</italic>
LiP; iv) VP, versatile peroxidase including a Mn(II)-oxidation site like in MnP, and a catalytic tryptophan like in LiP; v) VP-LiP intermediate states, two
<italic>Ceriporiopsis subvermispora</italic>
peroxidases occupying an intermediate position between typical LiPs and VPs according to their structural and catalytic properties
<xref rid="pgen.1004759-FernandezFueyo1" ref-type="bibr">[22]</xref>
; and vi) MnP-atypical and VP-atypical, MnP and VP lacking one of the three acid residues forming the typical Mn(II)-oxidation site present in MnP and VP (Glu35/36, Glu39/40 and Asp179/175 in
<italic>P. chrysosporiun</italic>
MnP/
<italic>P.eryngii</italic>
VP).</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s009.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s010">
<label>Figure S10</label>
<caption>
<p>
<bold>Homology models for the molecular structures of heme-thiolate peroxidases (HTPs) from the
<italic>P. gigantea</italic>
genome.</bold>
A) Phlgi1_131735 peroxidase, B) Phlgi1_18201 peroxidase, C) Phlgi1_19534 peroxidase and D) Phlgi1_104428 peroxidase, including proximal cysteine residue acting as the fifth heme iron ligand and a few more amino acid residues of the active center.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s010.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s011">
<label>Figure S11</label>
<caption>
<p>
<bold>Homology models for the molecular structures of DyP peroxidases from the
<italic>P. gigantea</italic>
genome.</bold>
A) Phlgi1_122124 peroxidase (old Phlgi1_78526 peroxidase), B) Phlgi1_71660 peroxidase, C) Phlgi1_85295 peroxidase and D) Phlgi1_125681 peroxidase, including amino acid residues located at the proximal and distal sides of the heme active site involved in catalysis.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s011.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s012">
<label>Figure S12</label>
<caption>
<p>
<bold>Dendrogram focused on class II heme peroxidases (a total of 219) showing evolutionary relationships and structural-functional classification.</bold>
A) Short, long and extralong MnPs have a Mn
<sup>2+</sup>
-oxidation site formed by two glutamic and one aspartic residues, and differ in the length of the C-terminal tail; B) LiPs contain a catalytic tryptophan, with the only exception of TRACE-LiP being the “unique” ligninolytic peroxidase with a catalytic tyrosine (3); C) VPs harbor the catalytic sites described above for both MnPs and LiPs; D) GPs do not contain any of the above two catalytic sites; and E) atypical MnPs and VPs lack one of the three acidic residues forming the Mn
<sup>2+</sup>
-oxidation site. The analysis is described in
<bold>
<xref ref-type="supplementary-material" rid="pgen.1004759.s009">Figure S9</xref>
</bold>
.
<bold>Fungal abbreviations</bold>
: AGABI,
<italic>Agaricus bisporus</italic>
; AURDE,
<italic>Auricularia delicata</italic>
; BJEAD,
<italic>Bjerkandera adusta</italic>
; BJESP,
<italic>Bjerkandera sp</italic>
; CERRI,
<italic>Ceriporiopsis rivulosa</italic>
; CERSU,
<italic>Ceriporiopsis subvermispora</italic>
-B; CERUN,
<italic>Cerrena unicolor</italic>
; COPCI,
<italic>Coprinopsis cinerea</italic>
; COPDI,
<italic>Coprinellus disseminatus</italic>
; DICSQ,
<italic>Dichomitus squalens</italic>
v1.0; FOMME,
<italic>Fomitiporia mediterranea</italic>
v1.0; FOMPI,
<italic>Fomitopsis pinicola</italic>
SS1 v1.0; GANAP,
<italic>Ganoderma applanatum</italic>
; GANAU,
<italic>Ganoderma australe</italic>
; GANFO,
<italic>Ganoderma formosanum</italic>
; GANLU,
<italic>Ganoderma lucidum</italic>
; GANSP,
<italic>Ganoderma</italic>
sp.; HETAN,
<italic>Heterobasidion annosum</italic>
v2.0; IZU, basidiomycete IZU-154; LACBI,
<italic>Laccaria bicolor v2.0</italic>
; LENED,
<italic>Lentinula edodes</italic>
; PHACH,
<italic>Phanerochaete chrysosporium</italic>
; PHASO,
<italic>Phanerochaete sordida</italic>
; PHLBR,
<italic>Phlebia brevispora</italic>
HHB-7030 SS6 v1.0; PHLGI,
<italic>Phlebiopsis gigantea</italic>
; PHLRA,
<italic>Phlebia radiata</italic>
; PLEER,
<italic>Pleurotus eryngii</italic>
; PLEOS,
<italic>Pleurotus ostreatus</italic>
; PLEPU,
<italic>Pleurotus pulmonarius</italic>
; PLESA,
<italic>Pleurotus sapidus</italic>
; POSPL,
<italic>Postia placenta</italic>
; PUNST,
<italic>Punctularia strigosozonata</italic>
v1.0; SPOSP,
<italic>Spongipellis</italic>
sp.; STEHI,
<italic>Stereum hirsutum</italic>
FP-91666 SS1 v1.0; TAICA,
<italic>Taiwanofungus camphoratus</italic>
; TRACE,
<italic>Trametopsis cervina</italic>
; TRAVE,
<italic>Trametes versicolor</italic>
; WOLCO,
<italic>Wolfiporia cocos</italic>
MD-104 SS10 v1.0. GeneBank and JGI references are shown in parentheses and
<italic>P. gigantea</italic>
genome references on yellow background.</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s012.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s013">
<label>Figure S13</label>
<caption>
<p>
<bold>Dendrogram focused on DyP peroxidases (a total of 64) showing evolutionary relationships.</bold>
The analysis is described in
<xref ref-type="supplementary-material" rid="pgen.1004759.s007">Figure S7</xref>
.
