Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000606 ( Pmc/Corpus ); précédent : 0000605; suivant : 0000607 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association</title>
<author>
<name sortKey="Kim, Ki Tae" sort="Kim, Ki Tae" uniqKey="Kim K" first="Ki-Tae" last="Kim">Ki-Tae Kim</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Agricultural Biotechnology, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Jongbum" sort="Jeon, Jongbum" uniqKey="Jeon J" first="Jongbum" last="Jeon">Jongbum Jeon</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choi, Jaeyoung" sort="Choi, Jaeyoung" uniqKey="Choi J" first="Jaeyoung" last="Choi">Jaeyoung Choi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheong, Kyeongchae" sort="Cheong, Kyeongchae" uniqKey="Cheong K" first="Kyeongchae" last="Cheong">Kyeongchae Cheong</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Hyeunjeong" sort="Song, Hyeunjeong" uniqKey="Song H" first="Hyeunjeong" last="Song">Hyeunjeong Song</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choi, Gobong" sort="Choi, Gobong" uniqKey="Choi G" first="Gobong" last="Choi">Gobong Choi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Seogchan" sort="Kang, Seogchan" uniqKey="Kang S" first="Seogchan" last="Kang">Seogchan Kang</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University</institution>
<country>University Park, PA, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Yong Hwan" sort="Lee, Yong Hwan" uniqKey="Lee Y" first="Yong-Hwan" last="Lee">Yong-Hwan Lee</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Agricultural Biotechnology, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26925088</idno>
<idno type="pmc">4759460</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759460</idno>
<idno type="RBID">PMC:4759460</idno>
<idno type="doi">10.3389/fpls.2016.00186</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000060</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000060</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association</title>
<author>
<name sortKey="Kim, Ki Tae" sort="Kim, Ki Tae" uniqKey="Kim K" first="Ki-Tae" last="Kim">Ki-Tae Kim</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Agricultural Biotechnology, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Jongbum" sort="Jeon, Jongbum" uniqKey="Jeon J" first="Jongbum" last="Jeon">Jongbum Jeon</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choi, Jaeyoung" sort="Choi, Jaeyoung" uniqKey="Choi J" first="Jaeyoung" last="Choi">Jaeyoung Choi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheong, Kyeongchae" sort="Cheong, Kyeongchae" uniqKey="Cheong K" first="Kyeongchae" last="Cheong">Kyeongchae Cheong</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Hyeunjeong" sort="Song, Hyeunjeong" uniqKey="Song H" first="Hyeunjeong" last="Song">Hyeunjeong Song</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choi, Gobong" sort="Choi, Gobong" uniqKey="Choi G" first="Gobong" last="Choi">Gobong Choi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Seogchan" sort="Kang, Seogchan" uniqKey="Kang S" first="Seogchan" last="Kang">Seogchan Kang</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University</institution>
<country>University Park, PA, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Yong Hwan" sort="Lee, Yong Hwan" uniqKey="Lee Y" first="Yong-Hwan" last="Lee">Yong-Hwan Lee</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Agricultural Biotechnology, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University</institution>
<country>Seoul, South Korea</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Fungal secretome consists of various functional groups of proteins, many of which participate in nutrient acquisition, self-protection, or manipulation of the environment and neighboring organisms. The least characterized component of the secretome is small secreted proteins (SSPs). Some SSPs have been reported to function as effectors, but most remain to be characterized. The composition of major secretome components, such as carbohydrate-active enzymes, proteases, lipases, and oxidoreductases, appear to reflect the lifestyle and ecological niche of individual species. We hypothesize that many SSPs participate in manipulating plants as effectors. Obligate biotrophs likely encode more and diverse effector-like SSPs to suppress host defense compared to necrotrophs, which generally use cell wall degrading enzymes and phytotoxins to kill hosts. Because different secretome prediction workflows have been used in different studies, available secretome data are difficult to integrate for comprehensive comparative studies to test this hypothesis. In this study, SSPs encoded by 136 fungal species were identified from data archived in Fungal Secretome Database (FSD) via a refined secretome workflow. Subsequently, compositions of SSPs and other secretome components were compared in light of taxa and lifestyles. Those species that are intimately associated with host cells, such as biotrophs and symbionts, usually have higher proportion of species-specific SSPs (SSSPs) than hemibiotrophs and necrotrophs, but the latter groups displayed higher proportions of secreted enzymes. Results from our study established a foundation for functional studies on SSPs and will also help understand genomic changes potentially underpinning different fungal lifestyles.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersson, K M" uniqKey="Andersson K">K. M. Andersson</name>
</author>
<author>
<name sortKey="Meerupati, T" uniqKey="Meerupati T">T. Meerupati</name>
</author>
<author>
<name sortKey="Levander, F" uniqKey="Levander F">F. Levander</name>
</author>
<author>
<name sortKey="Friman, E" uniqKey="Friman E">E. Friman</name>
</author>
<author>
<name sortKey="Ahren, D" uniqKey="Ahren D">D. Ahrén</name>
</author>
<author>
<name sortKey="Tunlid, A" uniqKey="Tunlid A">A. Tunlid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birch, P R J" uniqKey="Birch P">P. R. J. Birch</name>
</author>
<author>
<name sortKey="Boevink, P C" uniqKey="Boevink P">P. C. Boevink</name>
</author>
<author>
<name sortKey="Gilroy, E M" uniqKey="Gilroy E">E. M. Gilroy</name>
</author>
<author>
<name sortKey="Hein, I" uniqKey="Hein I">I. Hein</name>
</author>
<author>
<name sortKey="Pritchard, L" uniqKey="Pritchard L">L. Pritchard</name>
</author>
<author>
<name sortKey="Whisson, S C" uniqKey="Whisson S">S. C. Whisson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blumke, A" uniqKey="Blumke A">A. Blümke</name>
</author>
<author>
<name sortKey="Falter, C" uniqKey="Falter C">C. Falter</name>
</author>
<author>
<name sortKey="Herrfurth, C" uniqKey="Herrfurth C">C. Herrfurth</name>
</author>
<author>
<name sortKey="Sode, B" uniqKey="Sode B">B. Sode</name>
</author>
<author>
<name sortKey="Bode, R" uniqKey="Bode R">R. Bode</name>
</author>
<author>
<name sortKey="Sch Fer, W" uniqKey="Sch Fer W">W. Schäfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, N A" uniqKey="Brown N">N. A. Brown</name>
</author>
<author>
<name sortKey="Antoniw, J" uniqKey="Antoniw J">J. Antoniw</name>
</author>
<author>
<name sortKey="Hammond Kosack, K E" uniqKey="Hammond Kosack K">K. E. Hammond-Kosack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, W" uniqKey="Cao W">W. Cao</name>
</author>
<author>
<name sortKey="Maruyama, J" uniqKey="Maruyama J">J. Maruyama</name>
</author>
<author>
<name sortKey="Kitamoto, K" uniqKey="Kitamoto K">K. Kitamoto</name>
</author>
<author>
<name sortKey="Sumikoshi, K" uniqKey="Sumikoshi K">K. Sumikoshi</name>
</author>
<author>
<name sortKey="Terada, T" uniqKey="Terada T">T. Terada</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carvunis, A R" uniqKey="Carvunis A">A. R. Carvunis</name>
</author>
<author>
<name sortKey="Rolland, T" uniqKey="Rolland T">T. Rolland</name>
</author>
<author>
<name sortKey="Wapinski, I" uniqKey="Wapinski I">I. Wapinski</name>
</author>
<author>
<name sortKey="Calderwood, M A" uniqKey="Calderwood M">M. A. Calderwood</name>
</author>
<author>
<name sortKey="Yildirim, M A" uniqKey="Yildirim M">M. A. Yildirim</name>
</author>
<author>
<name sortKey="Simonis, N" uniqKey="Simonis N">N. Simonis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, H X" uniqKey="Chen H">H. X. Chen</name>
</author>
<author>
<name sortKey="Kovalchuk, A" uniqKey="Kovalchuk A">A. Kovalchuk</name>
</author>
<author>
<name sortKey="Kerio, S" uniqKey="Kerio S">S. Keriö</name>
</author>
<author>
<name sortKey="Asiegbu, F O" uniqKey="Asiegbu F">F. O. Asiegbu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K. Chen</name>
</author>
<author>
<name sortKey="Durand, D" uniqKey="Durand D">D. Durand</name>
</author>
<author>
<name sortKey="Farach Colton, M" uniqKey="Farach Colton M">M. Farach-Colton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Q" uniqKey="Cheng Q">Q. Cheng</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Xu, B" uniqKey="Xu B">B. Xu</name>
</author>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S. Zhu</name>
</author>
<author>
<name sortKey="Hu, L" uniqKey="Hu L">L. Hu</name>
</author>
<author>
<name sortKey="Huang, M" uniqKey="Huang M">M. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chi, M H" uniqKey="Chi M">M. H. Chi</name>
</author>
<author>
<name sortKey="Park, S Y" uniqKey="Park S">S. Y. Park</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J. Choi</name>
</author>
<author>
<name sortKey="Cheong, K" uniqKey="Cheong K">K. Cheong</name>
</author>
<author>
<name sortKey="Jung, K" uniqKey="Jung K">K. Jung</name>
</author>
<author>
<name sortKey="Jeon, J" uniqKey="Jeon J">J. Jeon</name>
</author>
<author>
<name sortKey="Lee, G W" uniqKey="Lee G">G. W. Lee</name>
</author>
<author>
<name sortKey="Kang, S" uniqKey="Kang S">S. Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J. Choi</name>
</author>
<author>
<name sortKey="Detry, N" uniqKey="Detry N">N. Détry</name>
</author>
<author>
<name sortKey="Kim, K T" uniqKey="Kim K">K. T. Kim</name>
</author>
<author>
<name sortKey="Asiegbu, F O" uniqKey="Asiegbu F">F. O. Asiegbu</name>
</author>
<author>
<name sortKey="Valkonen, J P T" uniqKey="Valkonen J">J. P. T. Valkonen</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J. Choi</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Jung, K" uniqKey="Jung K">K. Jung</name>
</author>
<author>
<name sortKey="Kang, S" uniqKey="Kang S">S. Kang</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choo, K H" uniqKey="Choo K">K. H. Choo</name>
</author>
<author>
<name sortKey="Tan, T W" uniqKey="Tan T">T. W. Tan</name>
</author>
<author>
<name sortKey="Ranganathan, S" uniqKey="Ranganathan S">S. Ranganathan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cornelis, G R" uniqKey="Cornelis G">G. R. Cornelis</name>
</author>
<author>
<name sortKey="Van Gijsegem, F" uniqKey="Van Gijsegem F">F. Van Gijsegem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deller, S" uniqKey="Deller S">S. Deller</name>
</author>
<author>
<name sortKey="Hammond Kosack, K E" uniqKey="Hammond Kosack K">K. E. Hammond-Kosack</name>
</author>
<author>
<name sortKey="Rudd, J J" uniqKey="Rudd J">J. J. Rudd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dodds, P N" uniqKey="Dodds P">P. N. Dodds</name>
</author>
<author>
<name sortKey="Rathjen, J P" uniqKey="Rathjen J">J. P. Rathjen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duplessis, S" uniqKey="Duplessis S">S. Duplessis</name>
</author>
<author>
<name sortKey="Cuomo, C A" uniqKey="Cuomo C">C. A. Cuomo</name>
</author>
<author>
<name sortKey="Lin, Y C" uniqKey="Lin Y">Y. C. Lin</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A. Aerts</name>
</author>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E. Tisserant</name>
</author>
<author>
<name sortKey="Veneault Fourrey, C" uniqKey="Veneault Fourrey C">C. Veneault-Fourrey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enright, A J" uniqKey="Enright A">A. J. Enright</name>
</author>
<author>
<name sortKey="Van Dongen, S" uniqKey="Van Dongen S">S. Van Dongen</name>
</author>
<author>
<name sortKey="Ouzounis, C A" uniqKey="Ouzounis C">C. A. Ouzounis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, M" uniqKey="Fischer M">M. Fischer</name>
</author>
<author>
<name sortKey="Pleiss, J" uniqKey="Pleiss J">J. Pleiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giraldo, M C" uniqKey="Giraldo M">M. C. Giraldo</name>
</author>
<author>
<name sortKey="Valent, B" uniqKey="Valent B">B. Valent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girard, V" uniqKey="Girard V">V. Girard</name>
</author>
<author>
<name sortKey="Dieryckx, C" uniqKey="Dieryckx C">C. Dieryckx</name>
</author>
<author>
<name sortKey="Job, C" uniqKey="Job C">C. Job</name>
</author>
<author>