<bold>Fungal abbreviations</bold>
: AURAU,
<italic>Auricularia auricula-judae</italic>
; AURDE,
<italic>Auricularia delicata</italic>
; BJEAD,
<italic>Bjerkandera adusta</italic>
; COPCI,
<italic>Coprinopsis cinerea</italic>
; DICSQ,
<italic>Dichomitus squalens</italic>
v1.0; FOMME,
<italic>Fomitiporia mediterranea</italic>
v1.0; GANLU,
<italic>Ganoderma lucidum</italic>
; GANSP,
<italic>Ganoderma</italic>
sp.; HETAN,
<italic>Heterobasidion annosum</italic>
v2.0; LACBI,
<italic>Laccaria bicolor v2.0</italic>
; MARSC,
<italic>Marasmius scorodonius</italic>
; MELLA,
<italic>Melampsora laricis-populina v1.0</italic>
; PHLBR,
<italic>Phlebia brevispora</italic>
HHB-7030 SS6 v1.0; PHLGI,
<italic>Phlebiopsis gigantea</italic>
; PLEOS,
<italic>Pleurotus ostreatus</italic>
; POSPL,
<italic>Postia placenta</italic>
; PUNST,
<italic>Punctularia strigosozonata</italic>
v1.0; STEHI,
<italic>Stereum hirsutum</italic>
FP-91666 SS1 v1.0; TERAL,
<italic>Termitomyces albuminosus</italic>
; TRAVE,
<italic>Trametes versicolor</italic>
. GenBank and JGI references are shown in parentheses and
<italic>P. gigantea</italic>
genome references on yellow background.</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s013.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s014">
<label>Figure S14</label>
<caption>
<p>
<bold>Multiple alignments of aryl alcohol oxidases (AAO) sequences from
<italic>P. gigantea</italic>
(Phlgi128071, Phlgi121514) and
<italic>P. eryngii</italic>
(AAOpe)
<xref rid="pgen.1004759-Guillen1" ref-type="bibr">[82]</xref>
.</bold>
Highly conserved histidine active site residues
<xref rid="pgen.1004759-Ferreira1" ref-type="bibr">[83]</xref>
are in red. Bottom lines show conserved motifs in GMC family
<xref rid="pgen.1004759-Cavener1" ref-type="bibr">[84]</xref>
. Obtained using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
.The Phlgi128071 and Phlgi121514 models conserve the substrate-binding pocket reported for AAO from
<italic>P. eryngii</italic>
and the motifs in GMC family.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s014.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s015">
<label>Figure S15</label>
<caption>
<p>
<bold>Multiple alignments of methanol oxidase (MOX) sequences from
<italic>P. gigantea</italic>
(Phlgi120749, Phlgi108516 and Phlgi72751) and
<italic>G. trabeum</italic>
(ABI14440.1)
<xref rid="pgen.1004759-Daniel1" ref-type="bibr">[53]</xref>
.</bold>
Highly conserved histidine/asparagine active site residues
<xref rid="pgen.1004759-Cavener1" ref-type="bibr">[84]</xref>
are in red. Bottom lines show conserved motifs in GMC family
<xref rid="pgen.1004759-Cavener1" ref-type="bibr">[84]</xref>
. Obtained using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
. The MOX models conserve motifs in GMC family.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s015.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s016">
<label>Figure S16</label>
<caption>
<p>
<bold>Multiple alignments of cellobiose dehydrogenase (CDH) sequence from
<italic>P. gigantea</italic>
(model Phlgi99876) and
<italic>Gelatoporia subvermispora</italic>
(ACF60617).</bold>
Highly conserved active site residues are in red
<xref rid="pgen.1004759-Hallberg1" ref-type="bibr">[86]</xref>
. Obtained using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s016.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s017">
<label>Figure S17</label>
<caption>
<p>
<bold>Multiple alignments of pyranose oxidse (POX) sequences from
<italic>P. gigantea</italic>
(Phlgi130349),
<italic>Peniphora sp.</italic>
(AAO13382.1) and
<italic>Trametes ochracea</italic>
(AAP40332.1).</bold>
Obtained using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s017.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s018">
<label>Figure S18</label>
<caption>
<p>
<bold>Multiple alignments of glucose oxidase (GOX) sequences from
<italic>P. gigantea</italic>
(Phlgi128108),
<italic>B. fuckeliana</italic>
(CDA88590.1) and
<italic>C. immitis</italic>
(EAS27606) and
<italic>A. niger</italic>
(AAF59929.2)
<xref rid="pgen.1004759-Blanchette1" ref-type="bibr">[1]</xref>
.</bold>
Highly conserved histidine active site residues
<xref rid="pgen.1004759-Cavener1" ref-type="bibr">[84]</xref>
are in red. Bottom lines show conserved motifs in GMC family
<xref rid="pgen.1004759-Cavener1" ref-type="bibr">[84]</xref>
. Obtained using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s018.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s019">
<label>Figure S19</label>
<caption>
<p>
<bold>Multiple alignments of eight putative aryl alcohol dehydrogenase (AAD) sequences from
<italic>P. gigantea</italic>
(Phlgi1) and
<italic>P. chrysosporium</italic>
(AAA61931.1)
<xref rid="pgen.1004759-Reiser1" ref-type="bibr">[36]</xref>
.</bold>
Obtained using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s019.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s020">
<label>Figure S20</label>
<caption>
<p>
<bold>Phylogenetic tree of multicopper oxidases from
<italic>Acremonium</italic>
sp. (Acr),
<italic>Aspergillus nidulans</italic>
(Ani),
<italic>Cryptococcus neoformans</italic>
(Cne),
<italic>Coprinopsis cinerea</italic>
(Cci),
<italic>Pleurotus ostreatus</italic>
(Pos),
<italic>Phanerochaete carnosa</italic>
(Pca),
<italic>Phanerochaete chrysosporium</italic>
(Pch),
<italic>Phanerochaete flavido-alba</italic>
(Pfa),
<italic>Phlebiopsis gigantea</italic>
(Pgi),
<italic>Postia placenta</italic>
(Ppl),
<italic>Saccharomyces cerevisiae</italic>
(Sce),
<italic>Schizophyllum commune</italic>
(Sco),
<italic>Serpula lacrymans</italic>
(Sla),
<italic>Sporobolomyces roseus</italic>
(Sro),
<italic>Tremella mesenterica</italic>
(Tme), and
<italic>Ustilago maydis</italic>
(Uma). Alignments were produced in program ClustalW, manually adjusted in Genedoc and computed in MEGA4.0 for phylogenetic tree production (neighbour-joining, bootstrap values 500).</bold>
ID numbers refer to protein models in the JGI MycoCosm (
<ext-link ext-link-type="uri" xlink:href="http://genome.jgi-psf.org/programs/fungi/index.jsf">http://genome.jgi-psf.org/programs/fungi/index.jsf</ext-link>
), other accession numbers to the NCBI database (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</ext-link>
), specific names to proteins specified with accession numbers in Hoegger et al.
<xref rid="pgen.1004759-Hoegger1" ref-type="bibr">[29]</xref>
and Lettera et al.
<xref rid="pgen.1004759-Lettera1" ref-type="bibr">[87]</xref>
. Blue coloring marks enzymes with laccase activity experimentally shown, light brown enzymes with proven ferroxidase activity, purple enzymes with ascorbate activity, olive enzymes acting in fungal pigment synthesis, and two colors dual enzymatic activities with the left color marking the respective major performance (
<xref rid="pgen.1004759-Kilaru1" ref-type="bibr">[88]</xref>
,
<xref rid="pgen.1004759-Rhl1" ref-type="bibr">[89]</xref>
and references in the review of Kües and Rühl 2011
<xref rid="pgen.1004759-Kes1" ref-type="bibr">[90]</xref>
). Proteins from
<italic>P. gigantea</italic>
are highlighted in red.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s020.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s021">
<label>Figure S21</label>
<caption>
<p>
<bold>Sequence alignment for four regions of
<italic>S. cerevisiae</italic>
ferroxidase Fet3 with corresponding regions of enzymes of
<italic>P. gigantea</italic>
and
<italic>Phanerochaete</italic>
species. Marked in yellow are residues that in Fet3 of
<italic>S. cerevisiae</italic>
are critical for Fe
<sup>2+</sup>
binding and the electron-transfer pathway (for references see
<xref rid="pgen.1004759-Kes1" ref-type="bibr">[90]</xref>
).</bold>
Three groups of enzymes become obvious: i) the Fet3-type ferroxidases; ii) within the cluster of ferroxidases/laccases one subgroup that is more similar to the Fet3-type ferroxidases to which the ferroxidase Mco1 of
<italic>P. chrysosporium</italic>
belongs to; and iii) one more distinct subgroup that misses three amino acids in the second region of importance for binding pocket formation and to which
<italic>P. favido-alba bona fide</italic>
laccase PfaL belongs.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s021.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s022">
<label>Figure S22</label>
<caption>
<p>
<bold>Phylogenetic analysis and subfamily assignments of GH5 protein models of
<italic>P. gigantea</italic>
(Phlgi),
<italic>H. annosum</italic>
(Hetan) and
<italic>Stereum hirsutum</italic>
(stehi).</bold>
</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s022.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s023">
<label>Figure S23</label>
<caption>
<p>
<bold>Phylogenetic analysis of LPMO proteins of
<italic>P. gigantea</italic>
,
<italic>C. subvermispora</italic>
, and
<italic>P. Chrysosporium.</italic>
</bold>
</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s023.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s024">
<label>Figure S24</label>
<caption>
<p>
<bold>Phylogeny and differential expression of carbohydrate esterase family 1 (CE1) genes. CDS sequences were obtained from each genome database according to assigned protein IDs.</bold>
Incomplete CDS sequences (partial fragments) were eliminated from the analysis. For each CE family, a multiple alignment was performed using MegAlign version 10 software. The phylogenetic tree was then constructed from the multiple alignment using Clustal W
<xref rid="pgen.1004759-Thompson1" ref-type="bibr">[85]</xref>
. Numbers at the nodes represent bootstrap values, based on 1000 replications. Species: Aurde,
<italic>Auricularia delicata</italic>
SS-5; Conpu,
<italic>Coniophora puteana</italic>
; CC1G,
<italic>Coprinopsis cinerea</italic>
; Dicsq,
<italic>Dichomitus squalens</italic>
; Fomme,
<italic>Fomitiporia mediterranea</italic>
; Fompi,
<italic>Fomitopsis pinicola</italic>
FP-58527 SS1; Glotr,
<italic>Gloeophyllum trabeum</italic>
; Hetan,
<italic>Heterobasidion annosum</italic>
; Lacbi,
<italic>Laccaria bico</italic>
lor; Phaca,
<italic>Phanerochaete carnosa</italic>
HHB-10118; Phach,
<italic>Phanerochaete chrysosporium</italic>
RP78; Phlgi,
<italic>Phlebiopsis gigantea</italic>
; Punst,
<italic>Punctularia strigosozonata</italic>
; Schco,
<italic>Schizophyllum commune</italic>
; Serla,
<italic>Serpula lacrymans</italic>
S7.3; Stehi,
<italic>Stereum hirsutum</italic>
FP-91666 SS1; Trave,
<italic>Trametes versicolor</italic>
; Wolco,
<italic>Wolfiporia cocos</italic>
MD-104 SS10. Ecology: W, white rot; B, brown rot; M, mycorrhiza; S, non-wood decay saprotroph. Location of comprised CBM1 was indicated as N or C-terminal. Differential regulation of Phlgi CE transcripts between the cultivations tested in this study were also indicated as up- (U) or down- (D) regulated. Asterisk was accompanied if the p value was <0.05. Possible CE1 gene Phlgi_121418 was excluded as the model was severely truncated (91 amino acid residues).</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s024.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s025">
<label>Figure S25</label>
<caption>
<p>
<bold>Phylogeny and differential expression of CE4 genes. Analysis and abbreviations as in
<xref ref-type="supplementary-material" rid="pgen.1004759.s024">Figure S24</xref>
.</bold>
</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s025.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s026">
<label>Figure S26</label>
<caption>
<p>
<bold>Phylogeny and differential expression of CE8 genes. Analysis and abbreviations as in
<xref ref-type="supplementary-material" rid="pgen.1004759.s024">Figure S24</xref>
.</bold>
Possible CE8 gene Phlgi_132681 was excluded as the model was severely truncated (79 residues).</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s026.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s027">
<label>Figure S27</label>
<caption>
<p>
<bold>Phylogeny and differential expression of CE9 genes. Analysis and abbreviations as in
<xref ref-type="supplementary-material" rid="pgen.1004759.s024">Figure S24</xref>
.</bold>
</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s027.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s028">
<label>Figure S28</label>
<caption>
<p>
<bold>Phylogeny and differential expression of CE12 genes. Analysis and abbreviations as in
<xref ref-type="supplementary-material" rid="pgen.1004759.s024">Figure S24</xref>
.</bold>
</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s028.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s029">
<label>Figure S29</label>
<caption>
<p>
<bold>Phylogeny and differential expression of CE15 genes. Analysis and abbreviations as in
<xref ref-type="supplementary-material" rid="pgen.1004759.s024">Figure S24</xref>
.</bold>
</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s029.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s030">
<label>Figure S30</label>
<caption>
<p>
<bold>Phylogeny and differential expression of CE16 genes. Analysis and abbreviations as in
<xref ref-type="supplementary-material" rid="pgen.1004759.s024">Figure S24</xref>
.</bold>
Possible CE16 gene Phlgi_73119 was excluded as the model was severely truncated (95 residues).</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pgen.1004759.s030.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s031">
<label>Figure S31</label>
<caption>
<p>
<bold>Phylogenetic tree of the cytochrome P450 proteins (P450ome) in
<italic>P. gigantea</italic>
.</bold>
Tree was constructed using 124 P450 sequences (which were full-length or near full-length) and evolutionary history was inferred using bootstrap Neighbor-Joining method. Phylogenetic analyses were conducted using MEGA4
<xref rid="pgen.1004759-Tamura1" ref-type="bibr">[81]</xref>
. The P450 listing in the tree is based on the corresponding protein ID with the CYP name in parenthesis. P450s that belong to a new subfamily are indicated with the abbreviation NS.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s031.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s032">
<label>Figure S32</label>
<caption>
<p>
<bold>Comparative evolutionary analysis of the P450omes of
<italic>P. gigantea</italic>
and
<italic>Phanerochaete</italic>
species (
<italic>P. chrysosporium</italic>
and
<italic>P. carnosa)</italic>
.</bold>
Clan level comparison was made for this analysis.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s032.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s033">
<label>Figure S33</label>
<caption>
<p>
<bold>Multiple alignment of representative protein sequences of
<italic>P. gigantea</italic>
hydrophobins.</bold>
Sequences were aligned using MUSCLE alignment tool implemented in Molecular Evolutionary Genetic Analysis software (MEGA 5.0). MUSCLE was chosen because it is computationally more suitable for multiple sequence alignments and gives a better accuracy than the conventional CLUSTAL alignment
<xref rid="pgen.1004759-Altschul1" ref-type="bibr">[91]</xref>
. The aligned protein sequences were viewed with the Biological sequence alignment editor (Bioedit), windows 95/98/NT/2K/XP. Identical amino acid residues are marked in black, conserved cysteine residues are marked with asterisks.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s033.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s034">
<label>Figure S34</label>
<caption>
<p>
<bold>The evolutionary history of
<italic>P. gigantea</italic>
hydrophobins with a selected set of closely related basidiomycetes and
<italic>Acremonium alcalophilum</italic>
, an ascomycete.</bold>
Evolutionary relatedness was inferred using the Neighbor-Joining method
<xref rid="pgen.1004759-Saitou1" ref-type="bibr">[80]</xref>
. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches. Branches with blue colour represent hydrophobin sequences from
<italic>P. gigantea</italic>
and branches without support values are less than 50%. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method
<xref rid="pgen.1004759-Zuckerkandl1" ref-type="bibr">[79]</xref>
, and are in the units of the number of amino acid substitutions per site. The analysis involved 174 amino acid sequences. All ambiguous positions were removed for each sequence pair. There were a total of 155 positions in the final dataset. Evolutionary analyses were conducted in MEGA5
<xref rid="pgen.1004759-Tamura2" ref-type="bibr">[92]</xref>
. Fungal species IDs: |Cersu| (
<italic>Ceriporiopsis subvermispora</italic>
), |Phlgi| (
<italic>Phlebiopsis gigantea</italic>
), |Phchr|(
<italic>Phanerochaete chrysosporium</italic>
), |Gansp| (
<italic>Ganoderma sp</italic>
.), |Phlbr| (
<italic>Phlebia brevispora</italic>
), |Serla_varsha|(
<italic>Serpula lacrymans</italic>
), |Wolco| (
<italic>Wolfiporia cocos</italic>
), |Hetan| (
<italic>Heterobasidion annosum</italic>
), |Schco| (
<italic>Schizophyllum commune</italic>
), |Copci| (
<italic>Coprinopsis cinerea</italic>
), |Lacbi| (
<italic>Laccaria bicolor</italic>
), |Ustma| (
<italic>Ustilago maydis</italic>
), |Acral| (
<italic>Acremonium alcalophilum)</italic>
. The tree is rooted at
<italic>Acremonium alcalophilum</italic>
, representing class II of hydrophobins.</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s034.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s035">
<label>Figure S35</label>
<caption>
<p>
<bold>Chromatogram of loblolly pine wood acetone extract.</bold>
</p>
<p>(EPS)</p>
</caption>
<media xlink:href="pgen.1004759.s035.eps">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s036">
<label>Table S1</label>
<caption>
<p>
<bold>Genome assembly.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s036.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s037">
<label>Table S2</label>
<caption>
<p>
<bold>Annotation.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s037.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s038">
<label>Table S3</label>
<caption>
<p>
<bold>Transcript profiles of response regulator genes clustered on scaffold.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s038.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s039">
<label>Table S4</label>
<caption>
<p>
<bold>Copper radical oxidases (CROs) of
<italic>P. Gigantea.</italic>
</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s039.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s040">
<label>Table S5</label>
<caption>
<p>
<bold>Expression of
<italic>P. gigantea</italic>
GMC oxidoreductases in solvent extracted lodgepole pine wood (ELP) and non-extracted lodgepole pine wood (NELP).</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s040.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s041">
<label>Table S6</label>
<caption>
<p>
<bold>Multicopper oxidases of
<italic>P. gigantea.</italic>
</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s041.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s042">
<label>Table S7</label>
<caption>
<p>
<bold>Glycoside hydrolase comparisons of brown-rot (BR) and white-rot (WR) fungi.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s042.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s043">
<label>Table S8</label>
<caption>
<p>
<bold>Carbohydrate esterase comparisons of brown-rot (BR) and white-rot (WR) fungi.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s043.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s044">
<label>Table S9</label>