<name sortKey="Job, D" uniqKey="Job D">D. Job</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Godfrey, D" uniqKey="Godfrey D">D. Godfrey</name>
</author>
<author>
<name sortKey="Bohlenius, H" uniqKey="Bohlenius H">H. Böhlenius</name>
</author>
<author>
<name sortKey="Pedersen, C" uniqKey="Pedersen C">C. Pedersen</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Emmersen, J" uniqKey="Emmersen J">J. Emmersen</name>
</author>
<author>
<name sortKey="Thordal Christensen, H" uniqKey="Thordal Christensen H">H. Thordal-Christensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gourion, B" uniqKey="Gourion B">B. Gourion</name>
</author>
<author>
<name sortKey="Berrabah, F" uniqKey="Berrabah F">F. Berrabah</name>
</author>
<author>
<name sortKey="Ratet, P" uniqKey="Ratet P">P. Ratet</name>
</author>
<author>
<name sortKey="Stacey, G" uniqKey="Stacey G">G. Stacey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guyon, K" uniqKey="Guyon K">K. Guyon</name>
</author>
<author>
<name sortKey="Balague, C" uniqKey="Balague C">C. Balagué</name>
</author>
<author>
<name sortKey="Roby, D" uniqKey="Roby D">D. Roby</name>
</author>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S. Raffaele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hacquard, S" uniqKey="Hacquard S">S. Hacquard</name>
</author>
<author>
<name sortKey="Joly, D L" uniqKey="Joly D">D. L. Joly</name>
</author>
<author>
<name sortKey="Lin, Y C" uniqKey="Lin Y">Y. C. Lin</name>
</author>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E. Tisserant</name>
</author>
<author>
<name sortKey="Feau, N" uniqKey="Feau N">N. Feau</name>
</author>
<author>
<name sortKey="Delaruelle, C" uniqKey="Delaruelle C">C. Delaruelle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, B G" uniqKey="Hall B">B. G. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horton, P" uniqKey="Horton P">P. Horton</name>
</author>
<author>
<name sortKey="Park, K J" uniqKey="Park K">K. J. Park</name>
</author>
<author>
<name sortKey="Obayashi, T" uniqKey="Obayashi T">T. Obayashi</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N. Fujita</name>
</author>
<author>
<name sortKey="Harada, H" uniqKey="Harada H">H. Harada</name>
</author>
<author>
<name sortKey="Adams Collier, C J" uniqKey="Adams Collier C">C. J. Adams-Collier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, J D G" uniqKey="Jones J">J. D. G. Jones</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="K Ll, L" uniqKey="K Ll L">L. Käll</name>
</author>
<author>
<name sortKey="Krogh, A" uniqKey="Krogh A">A. Krogh</name>
</author>
<author>
<name sortKey="Sonnhammer, E L L" uniqKey="Sonnhammer E">E. L. L. Sonnhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Park, S Y" uniqKey="Park S">S. Y. Park</name>
</author>
<author>
<name sortKey="Mitchell, T K" uniqKey="Mitchell T">T. K. Mitchell</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kloppholz, S" uniqKey="Kloppholz S">S. Kloppholz</name>
</author>
<author>
<name sortKey="Kuhn, H" uniqKey="Kuhn H">H. Kuhn</name>
</author>
<author>
<name sortKey="Requena, N" uniqKey="Requena N">N. Requena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krijger, J J" uniqKey="Krijger J">J. J. Krijger</name>
</author>
<author>
<name sortKey="Thon, M R" uniqKey="Thon M">M. R. Thon</name>
</author>
<author>
<name sortKey="Deising, H B" uniqKey="Deising H">H. B. Deising</name>
</author>
<author>
<name sortKey="Wirsel, S G R" uniqKey="Wirsel S">S. G. R. Wirsel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuo, H C" uniqKey="Kuo H">H. C. Kuo</name>
</author>
<author>
<name sortKey="Hui, S" uniqKey="Hui S">S. Hui</name>
</author>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J. Choi</name>
</author>
<author>
<name sortKey="Asiegbu, F O" uniqKey="Asiegbu F">F. O. Asiegbu</name>
</author>
<author>
<name sortKey="Valkonen, J P T" uniqKey="Valkonen J">J. P. T. Valkonen</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo Presti, L" uniqKey="Lo Presti L">L. Lo Presti</name>
</author>
<author>
<name sortKey="Lanver, D" uniqKey="Lanver D">D. Lanver</name>
</author>
<author>
<name sortKey="Schweizer, G" uniqKey="Schweizer G">G. Schweizer</name>
</author>
<author>
<name sortKey="Tanaka, S" uniqKey="Tanaka S">S. Tanaka</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
<author>
<name sortKey="Tollot, M" uniqKey="Tollot M">M. Tollot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowe, R G T" uniqKey="Lowe R">R. G. T. Lowe</name>
</author>
<author>
<name sortKey="Howlett, B J" uniqKey="Howlett B">B. J. Howlett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, F" uniqKey="Martin F">F. Martin</name>
</author>
<author>
<name sortKey="Aerts, A" uniqKey="Aerts A">A. Aerts</name>
</author>
<author>
<name sortKey="Ahren, D" uniqKey="Ahren D">D. Ahrén</name>
</author>
<author>
<name sortKey="Brun, A" uniqKey="Brun A">A. Brun</name>
</author>
<author>
<name sortKey="Danchin, E G J" uniqKey="Danchin E">E. G. J. Danchin</name>
</author>
<author>
<name sortKey="Duchaussoy, F" uniqKey="Duchaussoy F">F. Duchaussoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, F" uniqKey="Martin F">F. Martin</name>
</author>
<author>
<name sortKey="Kohler, A" uniqKey="Kohler A">A. Kohler</name>
</author>
<author>
<name sortKey="Murat, C" uniqKey="Murat C">C. Murat</name>
</author>
<author>
<name sortKey="Balestrini, R" uniqKey="Balestrini R">R. Balestrini</name>
</author>
<author>
<name sortKey="Coutinho, P M" uniqKey="Coutinho P">P. M. Coutinho</name>
</author>
<author>
<name sortKey="Jaillon, O" uniqKey="Jaillon O">O. Jaillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meinken, J" uniqKey="Meinken J">J. Meinken</name>
</author>
<author>
<name sortKey="Asch, D K" uniqKey="Asch D">D. K. Asch</name>
</author>
<author>
<name sortKey="Neizer Ashun, K A" uniqKey="Neizer Ashun K">K. A. Neizer-Ashun</name>
</author>
<author>
<name sortKey="Chang, G H" uniqKey="Chang G">G. H. Chang</name>
</author>
<author>
<name sortKey="Cooper, C R" uniqKey="Cooper C">C. R. Cooper</name>
</author>
<author>
<name sortKey="Min, X J" uniqKey="Min X">X. J. Min</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plett, J M" uniqKey="Plett J">J. M. Plett</name>
</author>
<author>
<name sortKey="Kemppainen, M" uniqKey="Kemppainen M">M. Kemppainen</name>
</author>
<author>
<name sortKey="Kale, S D" uniqKey="Kale S">S. D. Kale</name>
</author>
<author>
<name sortKey="Kohler, A" uniqKey="Kohler A">A. Kohler</name>
</author>
<author>
<name sortKey="Legue, V" uniqKey="Legue V">V. Legué</name>
</author>
<author>
<name sortKey="Brun, A" uniqKey="Brun A">A. Brun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pliego, C" uniqKey="Pliego C">C. Pliego</name>
</author>
<author>
<name sortKey="Nowara, D" uniqKey="Nowara D">D. Nowara</name>
</author>
<author>
<name sortKey="Bonciani, G" uniqKey="Bonciani G">G. Bonciani</name>
</author>
<author>
<name sortKey="Gheorghe, D M" uniqKey="Gheorghe D">D. M. Gheorghe</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R. Xu</name>
</author>
<author>
<name sortKey="Surana, P" uniqKey="Surana P">P. Surana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
<author>
<name sortKey="Ludowici, V A" uniqKey="Ludowici V">V. A. Ludowici</name>
</author>
<author>
<name sortKey="Hardham, A R" uniqKey="Hardham A">A. R. Hardham</name>
</author>
<author>
<name sortKey="Dodds, P N" uniqKey="Dodds P">P. N. Dodds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rawlings, N D" uniqKey="Rawlings N">N. D. Rawlings</name>
</author>
<author>
<name sortKey="Waller, M" uniqKey="Waller M">M. Waller</name>
</author>
<author>
<name sortKey="Barrett, A J" uniqKey="Barrett A">A. J. Barrett</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A. Bateman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rep, M" uniqKey="Rep M">M. Rep</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riley, R" uniqKey="Riley R">R. Riley</name>
</author>
<author>
<name sortKey="Salamov, A A" uniqKey="Salamov A">A. A. Salamov</name>
</author>
<author>
<name sortKey="Brown, D W" uniqKey="Brown D">D. W. Brown</name>
</author>
<author>
<name sortKey="Nagy, L G" uniqKey="Nagy L">L. G. Nagy</name>
</author>
<author>
<name sortKey="Floudas, D" uniqKey="Floudas D">D. Floudas</name>
</author>
<author>
<name sortKey="Held, B W" uniqKey="Held B">B. W. Held</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogers, L M" uniqKey="Rogers L">L. M. Rogers</name>
</author>
<author>
<name sortKey="Flaishman, M A" uniqKey="Flaishman M">M. A. Flaishman</name>
</author>
<author>
<name sortKey="Kolattukudy, P E" uniqKey="Kolattukudy P">P. E. Kolattukudy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rovenich, H" uniqKey="Rovenich H">H. Rovenich</name>
</author>
<author>
<name sortKey="Boshoven, J C" uniqKey="Boshoven J">J. C. Boshoven</name>
</author>
<author>
<name sortKey="Thomma, B P" uniqKey="Thomma B">B. P. Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santhanam, P" uniqKey="Santhanam P">P. Santhanam</name>
</author>
<author>
<name sortKey="Thomma, B P" uniqKey="Thomma B">B. P. Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, D G O" uniqKey="Saunders D">D. G. O. Saunders</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Cano, L M" uniqKey="Cano L">L. M. Cano</name>
</author>
<author>
<name sortKey="Szabo, L J" uniqKey="Szabo L">L. J. Szabo</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S. Raffaele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schirawski, J" uniqKey="Schirawski J">J. Schirawski</name>
</author>
<author>
<name sortKey="Mannhaupt, G" uniqKey="Mannhaupt G">G. Mannhaupt</name>
</author>
<author>
<name sortKey="Munch, K" uniqKey="Munch K">K. Münch</name>
</author>
<author>
<name sortKey="Brefort, T" uniqKey="Brefort T">T. Brefort</name>
</author>
<author>
<name sortKey="Schipper, K" uniqKey="Schipper K">K. Schipper</name>
</author>
<author>
<name sortKey="Doehlemann, G" uniqKey="Doehlemann G">G. Doehlemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, S M" uniqKey="Schmidt S">S. M. Schmidt</name>
</author>
<author>
<name sortKey="Panstruga, R" uniqKey="Panstruga R">R. Panstruga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seidl, M F" uniqKey="Seidl M">M. F. Seidl</name>
</author>
<author>
<name sortKey="Faino, L" uniqKey="Faino L">L. Faino</name>
</author>
<author>
<name sortKey="Shi Kunne, X" uniqKey="Shi Kunne X">X. Shi-Kunne</name>
</author>
<author>
<name sortKey="Van Den Berg, G C M" uniqKey="Van Den Berg G">G. C. M. van den Berg</name>
</author>
<author>
<name sortKey="Bolton, M D" uniqKey="Bolton M">M. D. Bolton</name>
</author>
<author>
<name sortKey="Thomma, B P" uniqKey="Thomma B">B. P. Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soto, M J" uniqKey="Soto M">M. J. Soto</name>
</author>
<author>
<name sortKey="Sanjuan, J" uniqKey="Sanjuan J">J. Sanjuán</name>
</author>
<author>
<name sortKey="Olivares, J" uniqKey="Olivares J">J. Olivares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spanu, P D" uniqKey="Spanu P">P. D. Spanu</name>
</author>
<author>
<name sortKey="Abbott, J C" uniqKey="Abbott J">J. C. Abbott</name>
</author>
<author>
<name sortKey="Amselem, J" uniqKey="Amselem J">J. Amselem</name>
</author>
<author>
<name sortKey="Burgis, T A" uniqKey="Burgis T">T. A. Burgis</name>
</author>
<author>
<name sortKey="Soanes, D M" uniqKey="Soanes D">D. M. Soanes</name>
</author>
<author>
<name sortKey="Stuber, K" uniqKey="Stuber K">K. Stüber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sreedhar, L" uniqKey="Sreedhar L">L. Sreedhar</name>
</author>
<author>
<name sortKey="Kobayashi, D Y" uniqKey="Kobayashi D">D. Y. Kobayashi</name>
</author>
<author>
<name sortKey="Bunting, T E" uniqKey="Bunting T">T. E. Bunting</name>
</author>
<author>
<name sortKey="Hillman, B I" uniqKey="Hillman B">B. I. Hillman</name>
</author>
<author>
<name sortKey="Belanger, F C" uniqKey="Belanger F">F. C. Belanger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staats, C C" uniqKey="Staats C">C. C. Staats</name>
</author>
<author>
<name sortKey="Junges, A" uniqKey="Junges A">A. Junges</name>
</author>
<author>
<name sortKey="Guedes, R L M" uniqKey="Guedes R">R. L. M. Guedes</name>
</author>
<author>
<name sortKey="Thompson, C E" uniqKey="Thompson C">C. E. Thompson</name>
</author>
<author>
<name sortKey="De Morais, G L" uniqKey="De Morais G">G. L. de Morais</name>
</author>
<author>
<name sortKey="Boldo, J T" uniqKey="Boldo J">J. T. Boldo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I. Stergiopoulos</name>
</author>
<author>
<name sortKey="De Wit, P J" uniqKey="De Wit P">P. J. de Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I. Stergiopoulos</name>
</author>
<author>
<name sortKey="Kourmpetis, Y A I" uniqKey="Kourmpetis Y">Y. A. I. Kourmpetis</name>
</author>
<author>