<caption>
<p>
<bold>Polysaccharide lyase comparisons of brown-rot (BR) and white-rot (WR) fungi.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s044.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s045">
<label>Table S10</label>
<caption>
<p>
<bold>Protein features and regulation of lytic polysaccharide monooxygenases (LPMO) in
<italic>P. gigantea.</italic>
</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s045.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s046">
<label>Table S11</label>
<caption>
<p>
<bold>Properties of the transcription factors for which binding sites have been detected in CAZymes that are significantly regulated during growth on ground pine wood.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s046.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s047">
<label>Table S12</label>
<caption>
<p>
<bold>Transcript levels of potential regulators in
<italic>P. gigantea</italic>
cultures.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s047.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s048">
<label>Table S13</label>
<caption>
<p>
<bold>Overview of the
<italic>P. gigantea</italic>
P450ome and comparison with
<italic>P. chrysosporium and P. carnosa.</italic>
</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s048.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s049">
<label>Table S14</label>
<caption>
<p>
<bold>Clan-, family-, and subfamily- level classification of the P450ome of
<italic>P. gigantea</italic>
and comparison with
<italic>P. chrysosporium</italic>
and
<italic>P. carnosa.</italic>
</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s049.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s050">
<label>Table S15</label>
<caption>
<p>
<bold>Expression profile of
<italic>P. gigantea</italic>
P450ome.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s050.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s051">
<label>Table S16</label>
<caption>
<p>
<bold>Products of annotated putative secondary metabolite genes in the
<italic>P. gigantea</italic>
genome.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s051.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s052">
<label>Table S17</label>
<caption>
<p>
<bold>
<italic>P. gigantea</italic>
hydrophobin models.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s052.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s053">
<label>Table S18</label>
<caption>
<p>
<bold>Fungal species and hydrophobin gene number used for phylogenomics analysis.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s053.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s054">
<label>Table S19</label>
<caption>
<p>
<bold>RNAseq analysis of
<italic>P. gigantea</italic>
hydrophobins.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s054.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s055">
<label>Table S20</label>
<caption>
<p>
<bold>
<italic>P. gigantea</italic>
ABC models.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s055.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s056">
<label>Table S21</label>
<caption>
<p>
<bold>Chemical composition of lipids from Loblolly pine wood (
<italic>Pinus taeda</italic>
).</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s056.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s057">
<label>Text S1</label>
<caption>
<p>
<bold>Detailed description of methods and annotated gene families.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pgen.1004759.s057.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s058">
<label>Dataset S1</label>
<caption>
<p>
<bold>Number and distribution of genes used for PCA.</bold>
</p>
<p>(XLSX)</p>
</caption>
<media xlink:href="pgen.1004759.s058.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pgen.1004759.s059">
<label>Dataset S2</label>
<caption>
<p>
<bold>Complete listing of
<italic>P. gigantea</italic>
protein models and expression data.</bold>
</p>
<p>(XLSX)</p>
</caption>
<media xlink:href="pgen.1004759.s059.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="pgen.1004759-Blanchette1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Blanchette</surname>
<given-names>R</given-names>
</name>
(
<year>1991</year>
)
<article-title>Delignification by wood-decay fungi</article-title>
.
<source>Ann Rev Phytopath</source>
<volume>29</volume>
:
<fpage>381</fpage>
<lpage>398</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Eriksson1">
<label>2</label>
<mixed-citation publication-type="other">Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components; Timell TE, editor. Berlin: Springer-Verlag.</mixed-citation>
</ref>
<ref id="pgen.1004759-Rayner1">
<label>3</label>
<mixed-citation publication-type="other">Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Chichester: John Wiley and Sons.</mixed-citation>
</ref>
<ref id="pgen.1004759-Kaarik1">
<label>4</label>
<mixed-citation publication-type="book">Kaarik AA (1974) Decomposition of wood. In: Dickinson CH, Pugh GJF, editors.Biology of plant litter composition.New York: Academic Press. pp.129–174.</mixed-citation>
</ref>
<ref id="pgen.1004759-Shigo1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shigo</surname>
<given-names>AL</given-names>
</name>
(
<year>1967</year>
)
<article-title>Succession of organisms in discoloration and decay wood</article-title>
.
<source>Int Rev For Res</source>
<volume>2</volume>
:
<fpage>237</fpage>
<lpage>299</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Gutierrez1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gutierrez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Del Rio</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Martinez</surname>
<given-names>AT</given-names>
</name>
(
<year>2009</year>
)
<article-title>Microbial and enzymatic control of pitch in the pulp and paper industry</article-title>
.
<source>Appl Microbiol Biotechnol</source>
<volume>82</volume>
:
<fpage>1005</fpage>
<lpage>1018</lpage>
.
<pub-id pub-id-type="pmid">19242691</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Garbelotto1">
<label>7</label>
<mixed-citation publication-type="other">Garbelotto M, Guglielmo F, Mascheretti S, Croucher PJ, Gonthier P (2013) Population genetic analyses provide insights on the introduction pathway and spread patterns of the North American forest pathogen
<italic>Heterobasidion irregulare</italic>
in Italy. Mol Ecol 10.1111/mec.12452.</mixed-citation>
</ref>
<ref id="pgen.1004759-Rishbeth1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rishbeth</surname>
<given-names>J</given-names>
</name>
(
<year>1963</year>
)
<article-title>Stump protection against
<italic>Fomes annosus</italic>
</article-title>
.
<source>Annals of Applied Biology</source>
<volume>52</volume>
:
<fpage>63</fpage>
<lpage>77</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Behrendt1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Behrendt</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Blanchette</surname>
<given-names>RA</given-names>
</name>
(
<year>1997</year>
)
<article-title>Biological Processing of Pine Logs for Pulp and Paper Production with
<italic>Phlebiopsis gigantea</italic>
</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>63</volume>
:
<fpage>1995</fpage>
<lpage>2000</lpage>
.
<pub-id pub-id-type="pmid">16535609</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Behrendt2">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Behrendt</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Blanchette</surname>
<given-names>RA</given-names>
</name>
(
<year>2001</year>
)
<article-title>Biological control of blue stain in pulpwood: mechanisms of control used by
<italic>Phlebiopsis gigantea</italic>
</article-title>
.
<source>Holzforschung</source>
<volume>55</volume>
:
<fpage>238</fpage>
<lpage>245</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Fischer1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fischer</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Akhtar</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Blanchette</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Burnes</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Messner</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>1994</year>
)
<article-title>Reduction in resin content in wood chips during experimental biological pulping processes</article-title>
.
<source>Holzforschung</source>
<volume>48</volume>
:
<fpage>285</fpage>
<lpage>290</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-MartinezInigo1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Martinez-Inigo</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Immerzeel</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Gutierrez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>del Rio</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Sierra-Alvarez</surname>
<given-names>R</given-names>
</name>
(
<year>1999</year>
)
<article-title>Biodegradability of extractives in sapwood and heartwood from Scots Pine by sapstain and white rot fungi</article-title>
.
<source>Holzforschung</source>
<volume>53</volume>
:
<fpage>247</fpage>
<lpage>252</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Adomas1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adomas</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Eklund</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Johansson</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Asiegbu</surname>
<given-names>FO</given-names>
</name>
(
<year>2006</year>
)
<article-title>Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between
<italic>Phlebiopsis gigantea</italic>
and
<italic>Heterobasidion parviporum</italic>
</article-title>
.