<name sortKey="Slot, J C" uniqKey="Slot J">J. C. Slot</name>
</author>
<author>
<name sortKey="Bakker, F T" uniqKey="Bakker F">F. T. Bakker</name>
</author>
<author>
<name sortKey="De Wit, P J" uniqKey="De Wit P">P. J. De Wit</name>
</author>
<author>
<name sortKey="Rokas, A" uniqKey="Rokas A">A. Rokas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E. Tisserant</name>
</author>
<author>
<name sortKey="Kohler, A" uniqKey="Kohler A">A. Kohler</name>
</author>
<author>
<name sortKey="Dozolme Seddas, P" uniqKey="Dozolme Seddas P">P. Dozolme-Seddas</name>
</author>
<author>
<name sortKey="Balestrini, R" uniqKey="Balestrini R">R. Balestrini</name>
</author>
<author>
<name sortKey="Benabdellah, K" uniqKey="Benabdellah K">K. Benabdellah</name>
</author>
<author>
<name sortKey="Colard, A" uniqKey="Colard A">A. Colard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E. Tisserant</name>
</author>
<author>
<name sortKey="Malbreil, M" uniqKey="Malbreil M">M. Malbreil</name>
</author>
<author>
<name sortKey="Kuo, A" uniqKey="Kuo A">A. Kuo</name>
</author>
<author>
<name sortKey="Kohler, A" uniqKey="Kohler A">A. Kohler</name>
</author>
<author>
<name sortKey="Symeonidi, A" uniqKey="Symeonidi A">A. Symeonidi</name>
</author>
<author>
<name sortKey="Balestrini, R" uniqKey="Balestrini R">R. Balestrini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urban, M" uniqKey="Urban M">M. Urban</name>
</author>
<author>
<name sortKey="Pant, R" uniqKey="Pant R">R. Pant</name>
</author>
<author>
<name sortKey="Raghunath, A" uniqKey="Raghunath A">A. Raghunath</name>
</author>
<author>
<name sortKey="Irvine, A G" uniqKey="Irvine A">A. G. Irvine</name>
</author>
<author>
<name sortKey="Pedro, H" uniqKey="Pedro H">H. Pedro</name>
</author>
<author>
<name sortKey="Hammond Kosack, K E" uniqKey="Hammond Kosack K">K. E. Hammond-Kosack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Esse, H P" uniqKey="Van Esse H">H. P. van Esse</name>
</author>
<author>
<name sortKey="Bolton, M D" uniqKey="Bolton M">M. D. Bolton</name>
</author>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I. Stergiopoulos</name>
</author>
<author>
<name sortKey="De Wit, P J" uniqKey="De Wit P">P. J. de Wit</name>
</author>
<author>
<name sortKey="Thomma, B P" uniqKey="Thomma B">B. P. Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vargas, W A" uniqKey="Vargas W">W. A. Vargas</name>
</author>
<author>
<name sortKey="Mandawe, J C" uniqKey="Mandawe J">J. C. Mandawe</name>
</author>
<author>
<name sortKey="Kenerley, C M" uniqKey="Kenerley C">C. M. Kenerley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whisson, S C" uniqKey="Whisson S">S. C. Whisson</name>
</author>
<author>
<name sortKey="Boevink, P C" uniqKey="Boevink P">P. C. Boevink</name>
</author>
<author>
<name sortKey="Moleleki, L" uniqKey="Moleleki L">L. Moleleki</name>
</author>
<author>
<name sortKey="Avrova, A O" uniqKey="Avrova A">A. O. Avrova</name>
</author>
<author>
<name sortKey="Morales, J G" uniqKey="Morales J">J. G. Morales</name>
</author>
<author>
<name sortKey="Gilroy, E M" uniqKey="Gilroy E">E. M. Gilroy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z. Xu</name>
</author>
<author>
<name sortKey="Hao, B" uniqKey="Hao B">B. Hao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Mao, X" uniqKey="Mao X">X. Mao</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Mao, F" uniqKey="Mao F">F. Mao</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zamioudis, C" uniqKey="Zamioudis C">C. Zamioudis</name>
</author>
<author>
<name sortKey="Pieterse, C M J" uniqKey="Pieterse C">C. M. J. Pieterse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Xu, J R" uniqKey="Xu J">J. R. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z. Zhao</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Xu, J R" uniqKey="Xu J">J. R. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuccaro, A" uniqKey="Zuccaro A">A. Zuccaro</name>
</author>
<author>
<name sortKey="Lahrmann, U" uniqKey="Lahrmann U">U. Lahrmann</name>
</author>
<author>
<name sortKey="Guldener, U" uniqKey="Guldener U">U. Güldener</name>
</author>
<author>
<name sortKey="Langen, G" uniqKey="Langen G">G. Langen</name>
</author>
<author>
<name sortKey="Pfiffi, S" uniqKey="Pfiffi S">S. Pfiffi</name>
</author>
<author>
<name sortKey="Biedenkopf, D" uniqKey="Biedenkopf D">D. Biedenkopf</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26925088</article-id>
<article-id pub-id-type="pmc">4759460</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2016.00186</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Ki-Tae</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/229652/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jeon</surname>
<given-names>Jongbum</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/277209/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Choi</surname>
<given-names>Jaeyoung</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="author-notes" rid="fn003">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/215488/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cheong</surname>
<given-names>Kyeongchae</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/314609/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Song</surname>
<given-names>Hyeunjeong</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/319406/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Choi</surname>
<given-names>Gobong</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/265614/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kang</surname>
<given-names>Seogchan</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/217065/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Yong-Hwan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/265439/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Fungal Bioinformatics Laboratory, Seoul National University</institution>
<country>Seoul, South Korea</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Department of Agricultural Biotechnology, Seoul National University</institution>
<country>Seoul, South Korea</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Interdisciplinary Program in Agricultural Genomics, Seoul National University</institution>
<country>Seoul, South Korea</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University</institution>
<country>University Park, PA, USA</country>
</aff>
<aff id="aff5">
<sup>5</sup>
<institution>Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University</institution>
<country>Seoul, South Korea</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Marc-Henri Lebrun, Institut National de la Recherche Agronomique, France</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Mahmut Tör, University of Worcester, UK; Raffaella Balestrini, Consiglio Nazionale delle Ricerche, Italy; Michael R. Thon, University of Salamanca, Spain</p>
</fn>
<corresp id="fn001">*Correspondence: Yong-Hwan Lee
<email xlink:type="simple">yonglee@snu.ac.kr</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Plant Biotic Interactions, a section of the journal Frontiers in Plant Science</p>
</fn>
<fn fn-type="present-address" id="fn003">
<p>†Present Address: Jaeyoung Choi, The Samuel Roberts Noble Foundation, Ardmore, OK, USA</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>19</day>
<month>2</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>7</volume>
<elocation-id>186</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>03</day>
<month>2</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Kim, Jeon, Choi, Cheong, Song, Choi, Kang and Lee.</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Kim, Jeon, Choi, Cheong, Song, Choi, Kang and Lee</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Fungal secretome consists of various functional groups of proteins, many of which participate in nutrient acquisition, self-protection, or manipulation of the environment and neighboring organisms. The least characterized component of the secretome is small secreted proteins (SSPs). Some SSPs have been reported to function as effectors, but most remain to be characterized. The composition of major secretome components, such as carbohydrate-active enzymes, proteases, lipases, and oxidoreductases, appear to reflect the lifestyle and ecological niche of individual species. We hypothesize that many SSPs participate in manipulating plants as effectors. Obligate biotrophs likely encode more and diverse effector-like SSPs to suppress host defense compared to necrotrophs, which generally use cell wall degrading enzymes and phytotoxins to kill hosts. Because different secretome prediction workflows have been used in different studies, available secretome data are difficult to integrate for comprehensive comparative studies to test this hypothesis. In this study, SSPs encoded by 136 fungal species were identified from data archived in Fungal Secretome Database (FSD) via a refined secretome workflow. Subsequently, compositions of SSPs and other secretome components were compared in light of taxa and lifestyles. Those species that are intimately associated with host cells, such as biotrophs and symbionts, usually have higher proportion of species-specific SSPs (SSSPs) than hemibiotrophs and necrotrophs, but the latter groups displayed higher proportions of secreted enzymes. Results from our study established a foundation for functional studies on SSPs and will also help understand genomic changes potentially underpinning different fungal lifestyles.</p>
</abstract>
<kwd-group>
<kwd>fungi</kwd>
<kwd>lifestyle</kwd>
<kwd>secretome</kwd>
<kwd>small secreted proteins</kwd>
<kwd>effectors</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">National Research Foundation of Korea
<named-content content-type="fundref-id">10.13039/501100003725</named-content>
</funding-source>
<award-id rid="cn001">NRF-2014R1A2A1A10051434</award-id>
</award-group>
<award-group>
<funding-source id="cn002">Rural Development Administration
<named-content content-type="fundref-id">10.13039/501100003627</named-content>
</funding-source>
<award-id rid="cn002">PJ01115401</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="4"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="70"></ref-count>
<page-count count="13"></page-count>
<word-count count="9467"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Diverse groups of pathogenic fungi threaten plant health, whereas certain fungi, such as endophytes and mycorrhizal fungi, allow plants to explore new niches, manage biotic and abiotic stresses better, and/or efficiently acquire key nutrients. In both types of plant-fungus interactions, the outcome of interaction is influenced heavily by fungal secretomes, various proteins secreted or injected to plants (Girard et al.,
<xref rid="B22" ref-type="bibr">2013</xref>
). In the secretome, certain small secreted proteins (SSPs) are known to be responsible for disease development as virulence factors or cause resistance (
<italic>R</italic>
)-gene mediated defense as avirulence factors (Rep,
<xref rid="B44" ref-type="bibr">2005</xref>
; Deller et al.,
<xref rid="B16" ref-type="bibr">2011</xref>
; Hacquard et al.,
<xref rid="B26" ref-type="bibr">2012</xref>
). Such SSPs are termed effector proteins and modulate key defense signaling pathways and downstream responses, to attenuate microbe-associated molecular pattern (MAMP) triggered immunity (MTI; Jones and Dangl,
<xref rid="B29" ref-type="bibr">2006</xref>
). Plants have evolved to activate effector-triggered immunity (ETI) by sensing specific effectors or molecular changes caused by effectors, mainly using the nucleotide binding, leucine-rich repeat class of
<italic>R</italic>
-gene products (Dodds and Rathjen,
<xref rid="B17" ref-type="bibr">2010</xref>
).</p>
<p>Initially, effectors were considered as virulence factors secreted by pathogens (van Esse et al.,
<xref rid="B62" ref-type="bibr">2007</xref>
; Stergiopoulos and de Wit,
<xref rid="B57" ref-type="bibr">2009</xref>
; Lo Presti et al.,
<xref rid="B35" ref-type="bibr">2015</xref>
). However, it has become apparent that effector-mediated manipulation of MTI is required even for symbiotic associations, because microbial partners also display MAMPs (Zamioudis and Pieterse,
<xref rid="B67" ref-type="bibr">2012</xref>
; Gourion et al.,
<xref rid="B24" ref-type="bibr">2015</xref>
). Many SSPs have been identified as putative effectors in beneficial plant-associated bacteria (Soto et al.,
<xref rid="B53" ref-type="bibr">2006</xref>
) and mutualistic fungi, such as
<italic>Glomus intraradices</italic>
(Kloppholz et al.,
<xref rid="B32" ref-type="bibr">2011</xref>
) and
<italic>Laccaria bicolor</italic>
(Plett et al.,
<xref rid="B40" ref-type="bibr">2011</xref>
), expanding the definition of effectors as secreted microbial products that facilitate the establishment of various plant-microbe associations ranging from beneficial to detrimental. Furthermore, SSPs that resemble effector proteins of pathogenic fungi have been identified in saprotrophic fungi, suggesting additional roles of SSPs (Rovenich et al.,
<xref rid="B47" ref-type="bibr">2014</xref>
; Seidl et al.,
<xref rid="B52" ref-type="bibr">2015</xref>
). Driven by the discovery of diverse putative effector proteins in fungi representing different lifestyles, several studies have analyzed the repertoires of putative secreted proteins encoded by various fungi and the potential relationship between their secretomes and lifestyles (Lowe and Howlett,
<xref rid="B36" ref-type="bibr">2012</xref>
; Krijger et al.,
<xref rid="B33" ref-type="bibr">2014</xref>
; Meinken et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
; Lo Presti et al.,
<xref rid="B35" ref-type="bibr">2015</xref>
). Analysis of the size of secretome relative to the total proteome in 48 fungal species by Lowe and Howlett (
<xref rid="B36" ref-type="bibr">2012</xref>
) suggested its potential relationship with lifestyles. Another comparative study by Meinken et al. (
<xref rid="B39" ref-type="bibr">2014</xref>
) proposed that the secretome prediction of previous study may be overestimated because only SignalP was used for the prediction, but they drew the same conclusion. However, these studies did not consider individual components of the secretome. The study by Krijger et al. (
<xref rid="B33" ref-type="bibr">2014</xref>
) suggested that phylogenetic position strongly influenced both the secretome size and its composition by analyzing 33 fungal species but did not include major secreted enzyme groups. In addition those displaying different modes of pathogenesis (biotroph, hemibiotroph, and necrotroph) were combined as a single lifestyle in the last two analyses. Lastly, the review on fungal effector proteins by Lo Presti et al. (
<xref rid="B35" ref-type="bibr">2015</xref>
) only considered plant cell wall degrading enzymes in order to mine putative effector proteins. The secretome contains not only effector proteins but also groups of enzymes involved in the breakdown of cell walls, self-protection or nutrient acquisition, such as carbohydrate-active enzymes (CAZymes), oxidoreductases, proteases, and lipases (Girard et al.,
<xref rid="B22" ref-type="bibr">2013</xref>
). Not surprisingly, biotrophs encode fewer CAZymes than hemibiotrophs and necrotrophs (Zhao et al.,
<xref rid="B69" ref-type="bibr">2014</xref>
). To investigate whether the composition and size of putative effectors correlates with different lifestyles, such enzymes should also be analyzed separately.</p>
<p>A wide range of validated and suspected protein effectors encoded by bacteria and oomycetes have been identified, which was facilitated by the conserved delivery machinery to plant cells (Cornelis and Van Gijsegem,
<xref rid="B15" ref-type="bibr">2000</xref>
) and sequence motifs present in effectors (Whisson et al.,
<xref rid="B64" ref-type="bibr">2007</xref>
), respectively. Although, a conserved IGY motif has been identified in a novel SSP family of Dikarya fungi (Cheng et al.,
<xref rid="B9" ref-type="bibr">2014</xref>
), known fungal effectors do not show conserved features, hampering their identification (Rafiqi et al.,
<xref rid="B42" ref-type="bibr">2012</xref>
; Giraldo and Valent,
<xref rid="B21" ref-type="bibr">2013</xref>
). One or more of the following features have been used to predict candidate effector proteins in fungal secretomes: (a) presence of the signal peptide, but no transmembrane domain or GPI-anchor sites; (b) small sized proteins (usually fewer than 300 amino acids) that are present only in specific species or isolates; (c) expression
<italic>in planta</italic>
or during infection; (d) rich in cysteine residues; and (e) presence of a conserved motif within effector candidates like in oomycete and fungal effectors (Birch et al.,
<xref rid="B2" ref-type="bibr">2008</xref>
; Godfrey et al.,
<xref rid="B23" ref-type="bibr">2010</xref>
; Zuccaro et al.,
<xref rid="B70" ref-type="bibr">2011</xref>
; Cheng et al.,
<xref rid="B9" ref-type="bibr">2014</xref>
). Using these features candidate effector proteins have been identified in three types of plant pathogenic fungi: biotrophs such as rusts (Duplessis et al.,
<xref rid="B18" ref-type="bibr">2011</xref>
), smuts (Schirawski et al.,
<xref rid="B50" ref-type="bibr">2010</xref>
), and
<italic>Blumeria graminis</italic>
(Spanu et al.,
<xref rid="B54" ref-type="bibr">2010</xref>
), hemibiotrophs including
<italic>Verticillium dahliae</italic>
(Santhanam and Thomma,
<xref rid="B48" ref-type="bibr">2013</xref>
) and
<italic>Magnaporthe oryzae</italic>
(Kim et al.,
<xref rid="B31" ref-type="bibr">2010</xref>
), and necrotrophs including
<italic>Fusarium graminearum</italic>
(Brown et al.,
<xref rid="B4" ref-type="bibr">2012</xref>
) and
<italic>Sclerotinia sclerotiorum</italic>
(Guyon et al.,
<xref rid="B25" ref-type="bibr">2014</xref>
). However, direct comparisons between these fungi are hampered because different bioinformatics approaches and criteria have been used for the prediction of effector proteins. The lack of robust pipelines that can be applied to mine candidate effector proteins from rapidly increasing genome sequences of phylogenetically diverse fungi and limited
<italic>in planta</italic>
expression data for the genes encoding SSPs also have hampered large-scale comparative analyses of putative effectors.</p>
<p>In this study, we refined multiple secretome components with the focus on SSPs for 136 fungal species archived in Fungal Secretome Database (FSD; Choi et al.,
<xref rid="B13" ref-type="bibr">2010</xref>
) via a data extraction pipeline consisting of multiple programs. This refined data set was analyzed in the context of the phylogenetic position and lifestyle of individual species. Secreted enzymes that likely play important roles in colonizing host plants, including CAZymes, oxidoreductases, which are likely secreted for protection against host-produced reactive oxygen species (Chi et al.,
<xref rid="B10" ref-type="bibr">2009</xref>
), and lipases and proteases, which participate in nutrient acquisition and manipulation of host defense, were also compared. Resulting data helped determine which secretome components might function as major lifestyle determinants. In addition, we mined candidate effector proteins for functional validation and also showed the pattern of evolutionary changes associated with several known effector proteins.</p>
</sec>
<sec sec-type="materials and methods" id="s2">
<title>Materials and methods</title>
<sec>
<title>Phylogenetic analysis</title>
<p>The phylogenetic trees of 136 fungal species shown in Supplementary Figure
<xref ref-type="supplementary-material" rid="SM6">S2</xref>
was constructed using CVTree v4.2.1 with k-tuple 7 (Xu and Hao,
<xref rid="B65" ref-type="bibr">2009</xref>
). The tree only shows topology and ectopically positioned
<italic>Taphrina deformans</italic>
was manually curated based on NCBI Taxonomy. The lifestyle of each fungus was annotated based on literature review.</p>
</sec>
<sec>
<title>Secretome data collection, refinement, and annotation</title>
<p>The SP, SP
<sup>3</sup>
and SL classes of secretory proteins, which include proteins carrying a classical signal peptide, were downloaded from FSD (Choi et al.,
<xref rid="B13" ref-type="bibr">2010</xref>
). Hence, only the proteins secreted via canonical pathway were considered in this analysis. In order to predict SSPs, a two-step mining pipeline was employed. The first step, adopted from Brown et al. (
<xref rid="B4" ref-type="bibr">2012</xref>
), involves refining the secretome by selecting proteins predicted to be secreted by both ProtComp v9.0 (detected as secreted) and WoLF PSORT v0.2 (extr => 10; Horton et al.,
<xref rid="B28" ref-type="bibr">2007</xref>
), which are protein localization prediction programs trained with fungal data. Proteins that may be secreted but probably membrane bound were filtered out using Phobius v1.01 (TM = 1; SP = N; Käll et al.,
<xref rid="B30" ref-type="bibr">2004</xref>
), a program that detects signal peptides and transmembrane helixes, and UTProt (GPI-anchored = Y), a fungal specific GPI-anchor prediction tool (Cao et al.,
<xref rid="B5" ref-type="bibr">2009</xref>
). These programs were run on local Linux computers and the parameter settings were determined with various fungal effector proteins listed in the review by Stergiopoulos and de Wit (
<xref rid="B57" ref-type="bibr">2009</xref>
). The second step was grouping proteins within individual refined secretomes based on their predicted functions. To identify CAZymes, relevant HMM profiles from dbCAN release 3.0 (Yin et al.,
<xref rid="B66" ref-type="bibr">2012</xref>
) were employed. Oxidoreductases, lipases, and proteases were identified using BLASTP (
<italic>E</italic>
-value cutoff of 0.001) with individual refined secretomes as queries against BLAST databases of these enzyme sets. Fungal oxidoreductases were downloaded from Fungal Peroxidase Database (Choi et al.,
<xref rid="B12" ref-type="bibr">2014</xref>
). Sources for the lipase and protease datasets were the Lipase Engineering Database (Fischer and Pleiss,
<xref rid="B20" ref-type="bibr">2003</xref>
) and MEROPS (Rawlings et al.,
<xref rid="B43" ref-type="bibr">2014</xref>
), respectively.</p>
</sec>
<sec>
<title>Mining and annotation of SSPs</title>
<p>Protein length and cysteine content were analyzed using in-house Python scripts, and putative species-specific proteins were identified by running BLASTP against all other species, followed by BLASTP against NR database excluding itself to reduce false positives caused by the limited phylogenetic coverage of certain taxa. Both species-specific SSPs (SSSPs) and conserved SSPs (CSSPs) were annotated using pre-computed InterPro terms, which were retrieved from Comparative Fungal Genomics Platform 2.0 (CFGP 2.0; Choi et al.,
<xref rid="B11" ref-type="bibr">2013</xref>
), and mapped to PHI-base effector proteins using BLASTP (Urban et al.,
<xref rid="B61" ref-type="bibr">2015</xref>
).</p>
</sec>
<sec>
<title>Clustering of CSSPs and molecular evolutionary analysis</title>
<p>All by all BLASTP analyses were performed with CSSPs and PHI-base effector proteins prior to Markov Cluster Algorithm (MCL) clustering. Resulting data were clustered via MCL with the inflation option 1.4 for high granularity (Enright et al.,
<xref rid="B19" ref-type="bibr">2002</xref>
), which produced the least number of singletons. The predicted protein families containing PHI-base effectors were analyzed further. Proteome data from CFGP 2.0 were used to construct species trees, and proteins in each of the analyzed families were used to construct gene trees. CVtree v4.2.1 was used for fungal species tree with k-tuple 7 (Xu and Hao,
<xref rid="B65" ref-type="bibr">2009</xref>
), ClustalW in MEGA 6.06 was used for alignment of proteins, and maximum-likelihood gene trees were constructed using the default setting (Hall,
<xref rid="B27" ref-type="bibr">2013</xref>
). After reconciling the species and gene trees using Notung 2.6 (Chen et al.,
<xref rid="B8" ref-type="bibr">2000</xref>
), potential gene duplication and loss events were annotated.</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec>
<title>Analyzed species cover diverse taxa and lifestyles</title>
<p>Genome sequences of the 136 fungal species used in this study (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
) are publicly available. The taxa covered include Microsporidia, Zygomycota, Glomeromycota, Ascomycota, and Basidiomycota (Table
<xref ref-type="table" rid="T1">1</xref>
). The lifestyles represented include animal pathogens, biotrophic, hemibiotrophic and necrotrophic plant pathogens, symbionts, and saprotrophs (Table
<xref ref-type="table" rid="T1">1</xref>
). The necrotrophs were further divided into crop-infecting and wood-decaying types. The symbionts are fungi associated with plants and resulting beneficial/mutualistic effects in the interactions. These include both ecto- and arbuscular mycorrhizal fungi, endophytes, and a plant growth promoting fungus with symbiotic activity (Vargas et al.,
<xref rid="B63" ref-type="bibr">2009</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Taxonomic distribution and lifestyle of the species analyzed in this study</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Phylum</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Subphylum (Division/Class)</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Number of species</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>lifestyle</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Number of species</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Ascomycota</td>