<source>FEMS Microbiol Ecol</source>
<volume>57</volume>
:
<fpage>26</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="pmid">16819947</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Kersten1">
<label>14</label>
<mixed-citation publication-type="other">Kersten P, Cullen D (2013) Recent advances on the genomics of litter- and soil-inhabiting Agaricomycetes. Genomics of Soil- and Plant-Associated Fungi: Springer. pp. 311–332.</mixed-citation>
</ref>
<ref id="pgen.1004759-Baldrian1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Baldrian</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Valaskova</surname>
<given-names>V</given-names>
</name>
(
<year>2008</year>
)
<article-title>Degradation of cellulose by basidiomycetous fungi</article-title>
.
<source>FEMS Microbiol Rev</source>
<volume>32</volume>
:
<fpage>501</fpage>
<lpage>521</lpage>
.
<pub-id pub-id-type="pmid">18371173</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Cantarel1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cantarel</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>Coutinho</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Rancurel</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Bernard</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Lombard</surname>
<given-names>V</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics</article-title>
.
<source>Nucleic Acids Res</source>
<volume>37</volume>
:
<fpage>D233</fpage>
<lpage>238</lpage>
.
<pub-id pub-id-type="pmid">18838391</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Hori1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hori</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Gaskell</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Igarashi</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Samejima</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hibbett</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Genome-wide analysis of polysaccharide degrading enzymes in eleven white- and brown-rot polyporales provides insight into mechanisms of wood decay</article-title>
.
<source>Mycologia</source>
<volume>105</volume>
:
<fpage>1412</fpage>
<lpage>1427</lpage>
.
<pub-id pub-id-type="pmid">23935027</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Bey1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bey</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Poidevin</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Henrissat</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Coutinho</surname>
<given-names>PM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from
<italic>Podospora anserina</italic>
</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>79</volume>
:
<fpage>488</fpage>
<lpage>496</lpage>
.
<pub-id pub-id-type="pmid">23124232</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Quinlan1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Quinlan</surname>
<given-names>RJ</given-names>
</name>
,
<name>
<surname>Sweeney</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Lo Leggio</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Otten</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Poulsen</surname>
<given-names>JC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>108</volume>
:
<fpage>15079</fpage>
<lpage>15084</lpage>
.
<pub-id pub-id-type="pmid">21876164</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Westereng1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Westereng</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Ishida</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Vaaje-Kolstad</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Eijsink</surname>
<given-names>VG</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>The putative endoglucanase PcGH61D from
<italic>Phanerochaete chrysosporium</italic>
is a metal-dependent oxidative enzyme that cleaves cellulose</article-title>
.
<source>PLoS ONE</source>
<volume>6</volume>
:
<fpage>e27807</fpage>
.
<pub-id pub-id-type="pmid">22132148</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Floudas1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Floudas</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Binder</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Barry</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Blanchette</surname>
<given-names>RA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes</article-title>
.
<source>Science</source>
<volume>336</volume>
:
<fpage>1715</fpage>
<lpage>1719</lpage>
.
<pub-id pub-id-type="pmid">22745431</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-FernandezFueyo1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fernandez-Fueyo</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Ruiz-Duenas</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Ferreira</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Floudas</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Hibbett</surname>
<given-names>DS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Comparative genomics of
<italic>Ceriporiopsis subvermispora</italic>
and
<italic>Phanerochaete chrysosporium</italic>
provide insight into selective ligninolysis</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>109</volume>
:
<fpage>5458</fpage>
<lpage>5463</lpage>
.
<pub-id pub-id-type="pmid">22434909</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Morgenstern1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morgenstern</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Klopman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hibbett</surname>
<given-names>DS</given-names>
</name>
(
<year>2008</year>
)
<article-title>Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes</article-title>
.
<source>J Mol Evol</source>
<volume>66</volume>
:
<fpage>243</fpage>
<lpage>257</lpage>
.
<pub-id pub-id-type="pmid">18292958</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Kawai1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kawai</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Asukai</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ohya</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Okita</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Ito</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Degradation of non-phenolic beta-O-4 susbstructure and of polymeric lignin model compounds by laccase of
<italic>Coriolus versicolo</italic>
r in the presence of 1-hydroxybenzotriazole</article-title>
.
<source>FEMS Microbiol Lett</source>
<volume>170</volume>
:
<fpage>51</fpage>
<lpage>57</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Bourbonnais1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bourbonnais</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Paice</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Freiermuth</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Bodie</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Borneman</surname>
<given-names>S</given-names>
</name>
(
<year>1997</year>
)
<article-title>Reactivities of various mediators and laccases with kraft pulp and lignin model compounds</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>63</volume>
:
<fpage>4627</fpage>
<lpage>4632</lpage>
.
<pub-id pub-id-type="pmid">16535747</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Eggert1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eggert</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Temp</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Eriksson</surname>
<given-names>K</given-names>
</name>
(
<year>1997</year>
)
<article-title>Laccase is essential for lignin degradation by the white-rot fungus
<italic>Pycnoporus cinnabarinus</italic>
</article-title>
.
<source>FEBS Lett</source>
<volume>407</volume>
:
<fpage>89</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="pmid">9141487</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Martinez1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Martinez</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Larrondo</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Putnam</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Sollewijn Gelpke</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Genome sequence of the lignocellulose degrading fungus
<italic>Phanerochaete chrysosporium</italic>
strain RP78</article-title>
.
<source>Nat Biotechnol</source>
<volume>22</volume>
:
<fpage>695</fpage>
<lpage>700</lpage>
.
<pub-id pub-id-type="pmid">15122302</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Larrondo1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Larrondo</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Salas</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Melo</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Vicuna</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>D</given-names>
</name>
(
<year>2003</year>
)
<article-title>A novel extracellular multicopper oxidase from
<italic>Phanerochaete chrysosporium</italic>
with ferroxidase activity</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>69</volume>
:
<fpage>6257</fpage>
<lpage>6263</lpage>
.
<pub-id pub-id-type="pmid">14532088</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Hoegger1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hoegger</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Kilaru</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>James</surname>
<given-names>TY</given-names>
</name>
,
<name>
<surname>Thacker</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Kües</surname>
<given-names>U</given-names>
</name>
(
<year>2006</year>
)
<article-title>Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences</article-title>
.
<source>FEBS J</source>
<volume>273</volume>
:
<fpage>2308</fpage>
<lpage>2326</lpage>
.
<pub-id pub-id-type="pmid">16650005</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Levasseur1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Levasseur</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Drula</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Lombard</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Coutinho</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Henrissat</surname>
<given-names>B</given-names>
</name>
(
<year>2013</year>
)
<article-title>Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes</article-title>
.
<source>Biotechnol Biofuels</source>
<volume>6</volume>
:
<fpage>41</fpage>
.
<pub-id pub-id-type="pmid">23514094</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Bastian1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bastian</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Rekowski</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Witte</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Heckmann-Pohl</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Giffhorn</surname>
<given-names>F</given-names>
</name>
(
<year>2005</year>
)
<article-title>Engineering of pyranose 2-oxidase from
<italic>Peniophora gigantea</italic>
towards improved thermostability and catalytic efficiency</article-title>
.
<source>Appl Microbiol Biotechnol</source>
<volume>67</volume>
:
<fpage>654</fpage>
<lpage>663</lpage>
.
<pub-id pub-id-type="pmid">15660220</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Yadav1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yadav</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Soellner</surname>
<given-names>MB</given-names>
</name>
,
<name>
<surname>Loper</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Mishra</surname>
<given-names>PK</given-names>
</name>
(
<year>2003</year>
)
<article-title>Tandem cytochrome P450 monooxygenase genes and splice variants in the white rot fungus
<italic>Phanerochaete chrysosporium</italic>
: cloning, sequence analysis, and regulation of differential expression</article-title>
.