<td valign="top" align="left" rowspan="1" colspan="1">Pezizomycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">72</td>
<td valign="top" align="left" rowspan="1" colspan="1">Animal pathogen</td>
<td valign="top" align="center" rowspan="1" colspan="1">27</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Saccharomycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">10</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Taphrinomycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">Biotroph</td>
<td valign="top" align="center" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Basidiomycota</td>
<td valign="top" align="left" rowspan="1" colspan="1">Agaricomycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">34</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hemibiotroph</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Pucciniomycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">C-necrotroph</td>
<td valign="top" align="center" rowspan="1" colspan="1">23</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Ustilaginomycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="left" rowspan="1" colspan="1">W-necrotroph</td>
<td valign="top" align="center" rowspan="1" colspan="1">26</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Glomeromycota</td>
<td valign="top" align="left" rowspan="1" colspan="1">(Glomeromycetes)</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">Symbiont</td>
<td valign="top" align="center" rowspan="1" colspan="1">6</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Microspora</td>
<td valign="top" align="left" rowspan="1" colspan="1">(Microsporidia)</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Zygomycota</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mucoromycotina</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">Saprotroph</td>
<td valign="top" align="center" rowspan="1" colspan="1">35</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Total</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">136</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">136</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>C-necrotroph, Crop-infecting necrotroph; W-necrotroph, Wood-decaying necrotroph</italic>
.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Refined fungal secretomes show high degree of size variance</title>
<p>Since, fungal effectors are expected to be secreted into the host apoplastic space or cytoplasm, mining fungal secretomes is the first step for their identification. Secretome data for most sequenced fungi have already been archived in FSD (Choi et al.,
<xref rid="B13" ref-type="bibr">2010</xref>
), an online platform that was built to identify and archive secreted proteins via six different programs detecting extracellular proteins and a trans-membrane helix detection program. The predicted secretomes were then categorized into three different classes. To predict
<italic>bona fide</italic>
SSPs, the total secretome data from FSD were further refined via additional filtrations (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Putatively membrane-bound proteins were eliminated using additional programs that detect transmembrane-helixes and GPI-anchors (see Materials and Methods).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Pipeline used to refine secretomes and mine small secreted proteins (SSPs)</bold>
. Chosen secretomes were downloaded from Fungal Secretome Database (FSD) and refined. The refined secretomes were then divided into four classes of enzymes, including CAZymes, proteases, lipases, and oxidoreductases, and proteins of undefined function. To predict functions of the latter group of proteins, InterPro analysis was performed, and the presence of signatures frequently associated with effectors, including short length and taxon-specific distribution, was also analyzed. To reduce false species-specific proteins due to the limited phylogenetic coverage of certain taxa, BLASTP against NCBI NR database was performed. SSPs were divided into species-specific SSPs (SSSPs) and conserved SSPs (CSSPs) (see Materials and Methods).</p>
</caption>
<graphic xlink:href="fpls-07-00186-g0001"></graphic>
</fig>
<p>After this refinement, the size of secretome was reduced by 33.7% on average compared to that predicted using only SignalP 3.0 and by 70.9% compared to the total secretome predicted by the pipeline used for building FSD (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM5">S1</xref>
). The number of proteins in refined secretomes ranged from 19 (
<italic>Pneumocystis jirovecii</italic>
, an opportunistic human pathogen) to 1940 (
<italic>Auricularia subglabra</italic>
, a wood-decaying necrotroph; Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). The refined secretome accounted for 5.5% of the total proteome on average, with the lowest being 0.5% (
<italic>P. jirovecii</italic>
) and the highest being 11.0% (
<italic>Magnaporthe oryzae</italic>
, a hemibiotrophic plant pathogen). Both
<italic>P. jirovecii</italic>
and
<italic>M. oryzae</italic>
belong to the phylum Ascomycota, illustrating high degrees of variance within individual phyla (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM5">S1</xref>
).</p>
</sec>
<sec>
<title>Patterns observed among refined secretomes in the context of phylogenetic positions and lifestyles</title>
<p>Several general patterns associated with the size of refined secretome were observed (Figures
<xref ref-type="fig" rid="F2">2A,B</xref>
). On average, fungi belong to Pucciniomycotina encode the largest refined secretomes, whereas Microsporidia code for the smallest ones (Figure
<xref ref-type="fig" rid="F2">2C</xref>
). However, the size of refined secretome also varied widely within individual taxa as illustrated in Supplementary Figure
<xref ref-type="supplementary-material" rid="SM6">S2</xref>
. For example, in Ascomycota, the species belong to Pezizomycotina have much larger secretomes than those of Saccharomycotina and Taphrinomycotina, and in Basidiomycotia, the species belong to Pucciniomycotina have larger secretomes than those of Ustilaginomycotina.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>The taxa and lifestyles represented and average size of refined secretomes for individual taxa. (A)</bold>
A condensed phylogenetic tree illustrates the taxonomic position and lifestyle of 136 fungal species. The full species tree is available in Supplementary Figure
<xref ref-type="supplementary-material" rid="SM6">S2</xref>
.
<bold>(B)</bold>
Number of species included and the lifestyles represented for each taxon are shown. AP, Animal pathogen; BI, Biotroph; HE, Hemibiotroph; CN, Crop-infecting necrotroph; WN, Wood-decaying necrotroph; SY, Symbiont; SA, Saprotroph.
<bold>(C)</bold>
Average sizes and size range of refined secretomes for individual taxa are noted.</p>
</caption>
<graphic xlink:href="fpls-07-00186-g0002"></graphic>
</fig>
<p>We analyzed the composition of refined secretomes among groups that represent different lifestyles to investigate their relationship. On average, the size of refined secretome for plant-associated species was larger than those of saprotrophs and animal pathogens (Figure
<xref ref-type="fig" rid="F3">3A</xref>
). Among the plant-associated species, pathogens encode larger refined secretomes than symbionts. Among the pathogens, crop-infecting necrotrophs code for the largest refined secretome, followed by hemibiotrophs, wood-decaying necrotrophs, and biotrophs. Proportions of CAZymes, proteases, lipases, and oxidoreductases in 136 species were analyzed in relation to their lifestyles (Figure
<xref ref-type="fig" rid="F3">3B</xref>
; Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). Although these enzymes facilitate nutrient acquisition and defense against reactive oxygen species from host (Rogers et al.,
<xref rid="B46" ref-type="bibr">1994</xref>
; Sreedhar et al.,
<xref rid="B55" ref-type="bibr">1999</xref>
; Chi et al.,
<xref rid="B10" ref-type="bibr">2009</xref>
; Blümke et al.,
<xref rid="B3" ref-type="bibr">2014</xref>
), they were not considered for mining effector-like SSPs as in Rep (
<xref rid="B44" ref-type="bibr">2005</xref>
). On average, 46.6% of the refined secretome corresponded to these enzymes. Biotrophs display the lowest proportion for all four types of enzymes, and the highest proportion for all types, except oxidoreductases, was observed in crop-infecting necrotrophs. Wood-decaying necrotrophs exhibit the highest proportion of oxidoreductases. Animal pathogens have higher proportion of proteases than saprotrophs, symbionts, and plant pathogens except necrotrophs, suggesting the importance of proteases in animal pathogenesis and necrosis of plants.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Composition of refined secretomes in the context of different lifestyles. (A)</bold>
Average sizes of the refined secretome for each of the lifestyles represented is shown. The numbers of the refined secretome for individual species are in Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
. The enzymes correspond to CAZymes, proteases, lipases, and oxidoreductases. The proteins of other functions refer those that did not map to any of the four enzyme databases. C-necrotroph and W-necrotroph correspond to crop-infecting necrotroph and wood-decaying necrotroph, respectively.
<bold>(B)</bold>
Proportions of four enzyme classes and the proteins of other functions in the refined secretome are shown.</p>
</caption>
<graphic xlink:href="fpls-07-00186-g0003"></graphic>
</fig>
</sec>
<sec>
<title>Patterns associated with effector-like SSPs</title>
<p>Most effector-like SSPs belong to the proteins of other functions. Accordingly, we first removed the four groups of enzymes from the refined secretomes before identifying SSPs (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Subsequently, three features, including short length (≤300 aa), species-specific distribution pattern, and cysteine enrichment, were used to identify effector-like SSPs in the proteins of other functions.</p>
<p>Proteins shorter than 300 aa are abundant in all species (Figure
<xref ref-type="fig" rid="F4">4A</xref>
) with the exception of four saprophytic fungi, including
<italic>Schizosaccharomyces pombe, Pichia pastoris, Spathaspora passalidarum</italic>
, and
<italic>Ophiostoma piceae</italic>
(Supplementary Figure
<xref ref-type="supplementary-material" rid="SM7">S3</xref>
). In general, biotrophs have the most abundant SSPs. On other hands, proportions of species-specific proteins in the proteins of other functions varied between individual species (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM8">S4</xref>
). In general, species that are intimately associated with living plant tissues, such as biotrophs and symbionts, have greater numbers of species-specific proteins than those with different lifestyles (Figure
<xref ref-type="fig" rid="F4">4B</xref>
). This suggests that species-specific presence of effectors probably arose via co-evolution with the hosts (Stergiopoulos et al.,
<xref rid="B58" ref-type="bibr">2012</xref>
). The species-specific proteins accounted for 25–50% of the proteins of other functions in 27 species and for over 50% in six species (Table
<xref ref-type="table" rid="T2">2</xref>
). Many wood-decaying necrotrophs have large proportions (but not exceeding 50%) of species-specific secreted proteins. Proportions among symbionts typically ranged from 25 to 50%, but it is over 50% in
<italic>Rhizophagus irregularis</italic>
, which is the only Glomeromycota symbiont (Tisserant et al.,
<xref rid="B59" ref-type="bibr">2012</xref>
,
<xref rid="B60" ref-type="bibr">2013</xref>
). Among the animal pathogens, three species belonging to Microsporidia (
<italic>Enterocytozoon bieneusi, Nosema ceranae</italic>
, and
<italic>Antonospora locustae</italic>
) and one Ascomycota species (
<italic>P. jirovecii</italic>
) displayed large proportions (>50%; Table
<xref ref-type="table" rid="T2">2</xref>
).</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Proportions of proteins of other functions that display characteristics typically associated with effectors in groups of species representing different lifestyles. (A)</bold>
Proportions of proteins in three size classes are shown. Those with 300 aa or less are considered as small secreted proteins (SSPs). C-necrotroph and W-necrotroph correspond to crop-infecting necrotroph and wood-decaying necrotroph, respectively.
<bold>(B)</bold>
Distribution patterns of species-specific and conserved proteins in individual lifestyles are shown.
<bold>(C)</bold>
Distribution of cysteine content in the four groups of enzymes (E) and the proteins of other functions (OF). Proteins with the cysteine content being equal or greater than 3% of the aa resides are considered as cysteine-rich.</p>
</caption>
<graphic xlink:href="fpls-07-00186-g0004"></graphic>
</fig>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>List of species with high proportion of species-specific secreted proteins in the proteins of other functions</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Animal Pathogen</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Biotroph</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Hemibiotroph</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>C-necrotroph</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>W-necrotroph</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Symbiont</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Saprotroph</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" colspan="7" style="background-color:#bbbdc0" rowspan="1">
<bold>PROPORTION 25–50%</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>E. bieneusi</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. graminis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>L. maculans</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. solani</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. adusta</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>L. bicolor</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>C. cinerea</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. jirovecii</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. striiformis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. oryzae</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>S. nodorum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. botryosum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. indica</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. compniacensis</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>T. deformans</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. graminicola</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Dacryopinax</italic>
sp.</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>T. melanosporum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. confluens</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>G. marginata</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Y. lipolytica</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>H. irregulare</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>J. argilacea</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. carnosa</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>P. chrysosporium</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>S. lacrymans</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>T. mesenterica</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" colspan="7" style="background-color:#bbbdc0" rowspan="1">
<bold>PROPORTION</bold>
>
<bold>50%</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>A. locustae</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. irregularis</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>N. ceranae</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. laricis-populina</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. osmundae</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>C-necrotroph, Crop-infecting necrotroph; W-necrotroph, Wood-decaying necrotroph</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<p>The proteins of other functions and the four enzymes in the refined secretomes were classified into three groups based on their cysteine content, including 0.0 ≤ − <3.0%, 3.0 ≤ − <5.0%, and ≥5.0%, and average percentages of these groups in four lifestyles were compared (Figure
<xref ref-type="fig" rid="F4">4C</xref>
). Proteins with 3% or more cysteine were considered cysteine-rich in earlier studies (Stergiopoulos and de Wit,
<xref rid="B57" ref-type="bibr">2009</xref>
; Saunders et al.,
<xref rid="B49" ref-type="bibr">2012</xref>
). However, a more stringent criterion, over 5%, was also used (Brown et al.,
<xref rid="B4" ref-type="bibr">2012</xref>
; Krijger et al.,
<xref rid="B33" ref-type="bibr">2014</xref>
). The general trend was that both classes of cysteine-rich proteins were more abundant among the proteins of other functions than the enzymes regardless of any lifestyles.</p>
<p>Effector-like SSPs were divided into two classes. Proteins of 300 aa or shorter that appeared to be encoded only by one species were considered species-specific SSPs (SSSPs); a total of 8275 SSSPs were found from 133 species. The fasta formatted SSSP sequences available in Supplementary Data Sheet
<xref ref-type="supplementary-material" rid="SM11">1</xref>
. Three species, including two animal pathogens (
<italic>Malassezia sympodialis</italic>
and
<italic>Nematocida parisii</italic>
) and a saprotroph (
<italic>Kluyveromyces lactis</italic>
), did not have any SSSPs. The remaining SSPs were encoded by at least two species and were termed conserved SSPs (CSSPs), which may correspond to general fungal proteins or elicitors.</p>
</sec>
<sec>
<title>Functional annotation of SSPs using interpro terms and the known effector proteins rarely reveals their functions</title>
<p>InterPro domain analysis was performed to predict potential functions of both SSSPs and CSSPs. Most SSPs, 7960 out of 8275 (96.2%), displayed no defined InterPro terms with only 315 SSPs being annotated with 97 different terms (Supplementary Table
<xref ref-type="supplementary-material" rid="SM2">S2</xref>
). Among the annotated SSSPs, the most commonly found InterPro term is membrane insertase YidC (IPR019998), which was found in 145 proteins. Other terms that are potentially related to pathogenicity and were found at least twice include IPR008427 (extracellular membrane protein, CFEM domain), IPR003172 (MD-2-related lipid-recognition domain), and IPR016191 (ribonuclease/ribotoxin).</p>
<p>Since the InterPro terms did not suggest any specific functions in association with pathogenicity, 49 known effector proteins from 11 fungi were retrieved from the PHI-base (Urban et al.,
<xref rid="B61" ref-type="bibr">2015</xref>
) and mapped to SSSPs (Supplementary Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
). Nine effector proteins were mapped to four species with a bit score >50 and
<italic>e</italic>
-value < 1.e-3 (Table
<xref ref-type="table" rid="T3">3</xref>
). Except MGG_10556T0 with a C2H2-type zinc finger domain, which resembles
<italic>M. oryzae</italic>
avirulence factor AVR-Pii, the others contained no known domains.</p>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>
<bold>Species-specific effector proteins found among SSSPs</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>PHI-base accession</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Effector name</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Species</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Locus ID
<xref ref-type="table-fn" rid="TN1">
<sup>#</sup>
</xref>
</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Score (Bits)</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>
<italic>E</italic>
-value</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>InterPro domain</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2136">PHI:2136</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">AVR-Pii</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. oryzae</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">MGG_10556T0</td>
<td valign="top" align="center" rowspan="1" colspan="1">54.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.00E-12</td>
<td valign="top" align="left" rowspan="1" colspan="1">IPR007087
<break></break>
IPR015880</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2137">PHI:2137</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">AVR-Pik</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. oryzae</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">MGG_15972T0</td>
<td valign="top" align="center" rowspan="1" colspan="1">229</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.00E-79</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2426">PHI:2426</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Avr2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>F. oxysporum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">FOXG_16398T0</td>
<td valign="top" align="center" rowspan="1" colspan="1">333</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.00E-119</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2898">PHI:2898</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BEC1011</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BGHDH14_bgh02874</td>
<td valign="top" align="center" rowspan="1" colspan="1">127</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.00E-39</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2899">PHI:2899</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BEC1038</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BGHDH14_bgh04220</td>
<td valign="top" align="center" rowspan="1" colspan="1">338</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.00E-121</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2900">PHI:2900</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BEC1016</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BGHDH14_bgh06518</td>
<td valign="top" align="center" rowspan="1" colspan="1">235</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.00E-82</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2902">PHI:2902</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BEC1018</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BGHDH14_bgh03694</td>
<td valign="top" align="center" rowspan="1" colspan="1">239</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.00E-83</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2903">PHI:2903</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BEC1054</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">BGHDH14_bgh02874</td>
<td valign="top" align="center" rowspan="1" colspan="1">245</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.00E-85</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2919">PHI:2919</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">AvrLm11</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>L. maculans</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Lema_T119060.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">203</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.00E-69</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN1">
<label>#</label>
<p>
<italic>Locus ID of SSSPs matched to effectors from PHI-base by BLASTP</italic>
.</p>
</fn>
<p>
<italic>IPR007087: Zinc finger, C2H2-type, IPR015880: Zinc finger, C2H2-like</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<p>CSSPs were clustered with 49 PHI-base effectors via MCL clustering analysis, and 2786 families containing 19,342 proteins were identified. Among them, 13 families contained at least one PHI-base effector (Table
<xref ref-type="table" rid="T4">4</xref>
). Of these families, only one is associated with InterPro term related to fungal pathogenicity. For example, proteins in the family containing
<italic>M. oryzae</italic>
effector MgSM1 carry a well-known domain (cerato-platanin, IPR010829; Chen et al.,
<xref rid="B7" ref-type="bibr">2013</xref>
). In total, 22 out of 49 PHI-base effectors were either matched to a single protein or clustered within a protein family (Supplementary Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
). The small number of matches may be due to the strain-specific presence of many effectors.</p>
<table-wrap id="T4" position="float">
<label>Table 4</label>
<caption>
<p>
<bold>Protein families that contain known effector proteins</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>PHI-base accession (Effector name)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Species
<xref ref-type="table-fn" rid="TN2">
<sup>#</sup>
</xref>
</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Number of proteins</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Number of taxa</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>InterPro domain</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2118">PHI:2118</ext-link>
(MgSM1)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. oryzae</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">201</td>
<td valign="top" align="center" rowspan="1" colspan="1">91</td>
<td valign="top" align="left" rowspan="1" colspan="1">IPR009009
<break></break>
IPR010829</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2901">PHI:2901</ext-link>
(BEC1040)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">97</td>
<td valign="top" align="center" rowspan="1" colspan="1">51</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2897">PHI:2897</ext-link>
(BEC1019)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">34</td>
<td valign="top" align="center" rowspan="1" colspan="1">33</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2896">PHI:2896</ext-link>
(BEC1005)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>B. graminis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
<td valign="top" align="left" rowspan="1" colspan="1">IPR017853</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:325">PHI:325</ext-link>
(ACE1)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. oryzae</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
<td valign="top" align="left" rowspan="1" colspan="1">IPR001509
<break></break>
IPR016040</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:71">PHI:71</ext-link>
(ECP2)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>C. fulvum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2331">PHI:2331</ext-link>
(Ave1)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>V. dahliae</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:1132">PHI:1132</ext-link>
(AvrLm4-7)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>L. maculans</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2696">PHI:2696</ext-link>
(NIP2)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. commune</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2281">PHI:2281</ext-link>
(avrLm1)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>L. maculans</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:1131">PHI:1131</ext-link>
(AvrLm6)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>L. maculans</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:379">PHI:379</ext-link>
(SIX1)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>F. oxysporum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="PHI:2744">PHI:2744</ext-link>
(Pit2)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>U. maydis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN2">
<label>#</label>
<p>
<italic>Species which the PHI-base effectors originated. IPR009009: Barwin-related endoglucanase, IPR010829: Cerato-platanin, IPR017853: Glycoside hydrolase, superfamily, IPR001509: NAD-dependent epimerase/dehydratase and IPR016040: NAD(P)-binding domain</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Genomic contexts of SSSP-coding genes</title>
<p>The genomic regions containing the known host-specific virulence genes have been shown to have sparsely distributed genes and AT-rich (Schmidt and Panstruga,
<xref rid="B51" ref-type="bibr">2011</xref>
). We examined the genomic contexts of SSSP-coding genes in 59 species with number of contigs less than 500 (Supplementary Table
<xref ref-type="supplementary-material" rid="SM4">S4</xref>
). The average number of genes and the mean AT-content in each of the 100 kb segments of their genomes were calculated as references. The corresponding data for each the 100 kb windows containing SSSP-coding gene(s) were compared with the reference data.</p>
<p>The gene density around SSSP-coding genes was too variable to establish a clear trend in the context of lifestyles. However, many SSSP-coding genes in a mycorrhizal symbiont
<italic>L. bicolor</italic>
, a plant growth promoting fungus
<italic>Trichoderma virens</italic>
and most wood-decaying necrotrophs were often located in regions with low gene density (Supplementary Table
<xref ref-type="supplementary-material" rid="SM4">S4</xref>
). Overall, the SSSP-coding genes did not appear to be concentrated within specific genomic region(s). On the other hand, the AT-content around most SSSP-coding genes was clearly lower than the total AT-content of the genomes of these species, except that two animal pathogens (
<italic>Cryptococcus neoformans</italic>
and
<italic>P. jirovecii</italic>
), one biotroph (
<italic>Mixia osmundae</italic>
), and one saprotroph (
<italic>Wallemia sebi</italic>
) had higher AT-contents at 52, 72, 44, and 60%, respectively (Supplementary Table
<xref ref-type="supplementary-material" rid="SM4">S4</xref>
).</p>
</sec>
<sec>
<title>The number of SSSPs correlates with the proteome size, lifestyle, and taxonomic position</title>
<p>Several studies have reported that the size of fungal secretome correlates with lifestyle (Lowe and Howlett,
<xref rid="B36" ref-type="bibr">2012</xref>
; Meinken et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
; Lo Presti et al.,
<xref rid="B35" ref-type="bibr">2015</xref>
) and that even stronger correlation exists with phylogenetic position (Krijger et al.,
<xref rid="B33" ref-type="bibr">2014</xref>
). The former studies reported that animal pathogens and saprotrophs have similarly-sized secretomes, but their secretomes are smaller than those in plant pathogens. We assessed the size of SSSPs in individual species to determine whether similar patterns exist. The relationships between the predicted proteomes and refined secretome components are shown in Supplementary Figure
<xref ref-type="supplementary-material" rid="SM9">S5</xref>
. The pattern was similar to that observed in a previous study (Lowe and Howlett,
<xref rid="B36" ref-type="bibr">2012</xref>
). However, the relationship between SSSPs and the total proteome was markedly different (Figure
<xref ref-type="fig" rid="F5">5A</xref>
). Biotrophs, symbionts, and some hemibiotrophs usually have larger numbers of SSSPs than animal pathogens, saprotrophs, and necrotrophs. The larger numbers of SSSPs in the former group, which are intimately associated with plants, support the hypothesis that these proteins are important for manipulating plant hosts.</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Number of SSSPs in relation to the lifestyles and taxonomic positions of the analyzed species. (A)</bold>
The number of SSSPs and the size of predicted total proteome for individual species are shown.