<source>Fungal Genet Biol</source>
<volume>38</volume>
:
<fpage>10</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="pmid">12553932</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Syed1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Syed</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Porollo</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lam</surname>
<given-names>YW</given-names>
</name>
,
<name>
<surname>Grimmett</surname>
<given-names>PE</given-names>
</name>
,
<name>
<surname>Yadav</surname>
<given-names>JS</given-names>
</name>
(
<year>2013</year>
)
<article-title>CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>79</volume>
:
<fpage>2692</fpage>
<lpage>2702</lpage>
.
<pub-id pub-id-type="pmid">23416995</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Syed2">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Syed</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Yadav</surname>
<given-names>JS</given-names>
</name>
(
<year>2012</year>
)
<article-title>P450 monooxygenases (P450ome) of the model white rot fungus
<italic>Phanerochaete chrysosporium</italic>
</article-title>
.
<source>Crit Rev Microbiol</source>
<volume>38</volume>
:
<fpage>339</fpage>
<lpage>363</lpage>
.
<pub-id pub-id-type="pmid">22624627</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Dowd1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dowd</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Buckley</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Sheehan</surname>
<given-names>D</given-names>
</name>
(
<year>1997</year>
)
<article-title>Glutathione S-transferases from the white-rot fungus,
<italic>Phanerochaete chrysosporium</italic>
</article-title>
.
<source>Biochem J 324 (Pt</source>
<volume>1)</volume>
:
<fpage>243</fpage>
<lpage>248</lpage>
.
<pub-id pub-id-type="pmid">9164863</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Reiser1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reiser</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Muheim</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hardegger</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Frank</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Fiechter</surname>
<given-names>A</given-names>
</name>
(
<year>1994</year>
)
<article-title>Aryl-alcohol dehydrogenase from the white-rot fungus
<italic>Phanerochaete chrysosporium</italic>
: gene cloning, sequence analysis, expression and purification of recombinant protein</article-title>
.
<source>J Biol Chem</source>
<volume>269</volume>
:
<fpage>28152</fpage>
<lpage>28159</lpage>
.
<pub-id pub-id-type="pmid">7961751</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Hibbett1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hibbett</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Donoghue</surname>
<given-names>MJ</given-names>
</name>
(
<year>2001</year>
)
<article-title>Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes</article-title>
.
<source>Syst Biol</source>
<volume>50</volume>
:
<fpage>215</fpage>
<lpage>242</lpage>
.
<pub-id pub-id-type="pmid">12116929</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Grigoriev1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Grigoriev</surname>
<given-names>IV</given-names>
</name>
,
<name>
<surname>Nordberg</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Shabalov</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Aerts</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Cantor</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>The genome portal of the Department of Energy Joint Genome Institute</article-title>
.
<source>Nucleic Acids Res</source>
<volume>40</volume>
:
<fpage>D26</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">22110030</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Riley1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Riley</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Salamov</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>DW</given-names>
</name>
,
<name>
<surname>Nagy</surname>
<given-names>LG</given-names>
</name>
,
<name>
<surname>Floudas</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2014</year>
)
<article-title>Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>111</volume>
:
<fpage>9923</fpage>
<lpage>9928</lpage>
.
<pub-id pub-id-type="pmid">24958869</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Sjstrm1">
<label>40</label>
<mixed-citation publication-type="book">Sjöström E (1993) Wood Chemistry. Fundamentals and Applications. San Diego: Academic Press. 293 p.</mixed-citation>
</ref>
<ref id="pgen.1004759-Kersten2">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kersten</surname>
<given-names>PJ</given-names>
</name>
(
<year>1990</year>
)
<article-title>Glyoxal oxidase of
<italic>Phanerochaete chrysosporium</italic>
: Its characterization and activation by lignin peroxidase</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>87</volume>
:
<fpage>2936</fpage>
<lpage>2940</lpage>
.
<pub-id pub-id-type="pmid">11607073</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-deKoker1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Koker</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Mozuch</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gaskell</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kersten</surname>
<given-names>PJ</given-names>
</name>
(
<year>2004</year>
)
<article-title>Pyranose 2-oxidase from
<italic>Phanerochaete chrysosporium</italic>
: isolation from solid substrate, protein purification, and characterization of gene structure and regulation</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>70</volume>
:
<fpage>5794</fpage>
<lpage>5800</lpage>
.
<pub-id pub-id-type="pmid">15466516</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Giffhorn1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Giffhorn</surname>
<given-names>F</given-names>
</name>
(
<year>2000</year>
)
<article-title>Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry</article-title>
.
<source>Appl Microbiol Biotechnol</source>
<volume>54</volume>
:
<fpage>727</fpage>
<lpage>740</lpage>
.
<pub-id pub-id-type="pmid">11152063</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Sun1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sun</surname>
<given-names>HW</given-names>
</name>
,
<name>
<surname>Plapp</surname>
<given-names>BV</given-names>
</name>
(
<year>1992</year>
)
<article-title>Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family</article-title>
.
<source>J Mol Evol</source>
<volume>34</volume>
:
<fpage>522</fpage>
<lpage>535</lpage>
.
<pub-id pub-id-type="pmid">1593644</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Martinez2">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Martinez</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Challacombe</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Morgenstern</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Hibbett</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Schmoll</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Genome, transcriptome, and secretome analysis of wood decay fungus
<italic>Postia placenta</italic>
supports unique mechanisms of lignocellulose conversion</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>106</volume>
:
<fpage>1954</fpage>
<lpage>1959</lpage>
.
<pub-id pub-id-type="pmid">19193860</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Eastwood1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eastwood</surname>
<given-names>DC</given-names>
</name>
,
<name>
<surname>Floudas</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Binder</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Majcherczyk</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Schneider</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi</article-title>
.
<source>Science</source>
<volume>333</volume>
:
<fpage>762</fpage>
<lpage>765</lpage>
.
<pub-id pub-id-type="pmid">21764756</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Langston1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Langston</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Shaghasi</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Abbate</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Vlasenko</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>77</volume>
:
<fpage>7007</fpage>
<lpage>7015</lpage>
.
<pub-id pub-id-type="pmid">21821740</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Phillips1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Phillips</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Beeson</surname>
<given-names>WT</given-names>
</name>
,
<name>
<surname>Cate</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Marletta</surname>
<given-names>MA</given-names>
</name>
(
<year>2011</year>
)
<article-title>Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by
<italic>Neurospora crassa</italic>
</article-title>
.
<source>ACS Chem Biol</source>
<volume>6</volume>
:
<fpage>1399</fpage>
<lpage>1406</lpage>
.
<pub-id pub-id-type="pmid">22004347</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Macdonald1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Macdonald</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Doering</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Canam</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Gong</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Guttman</surname>
<given-names>DS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Transcriptomic responses of the softwood-degrading white-rot fungus
<italic>Phanerochaete carnosa</italic>
during growth on coniferous and deciduous wood</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>77</volume>
:
<fpage>3211</fpage>
<lpage>3218</lpage>
.
<pub-id pub-id-type="pmid">21441342</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Dorado1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dorado</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Claassen</surname>
<given-names>FW</given-names>
</name>
,
<name>
<surname>van Beek</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Lenon</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Wijnberg</surname>
<given-names>JB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Elimination and detoxification of softwood extractives by white-rot fungi</article-title>
.
<source>J Biotechnol</source>
<volume>80</volume>
:
<fpage>231</fpage>
<lpage>240</lpage>
.
<pub-id pub-id-type="pmid">10949313</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Gutierrez2">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gutierrez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>del Rio</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Gonzalez-Vila</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Martin</surname>
<given-names>F</given-names>
</name>
(
<year>1998</year>
)
<article-title>Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography</article-title>
.
<source>J Chromatogr</source>
<volume>823</volume>
:
<fpage>449</fpage>
<lpage>455</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Ishihama1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ishihama</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Oda</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Tabata</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Nagasu</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein</article-title>
.
<source>Mol Cell Proteomics</source>
<volume>4</volume>
:
<fpage>1265</fpage>
<lpage>1272</lpage>
.