<bold>(B)</bold>
The number of SSSPs among species representing different lifestyles.
<bold>(C)</bold>
The number of SSSPs encoded by the species in different taxa. The subphyla Glomeromycota and Zygomycota, represented by only one species each, are not included. Pez, Pezizomycotina; Sac, Saccharomycotina; Tap, Taphrinomycotina; Aga, Agaricomycotina; Puc, Pucciniomycotina; Ust, Ustilaginomycotina. C-necrotroph and W-necrotroph correspond to Crop-infecting necrotroph and Wood-decaying necrotroph, respectively.</p>
</caption>
<graphic xlink:href="fpls-07-00186-g0005"></graphic>
</fig>
<p>The number of SSSPs within species ranged from 0 to 466. Although not all plant-associated fungi have higher numbers of SSSPs than saprotrophs and animal pathogens (Figure
<xref ref-type="fig" rid="F5">5B</xref>
), in general, animal pathogens and saprotrophs had fewer SSSPs compared to plant pathogens. Within plant pathogens, numbers of SSSPs encoded by crop-infecting necrotrophs are similar to those encoded by saprotrophs, and biotrophs generally have larger numbers than these groups. Within biotrophs, four Pucciniomycotina species (
<italic>Puccinia graminis, P. striiformis, Melampsora laricis-populina</italic>
, and
<italic>M. osmundae</italic>
) and
<italic>B. graminis</italic>
(Ascomycota) have the highest numbers. In contrast, two species in Ustilagomycotina (
<italic>Ustilago maydis</italic>
and
<italic>Sporisorium reilianum</italic>
) and three Ascomycota species (
<italic>Cladosporium fulvum, T. deformans</italic>
, and
<italic>Ashbya gossypii</italic>
) encode small numbers of SSSPs, similar to those in saprotrophs. In addition, wood-decaying necrotrophs and hemibiotrophs have similar numbers of SSSPs.</p>
<p>The range of SSSPs numbers was also analyzed with regard to taxonomic positions (Figure
<xref ref-type="fig" rid="F5">5C</xref>
). The mean number within Basidiomycota is 100, which is higher than the mean in Ascomycota (43). Within Basidiomycota, Pucciniomycotina encodes the most SSSPs. Within Ustilaginomycotina, two biotrophs (
<italic>U. maydis</italic>
and
<italic>S. reilianum</italic>
) contained greater numbers of SSSPs compared to other members. In Ascomycota, the range was widest in Pezizomycotina with many outliers being present at both sides of the mean. Three hemibiotrophs, including
<italic>M. oryzae, Leptosphaeria maculans</italic>
, and
<italic>Mycosphaerella graminicola</italic>
, one nectrotroph
<italic>Stagonospora nodorum</italic>
, one biotroph
<italic>B. graminis</italic>
, and one saprotroph
<italic>Pyronema confluens</italic>
encode much larger SSSPs than the mean. Saccharomycotina and Taphrinomycotina encode noticeably smaller SSSPs than Pezizomycotina.</p>
<p>The biotrophs in Pezizomycotina code for relatively large numbers of SSSPs. Similarly,
<italic>T. deformans</italic>
, the only biotroph in Taphrinomycotina, also shows a high number of SSSPs. However,
<italic>A. gossypii</italic>
, the only biotroph in Saccharomycotina, has a lower number and proportion of SSSPs compared to other members (Figure
<xref ref-type="fig" rid="F5">5C</xref>
).</p>
</sec>
<sec>
<title>Evolution of known effector proteins belonging to CSSP families suggests their other roles</title>
<p>We predicted 13 families of CSSPs containing PHI-base effectors (Table
<xref ref-type="table" rid="T4">4</xref>
). Among them, families containing
<italic>M. oryzae</italic>
effector MgSM1 and the
<italic>B. graminis</italic>
effectors were found in the most taxa, and the evolution of these families of CSSPs was analyzed. Genes encoding proteins with a cerato-platanin domain (IPR009009) were conserved in 91 species, all belonging to Pezizomycotina or Agricomycotina (Figure
<xref ref-type="fig" rid="F6">6</xref>
). In total, 23 gene duplications and 49 gene losses were observed in the family, but the gene duplications and losses were skewed toward Agaricomycotina, which consisted mostly of wood-decaying necrotrophs. However, these genes were not found in Ustilaginomycotina and Pucciniomycotina, the other subphyla of Basidiomycota that mostly consisted of biotrophic species. The genes encoding proteins that carry the ancestral cerato-platanin domain have undergone at least five duplication events, but many of the genes also have been lost in multiple lineages. As a consequence, 33 species in Dothideomycetes and Eurotiomycetidae contained only one such gene. However, copies in the necrotrophic Sordariomycetes,
<italic>Botrytis cinerea</italic>
and
<italic>Fusarium</italic>
spp. have undergone duplication events. The wide distribution of the genes encoding cerato-platanin domain proteins in species with pathogenic lifestyles suggested that their products play an important role in pathogenesis. However, numbers of this group were also found in 4 symbionts, 2 nematophagous fungi, and 19 saprotrophs, suggesting other roles associated with them. The gene family identified using the
<italic>B. graminis</italic>
effector candidate BEC1040 has gone through 16 duplications and 12 losses, and its numbers were present in 50 species in Ascomycota and
<italic>Punctularia strigosozonata</italic>
in Basidiomycota (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM10">S6A</xref>
). Only one duplication event occurred in the family identified with BEC1019 (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM10">S6B</xref>
), but both duplication and loss events occurred in the family identified with BEC1005 (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM10">S6C</xref>
). Overall, many CSSPs that resemble known effectors were identified in non-plant pathogens, raising the possibility that they are remnants of degenerated genes or play roles other than facilitating plant infection.</p>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold>Evolution of the protein family carrying the cerato-platanin domain</bold>
. The protein family with this domain is the largest cluster identified by MCL analysis with MgSM1 effector protein. Members of this family are found in 91 species within Agaricomycotina and Pezizomycotina. The cerato-platanin protein tree was reconciled with the species tree using the Notung software. The number of genes present in each species is shown at the end of nodes before species name. Gene gains (23 events) and losses (49 events) are noted by blue and red dots, respectively.</p>
</caption>
<graphic xlink:href="fpls-07-00186-g0006"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<p>Rapid progresses in sequencing fungal genomes, in combination with various “omics” tools, have facilitated large-scale comparative genomic analyses to uncover the genetic and evolutionary basis of various traits or functions of fundamental and practical significance. In this study, we developed a pipeline for mining SSPs as effector candidates from fungi with different lifestyles and taxonomic positions in order to conduct their kingdom-wide comparative analysis. It has been commonly hypothesized that biotrophs and symbionts secrete more effectors than necrotrophs, as biotrophic associations require the modulation of the host defense system to keep host cells alive for nutrient acquisition while preventing the launch of strong defense responses. Since necrotrophs utilize CAZymes and toxins to kill host cells to obtain nutrient, such manipulations of host defense likely play less critical roles. Because only a small number of fungal proteins in selected plant pathogens have been identified as effectors, we tested this hypothesis by comparing SSSPs as effector candidates.</p>
<p>We refined secretomes to identify SSSPs as previously reported in analyzing the secretome of
<italic>F. graminearum</italic>
(Brown et al.,
<xref rid="B4" ref-type="bibr">2012</xref>
). In addition, we mined and compared other components within the refined secretomes to investigate any lifestyle-associated genomic adaptations. Three previous studies examined potential relationships between the secretome and lifestyle (Lowe and Howlett,
<xref rid="B36" ref-type="bibr">2012</xref>
; Krijger et al.,
<xref rid="B33" ref-type="bibr">2014</xref>
; Lo Presti et al.,
<xref rid="B35" ref-type="bibr">2015</xref>
). However, Lowe and Howlett (
<xref rid="B36" ref-type="bibr">2012</xref>
) and Lo Presti et al. (
<xref rid="B35" ref-type="bibr">2015</xref>
) used only one signal peptide prediction program for mining secretomes and Krijger et al. (
<xref rid="B33" ref-type="bibr">2014</xref>
) did not eliminate putative membrane-bound proteins, which likely inflated the size of secretomes. Our refined secretome pipeline more rigorously identified secretory proteins via two additional protein localization detection programs and the elimination of transmembrane and GPI-anchor proteins. For comparison, the number of SSSPs and the effector candidates in powdery mildew predicted by Spanu et al. (
<xref rid="B54" ref-type="bibr">2010</xref>
) is the same, and the refined secretomes predicted in both corn pathogens
<italic>S. reilianum</italic>
and
<italic>U. maydis</italic>
are similar to those reported by Schirawski et al. (
<xref rid="B50" ref-type="bibr">2010</xref>
). The corn pathogen study found that many effector candidate genes from both pathogens were orthologous, consequently the number of SSSPs for them were drastically reduced in our study. When the refined secretome of
<italic>F. graminearum</italic>
was compared to the data by Brown et al. (
<xref rid="B4" ref-type="bibr">2012</xref>
), their 539 out of 574 proteins were included in our 961 secretome. Although we predicted larger secretome than their refined secretome, this is due to the lowered parameter settings for prediction as our parameters were determined based on the effectors listed in Stergiopoulos and de Wit (
<xref rid="B57" ref-type="bibr">2009</xref>
) for kingdom-wide analysis. We also used a greater number of species to cover more diverse taxa and further divided plant pathogens into four groups to perform comprehensive analyses.</p>
<p>The roles of fungal effector proteins regarding lifestyles are previously discussed by Lowe and Howlett (
<xref rid="B36" ref-type="bibr">2012</xref>
) and Lo Presti et al. (
<xref rid="B35" ref-type="bibr">2015</xref>
). These studies suggested that fungi with same lifestyles have similar secretome proportions. The secreted CAZymes also showed similar pattern that biotrophs encode fewer CAZymes than hemibiotrophs and necrotrophs (Zhao et al.,
<xref rid="B69" ref-type="bibr">2014</xref>
; Lo Presti et al.,
<xref rid="B35" ref-type="bibr">2015</xref>
). Although our overall conclusion on refined secretome and CAZymes may be similar with the previous studies, the numbers of SSSPs show lifestyle adaptation, different from secretomes and CAZymes analyses. In addition, secretomes contain not only CAZymes for cell wall degradation and utilization of its components as nutrients but also proteases, lipases, and oxidoreductases for breakdown of other macromolecules, and self-protection and/or pathogenesis. For example, AVR-pita of
<italic>M. oryzae</italic>
is a zinc metalloprotease that acts as an avirulence factor in its host rice (Zhang and Xu,
<xref rid="B68" ref-type="bibr">2014</xref>
). The lipase effector FGL1 in
<italic>F. graminearum</italic>
suppresses callose formation in wheat and is required for host infection (Blümke et al.,
<xref rid="B3" ref-type="bibr">2014</xref>
). Oxidoreductases have been investigated in phytopathogenic fungi for their roles in scavenging plant reactive oxygen species and pathogenicity (Chi et al.,
<xref rid="B10" ref-type="bibr">2009</xref>
). Since their importance in pathogenesis has been established or suggested, we examined the proportions of these enzymes relative to the whole proteome in light of the lifestyle and taxonomic position of individual species. Proteases, lipases, and oxidoreductases seem to be more abundant in plant pathogens, especially in hemibiotrophs and necrotrophs, than the species with different lifestyles. Since the majority of known fungal effector proteins do not possess enzymatic activity, we excluded the above enzyme sets prior to mining SSPs, which include short proteins (≤300 aa) with a signal peptide, but no transmembrane domain or GPI-anchor. Species-specific presence was also analyzed to classify SSPs into SSSPs, which likely act as host-specific effectors. Overall, we found that the size of refined secretomes and SSSPs varies widely between species, but some patterns associated with lifestyles.</p>
<p>In general, phytopathogenic fungi tend to have larger secretomes than non-pathogens. Although, Lowe and Howlett (
<xref rid="B36" ref-type="bibr">2012</xref>
) suggested that animal pathogens generally have a lower proportion of secretome, the sizes of secretomes and proteins of other functions in certain animal pathogens, such as nematophagus and entomopathogenic fungi, were similar to some necrotrophic plant pathogens. This is not too surprising considering that nematophagus and entomopathogenic fungi secrete diverse proteins to facilitate infection and consumption of hosts (Andersson et al.,
<xref rid="B1" ref-type="bibr">2013</xref>
; Staats et al.,
<xref rid="B56" ref-type="bibr">2014</xref>
). The host-specific animal pathogens that co-evolved with hosts for longer period of time may have large secretome, yet smaller than those of phytopathogens. Although symbionts intimately interact with plant hosts, their secretomes are smaller than those of pathogens, a pattern that was found in previous studies on symbionts such as
<italic>L. bicolor</italic>
(Martin et al.,
<xref rid="B37" ref-type="bibr">2008</xref>
) and
<italic>Tuber melanosporum</italic>
(Martin et al.,
<xref rid="B38" ref-type="bibr">2010</xref>
). This is due to the reduced number of CAZymes compared to necrotrophs and hemibiotrophs. Biotrophs encode smaller sets of CAZymes, but larger secretomes than non-pathogens mainly due to their abundant SSSPs. This reflects the lifestyle of biotrophs which causes minimal damages to the hosts to maintain a long-term feeding relationship. Not surprisingly, reduced numbers of SSSPs are observed among crop-infecting necrotrophs. However, wood-decaying necrotrophs conspicuously possess a similar level of SSSPs to hemibiotrophs. Their roles of SSSPs in wood-decay remain unclear. Within saprotrophs, fruit-body forming fungi and fungi displaying antifungal activities encode greater numbers of SSSPs than yeasts and extremophiles. However, the number of SSSPs has no correlation with host range within necrotrophs, types of rot for wood-decaying necrotrophs, or types of association for symbionts. As illustrated by