<pub-id pub-id-type="pmid">15958392</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Daniel1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Daniel</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Volc</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Filonova</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Plihal</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Kubatova</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Characteristics of
<italic>Gloeophyllum trabeum</italic>
alcohol oxidase, an extracellular source of H
<sub>2</sub>
O
<sub>2</sub>
in brown rot decay of wood</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>73</volume>
:
<fpage>6241</fpage>
<lpage>6253</lpage>
.
<pub-id pub-id-type="pmid">17660304</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Bendtsen1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bendtsen</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Blom</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Von Heijne</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
(
<year>2004</year>
)
<article-title>Feature-based prediction of non-classical and leaderless protein secretion</article-title>
.
<source>Protein engineering, design & selection: PEDS</source>
<volume>17</volume>
:
<fpage>349</fpage>
<lpage>356</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-vanBeek1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>van Beek</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Claassen</surname>
<given-names>FW</given-names>
</name>
,
<name>
<surname>Dorado</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Godejohann</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sierra-Alvarez</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Fungal biotransformation products of dehydroabietic acid</article-title>
.
<source>J Nat Prod</source>
<volume>70</volume>
:
<fpage>154</fpage>
<lpage>159</lpage>
.
<pub-id pub-id-type="pmid">17315956</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Adams1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adams</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Aylward</surname>
<given-names>FO</given-names>
</name>
,
<name>
<surname>Adams</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Erbilgin</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Aukema</surname>
<given-names>BH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>79</volume>
:
<fpage>3468</fpage>
<lpage>3475</lpage>
.
<pub-id pub-id-type="pmid">23542624</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Kumar1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kumar</surname>
<given-names>SV</given-names>
</name>
,
<name>
<surname>Phale</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Durani</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Wangikar</surname>
<given-names>PP</given-names>
</name>
(
<year>2003</year>
)
<article-title>Combined sequence and structure analysis of the fungal laccase family</article-title>
.
<source>Biotechnol Bioeng</source>
<volume>83</volume>
:
<fpage>386</fpage>
<lpage>394</lpage>
.
<pub-id pub-id-type="pmid">12800133</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Hofrichter1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hofrichter</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ullrich</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pecyna</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Liers</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Lundell</surname>
<given-names>T</given-names>
</name>
(
<year>2010</year>
)
<article-title>New and classic families of secreted fungal heme peroxidases</article-title>
.
<source>Appl Microbiol Biotechnol</source>
<volume>87</volume>
:
<fpage>871</fpage>
<lpage>897</lpage>
.
<pub-id pub-id-type="pmid">20495915</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Liers1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liers</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Pecyna</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Kellner</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Worrich</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Zorn</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases</article-title>
.
<source>Appl Microbiol Biotechnol</source>
<volume>97</volume>
:
<fpage>5839</fpage>
<lpage>5849</lpage>
.
<pub-id pub-id-type="pmid">23111597</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Agger1">
<label>60</label>
<mixed-citation publication-type="other">Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, et al. (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 10.1073/pnas.1323629111.</mixed-citation>
</ref>
<ref id="pgen.1004759-VaajeKolstad1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vaaje-Kolstad</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Westereng</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Horn</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Zhai</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides</article-title>
.
<source>Science</source>
<volume>330</volume>
:
<fpage>219</fpage>
<lpage>222</lpage>
.
<pub-id pub-id-type="pmid">20929773</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-VandenWymelenberg1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vanden Wymelenberg</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Minges</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Sabat</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Martinez</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Aerts</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Computational analysis of the
<italic>Phanerochaete chrysosporium</italic>
v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveals complex mixtures of secreted proteins</article-title>
.
<source>Fungal Genet Biol</source>
<volume>43</volume>
:
<fpage>343</fpage>
<lpage>356</lpage>
.
<pub-id pub-id-type="pmid">16524749</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Wang1">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lim</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>DiGuistini</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Robertson</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Bohlmann</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to
<italic>Grosmannia clavigera</italic>
, a bark beetle-associated fungal pathogen of pine trees</article-title>
.
<source>New Phytol</source>
<volume>197</volume>
:
<fpage>886</fpage>
<lpage>898</lpage>
.
<pub-id pub-id-type="pmid">23252416</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Matsuzaki1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matsuzaki</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Shimizu</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wariishi</surname>
<given-names>H</given-names>
</name>
(
<year>2008</year>
)
<article-title>Proteomic and metabolomic analyses of the white-rot fungus
<italic>Phanerochaete chrysosporium</italic>
exposed to exogenous benzoic acid</article-title>
.
<source>J Proteome Res</source>
<volume>7</volume>
:
<fpage>2342</fpage>
<lpage>2350</lpage>
.
<pub-id pub-id-type="pmid">18435559</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Shimizu1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shimizu</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Yuda</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Tanaka</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Wariishi</surname>
<given-names>H</given-names>
</name>
(
<year>2005</year>
)
<article-title>Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete
<italic>Phanerochaete chrysosporium</italic>
against exogenous addition of vanillin</article-title>
.
<source>Proteomics</source>
<volume>5</volume>
:
<fpage>3919</fpage>
<lpage>3931</lpage>
.
<pub-id pub-id-type="pmid">16217726</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Annesi1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Annesi</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Curcio</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>D'Amico</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Motta</surname>
<given-names>E</given-names>
</name>
(
<year>2005</year>
)
<article-title>Biological control of
<italic>Heterobasidion annosum</italic>
on
<italic>Pinus pinea</italic>
by
<italic>Phlebiopsis gigantea</italic>
</article-title>
.
<source>Forest Pathology</source>
<volume>35</volume>
:
<fpage>127</fpage>
<lpage>134</lpage>
.</mixed-citation>
</ref>
<ref id="pgen.1004759-Munir1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Munir</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Yoon</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Tokimatsu</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Hattori</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Shimada</surname>
<given-names>M</given-names>
</name>
(
<year>2001</year>
)
<article-title>A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete
<italic>Fomitopsis palustris</italic>
</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>98</volume>
:
<fpage>11126</fpage>
<lpage>11130</lpage>
.
<pub-id pub-id-type="pmid">11553780</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Blanchette2">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Blanchette</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Held</surname>
<given-names>BW</given-names>
</name>
,
<name>
<surname>Arenz</surname>
<given-names>BE</given-names>
</name>
,
<name>
<surname>Jurgens</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Baltes</surname>
<given-names>NJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>An Antarctic hot spot for fungi at Shackleton's historic hut on Cape Royds</article-title>
.
<source>Microb Ecol</source>
<volume>60</volume>
:
<fpage>29</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="pmid">20386896</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Grigoriev2">
<label>69</label>
<mixed-citation publication-type="other">Grigoriev IV, Martinez DA, Salamov AA (2006) Fungal genomic annotation. In: Arora DK, Berka RA, Singh GB, editors.Applied Mycology and Biotechnology.Amsterdam: Elsevier. pp. 123–142.</mixed-citation>
</ref>
<ref id="pgen.1004759-Parra1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parra</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Bradnam</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Korf</surname>
<given-names>I</given-names>
</name>
(
<year>2007</year>
)
<article-title>CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes</article-title>
.
<source>Bioinformatics</source>
<volume>23</volume>
:
<fpage>1061</fpage>
<lpage>1067</lpage>
.
<pub-id pub-id-type="pmid">17332020</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-VandenWymelenberg2">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vanden Wymelenberg</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Gaskell</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mozuch</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Sabat</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Ralph</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Comparative transcriptome and secretome analysis of wood decay fungi
<italic>Postia placenta</italic>
and
<italic>Phanerochaete chrysosporium</italic>
</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>76</volume>
:
<fpage>3599</fpage>
<lpage>3610</lpage>
.
<pub-id pub-id-type="pmid">20400566</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Ryu1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ryu</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Shary</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Houtman</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Panisko</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Korripally</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Proteomic and functional analysis of the cellulase system expressed by
<italic>Postia placenta</italic>
during brown rot of solid wood</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>77</volume>
:
<fpage>7933</fpage>
<lpage>7941</lpage>
.
<pub-id pub-id-type="pmid">21948841</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Nesvizhskii1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nesvizhskii</surname>
<given-names>AI</given-names>
</name>
,
<name>
<surname>Keller</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kolker</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Aebersold</surname>
<given-names>R</given-names>
</name>
(
<year>2003</year>
)
<article-title>A statistical model for identifying proteins by tandem mass spectrometry</article-title>
.
<source>Anal Chem</source>
<volume>75</volume>
:
<fpage>4646</fpage>
<lpage>4658</lpage>
.
<pub-id pub-id-type="pmid">14632076</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-VandenWymelenberg3">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vanden Wymelenberg</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Gaskell</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mozuch</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Kersten</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Sabat</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Transcriptome and secretome analysis of
<italic>Phanerochaete chrysosporium</italic>
reveal complex patterns of gene expression</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>75</volume>
:
<fpage>4058</fpage>
<lpage>4068</lpage>
.
<pub-id pub-id-type="pmid">19376920</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Olson1">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Olson</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Aerts</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Asiegbu</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Belbahri</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Bouzid</surname>
<given-names>O</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen</article-title>
.
<source>New Phytol</source>
<volume>194</volume>
:
<fpage>1001</fpage>
<lpage>1013</lpage>
.
<pub-id pub-id-type="pmid">22463738</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-VandenWymelenberg4">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vanden Wymelenberg</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sabat</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Mozuch</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Kersten</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete
<italic>Phanerochaete chrysosporium</italic>
</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>72</volume>
:
<fpage>4871</fpage>
<lpage>4877</lpage>
.
<pub-id pub-id-type="pmid">16820482</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Aspeborg1">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aspeborg</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Coutinho</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Brumer</surname>
<given-names>H</given-names>
<suffix>3rd</suffix>
</name>
,
<name>
<surname>Henrissat</surname>
<given-names>B</given-names>
</name>
(
<year>2012</year>
)
<article-title>Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)</article-title>
.
<source>BMC Evol Biol</source>
<volume>12</volume>
:
<fpage>186</fpage>
.
<pub-id pub-id-type="pmid">22992189</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Rzhetsky1">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rzhetsky</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
(
<year>1992</year>
)
<article-title>Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference</article-title>
.
<source>J Mol Evol</source>
<volume>35</volume>
:
<fpage>367</fpage>
<lpage>375</lpage>
.
<pub-id pub-id-type="pmid">1404422</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Zuckerkandl1">
<label>79</label>
<mixed-citation publication-type="book">Zuckerkandl J, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ, editors.Evolving genes and proteins. New York: Academic Press.</mixed-citation>
</ref>
<ref id="pgen.1004759-Saitou1">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Saitou</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
(
<year>1987</year>
)
<article-title>The neighbor-joining method: a new method for reconstructing phylogenetic trees</article-title>
.
<source>Mol Biol Evol</source>
<volume>4</volume>
:
<fpage>406</fpage>
<lpage>425</lpage>
.
<pub-id pub-id-type="pmid">3447015</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Tamura1">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Dudley</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
(
<year>2007</year>
)
<article-title>MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0</article-title>
.
<source>Mol Biol Evol</source>
<volume>24</volume>
:
<fpage>1596</fpage>
<lpage>1599</lpage>
.
<pub-id pub-id-type="pmid">17488738</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Guillen1">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guillen</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>CS</given-names>
</name>
(
<year>1994</year>
)
<article-title>Anisaldehyde and veratraldehyde acting as redox cycling agents for H
<sub>2</sub>
O
<sub>2</sub>
production by
<italic>Pleurotus eryngii</italic>
</article-title>
.
<source>Appl Environ Microbiol</source>
<volume>60</volume>
:
<fpage>2811</fpage>
<lpage>2817</lpage>
.
<pub-id pub-id-type="pmid">16349349</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Ferreira1">
<label>83</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ferreira</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ruiz-Duenas</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Martinez</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>van Berkel</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Martinez</surname>
<given-names>AT</given-names>
</name>
(
<year>2006</year>
)
<article-title>Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H
<sub>2</sub>
O
<sub>2</sub>
-producing ligninolytic enzyme</article-title>
.
<source>FEBS J</source>
<volume>273</volume>
:
<fpage>4878</fpage>
<lpage>4888</lpage>
.
<pub-id pub-id-type="pmid">16999821</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Cavener1">
<label>84</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cavener</surname>
<given-names>DR</given-names>
</name>
(
<year>1992</year>
)
<article-title>GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities</article-title>
.
<source>J Mol Biol</source>
<volume>223</volume>
:
<fpage>811</fpage>
<lpage>814</lpage>
.
<pub-id pub-id-type="pmid">1542121</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Thompson1">
<label>85</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thompson</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
(
<year>1994</year>
)
<article-title>ClustalW improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice</article-title>
.
<source>Nucleic Acids Res</source>
<volume>22</volume>
:
<fpage>2552</fpage>
<lpage>2556</lpage>
.
<pub-id pub-id-type="pmid">8041617</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Hallberg1">
<label>86</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hallberg</surname>
<given-names>BM</given-names>
</name>
,
<name>
<surname>Henriksson</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Pettersson</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Vasella</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Divne</surname>
<given-names>C</given-names>
</name>
(
<year>2003</year>
)
<article-title>Mechanism of the reductive half-reaction in cellobiose dehydrogenase</article-title>
.
<source>J Biol Chem</source>
<volume>278</volume>
:
<fpage>7160</fpage>
<lpage>7166</lpage>
.
<pub-id pub-id-type="pmid">12493734</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Lettera1">
<label>87</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lettera</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Piscitelli</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Leo</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Birolo</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Pezzella</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Identification of a new member of
<italic>Pleurotus ostreatus</italic>
laccase family from mature fruiting body</article-title>
.
<source>Fungal Biol</source>
<volume>114</volume>
:
<fpage>724</fpage>
<lpage>730</lpage>
.
<pub-id pub-id-type="pmid">20943181</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Kilaru1">
<label>88</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kilaru</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hoegger</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Kües</surname>
<given-names>U</given-names>
</name>
(
<year>2006</year>
)
<article-title>The laccase multi-gene family in
<italic>Coprinopsis cinerea</italic>
has seventeen different members that divide into two distinct subfamilies</article-title>
.
<source>Curr Genet</source>
<volume>50</volume>
:
<fpage>45</fpage>
<lpage>60</lpage>
.
<pub-id pub-id-type="pmid">16775746</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Rhl1">
<label>89</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rühl</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Majcherczyk</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kues</surname>
<given-names>U</given-names>
</name>
(
<year>2013</year>
)
<article-title>Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of
<italic>Coprinopsis cinerea</italic>
strains</article-title>
.
<source>Antonie van Leeuwenhoek</source>
<volume>103</volume>
:
<fpage>1029</fpage>
<lpage>1039</lpage>
.
<pub-id pub-id-type="pmid">23340718</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Kes1">
<label>90</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kües</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Rühl</surname>
<given-names>M</given-names>
</name>
(
<year>2011</year>
)
<article-title>Multiple multi-copper oxidase gene families in basidiomycetes - what for</article-title>
?
<source>Curr Genomics</source>
<volume>12</volume>
:
<fpage>72</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="pmid">21966246</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Altschul1">
<label>91</label>
<mixed-citation publication-type="journal">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Madden</surname>
<given-names>TL</given-names>
</name>
,
<name>
<surname>Schaffer</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
,
<etal>et al</etal>
(
<year>1997</year>
)
<article-title>Gapped BLAST and PSI-BLAST: a new generation of protein database search programs</article-title>
.
<source>Nucleic Acids Res</source>
<volume>25</volume>
:
<fpage>3389</fpage>
<lpage>3402</lpage>
.
<pub-id pub-id-type="pmid">9254694</pub-id>
</mixed-citation>
</ref>
<ref id="pgen.1004759-Tamura2">
<label>92</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Peterson</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Peterson</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Stecher</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods</article-title>
.
<source>Mol Biol Evol</source>
<volume>28</volume>
:
<fpage>2731</fpage>
<lpage>2739</lpage>
.
<pub-id pub-id-type="pmid">21546353</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000070  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000070  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020