<italic>Neurospora crassa</italic>
, a saprotrophic fungus that has been reported to be associated with pine trees in harsh conditions and even pathogenic (Kuo et al.,
<xref rid="B34" ref-type="bibr">2014</xref>
), fungal lifestyles may not be a fixed attribute, but is changeable depending on environmental conditions.</p>
<p>Another concern is that the number of small proteins could be affected by the minimum protein size used to annotate each genome. However, we strictly used the annotated data associated with published genomes, thus we can assume that the numbers of annotated proteins were comparable to each other. In addition, the majority of genome data were also from JGI and Broad Institute, which followed the conventional JGI annotation process and Broad Gene Finding Methods, respectively. If the minimum cutoff length for gene prediction was stated, only short peptides without EST support were eliminated. Since, the majority of fungal genome studies did not show the cutoff size for protein-coding gene prediction, we analyzed and compared the length distribution of the annotated proteomes for validation (the last column of Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). In result, no parameters were possibly used for 50 species and additional 72 species with the cutoff of 30 aa. The rest 14 species contained proteins with length at least 50 aa. The number of short proteins in the first category was extremely high for a few species such as
<italic>C. fulvum</italic>
and
<italic>P. confluens</italic>
. However, only the proteins secreted with canonical pathways were considered in this analysis, which means the minimum size of protein is bound to the length of signal peptide that is 15 to 40 aa (Choo et al.,
<xref rid="B14" ref-type="bibr">2005</xref>
). Although many short proteins were annotated using no or very short cutoff, they were eliminated if the signal peptide was absent. Overall, we believe that the numbers of proteins are generally comparable like in other secretome studies.</p>
<p>Many genes coding candidate effectors in plant pathogens and virulence-associated genes of animal pathogens have been reported to reside in gene-sparse, AT-rich, and telomere-proximal genomic regions (Schmidt and Panstruga,
<xref rid="B51" ref-type="bibr">2011</xref>
). However, genomic distribution patterns of SSSP-coding genes did not display similar trends, with the exception of those in the wood-decaying necrotrophs. Most SSSP-coding genes in these fungi were found in genomic regions with low gene numbers. A previous study reported that 23% of the proteins encoded by these wood-decaying fungal species are unique (Riley et al.,
<xref rid="B45" ref-type="bibr">2014</xref>
), indicating that the SSSP-coding genes recently arose from non-coding sequences as suggested by Carvunis Model (Carvunis et al.,
<xref rid="B6" ref-type="bibr">2012</xref>
). However, there are still many SSSP-coding genes located in AT-rich regions. Therefore, the genomic context could be considered for prioritizing validation of effector functions. Although effector proteins are often thought to be species-specific due to co-evolution with the host, there are cases of conserved effectors within related species. For example, the
<italic>C. fulvum</italic>
effector Ecp2 (Stergiopoulos et al.,
<xref rid="B58" ref-type="bibr">2012</xref>
) and the cerato-platanin proteins (Chen et al.,
<xref rid="B7" ref-type="bibr">2013</xref>
) are conserved only within Ascomycota and Basidiomycota. Moreover, the clustering analysis of CSSPs showed that none of them seem to be conserved across the fungal kingdom, indicating that they are typically limited to specific genera. However, some CSSPs of
<italic>B. graminis</italic>
, e.g., BEC1040, BEC1019, and BEC1005, were found in fungi having different lifestyles other than biotroph. These observations were further supported by the facts that these proteins are involved in fungal development, and resemble metalloprotease and glucanase, respectively (Pliego et al.,
<xref rid="B41" ref-type="bibr">2013</xref>
). Taken together, these suggest that the numbers of CSSPs may not be correlated with fungal lifestyles.</p>
<p>In conclusion, different secretome components reflect lifestyle-associated genomic adaptations in fungi. Results from this comparative study provide new insights into the genetic basis and molecular evolution of fungal lifestyles and also establish a solid foundation for future discovery and functional validation of effectors.</p>
</sec>
<sec id="s5">
<title>Author contributions</title>
<p>KK and YL designed this project. KK, JJ, HS and GC performed computational analyses. JC and KC provided the secretome and the genome data for analyses. KK, JJ, SK, and YL wrote the manuscript. SK and YL supervised the research. All authors read and approved the manuscript.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>This work was supported by grants from the National Research Foundation of Korea (NRF-2014R1A2A1A10051434), funded by the Ministry of Science, ICT & Future Planning and the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01115401) administered by the Rural Development Administration, Republic of Korea. KK is grateful for a graduate fellowship from the Brain Korea 21 (PLUS) and Program.</p>
</ack>
<sec sec-type="supplementary-material" id="s6">
<title>Supplementary material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fpls.2016.00186">http://journal.frontiersin.org/article/10.3389/fpls.2016.00186</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Table1.XLSX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM2">
<media xlink:href="Table2.XLSX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM3">
<media xlink:href="Table3.XLSX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM4">
<media xlink:href="Table4.XLSX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM5">
<media xlink:href="Presentation1.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM6">
<media xlink:href="Presentation2.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM7">
<media xlink:href="Presentation3.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM8">
<media xlink:href="Presentation4.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM9">
<media xlink:href="Presentation5.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM10">
<media xlink:href="Presentation6.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM11">
<media xlink:href="DataSheet1.ZIP">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="DataSheet2.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersson</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Meerupati</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Levander</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Friman</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ahrén</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tunlid</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Proteome of the nematode-trapping cells of the fungus
<italic>Monacrosporium haptotylum</italic>
</article-title>
.
<source>Appl. Environ. Microbiol.</source>
<volume>79</volume>
,
<fpage>4993</fpage>
<lpage>5004</lpage>
.
<pub-id pub-id-type="doi">10.1128/Aem.01390-13</pub-id>
<pub-id pub-id-type="pmid">23770896</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birch</surname>
<given-names>P. R. J.</given-names>
</name>
<name>
<surname>Boevink</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Gilroy</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Hein</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pritchard</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Whisson</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>11</volume>
,
<fpage>373</fpage>
<lpage>379</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2008.04.005</pub-id>
<pub-id pub-id-type="pmid">18511334</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blümke</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Falter</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Herrfurth</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sode</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bode</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schäfer</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection</article-title>
.
<source>Plant Physiol.</source>
<volume>165</volume>
,
<fpage>346</fpage>
<lpage>358</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.114.236737</pub-id>
<pub-id pub-id-type="pmid">24686113</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Antoniw</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>K. E.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The predicted secretome of the plant pathogenic fungus
<italic>Fusarium graminearum</italic>
: a refined comparative analysis</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e33731</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0033731</pub-id>
<pub-id pub-id-type="pmid">22493673</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Maruyama</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kitamoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sumikoshi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Terada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Using a new GPI-anchored-protein identification system to mine the protein databases of
<italic>Aspergillus fumigatus, Aspergillus nidulans</italic>
, and
<italic>Aspergillus oryzae</italic>
</article-title>
.
<source>J. Gen. Appl. Microbiol.</source>
<volume>55</volume>
,
<fpage>381</fpage>
<lpage>393</lpage>
.
<pub-id pub-id-type="doi">10.2323/jgam.55.381</pub-id>
<pub-id pub-id-type="pmid">19940384</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carvunis</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Rolland</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wapinski</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Calderwood</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Yildirim</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Simonis</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Proto-genes and
<italic>de novo</italic>
gene birth</article-title>
.
<source>Nature</source>
<volume>487</volume>
,
<fpage>370</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature11184</pub-id>
<pub-id pub-id-type="pmid">22722833</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>H. X.</given-names>
</name>
<name>
<surname>Kovalchuk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Keriö</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Asiegbu</surname>
<given-names>F. O.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya</article-title>
.
<source>Mycologia</source>
<volume>105</volume>
,
<fpage>1479</fpage>
<lpage>1488</lpage>
.
<pub-id pub-id-type="doi">10.3852/13-115</pub-id>
<pub-id pub-id-type="pmid">23928425</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Durand</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Farach-Colton</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>NOTUNG: a program for dating gene duplications and optimizing gene family trees</article-title>
.
<source>J. Comput. Biol.</source>
<volume>7</volume>
,
<fpage>429</fpage>
<lpage>447</lpage>
.
<pub-id pub-id-type="doi">10.1089/106652700750050871</pub-id>
<pub-id pub-id-type="pmid">11108472</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Discovery of a novel small secreted protein family with conserved N-terminal IGY motif in Dikarya fungi</article-title>
.
<source>BMC Genomics</source>
<volume>15</volume>
:
<fpage>1151</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-15-1151</pub-id>
<pub-id pub-id-type="pmid">25526808</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chi</surname>
<given-names>M. H.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y. H.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host</article-title>
.
<source>PLoS Pathog.</source>
<volume>5</volume>
:
<fpage>e1000401</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1000401</pub-id>
<pub-id pub-id-type="pmid">19390617</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cheong</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jeon</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>G. W.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and oomycetes</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>41</volume>
,
<fpage>D714</fpage>
<lpage>D719</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gks1163</pub-id>
<pub-id pub-id-type="pmid">23193288</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Détry</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K. T.</given-names>
</name>
<name>
<surname>Asiegbu</surname>
<given-names>F. O.</given-names>
</name>
<name>
<surname>Valkonen</surname>
<given-names>J. P. T.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y. H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>fPoxDB: fungal peroxidase database for comparative genomics</article-title>
.
<source>BMC Microbiol.</source>
<volume>14</volume>
:
<fpage>117</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2180-14-117</pub-id>
<pub-id pub-id-type="pmid">24885079</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y. H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Fungal secretome database: integrated platform for annotation of fungal secretomes</article-title>
.
<source>BMC Genomics</source>
<volume>11</volume>
:
<fpage>105</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-11-105</pub-id>
<pub-id pub-id-type="pmid">20146824</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choo</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>T. W.</given-names>
</name>
<name>
<surname>Ranganathan</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>SPdb – a signal peptide database</article-title>
.
<source>BMC Bioinformatics</source>
<volume>6</volume>
:
<fpage>249</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2105-6-249</pub-id>
<pub-id pub-id-type="pmid">16221310</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cornelis</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Van Gijsegem</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Assembly and function of type III secretory systems</article-title>
.
<source>Annu. Rev. Microbiol.</source>
<volume>54</volume>
,
<fpage>735</fpage>
<lpage>774</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.micro.54.1.735</pub-id>
<pub-id pub-id-type="pmid">11018143</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deller</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Rudd</surname>
<given-names>J. J.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>The complex interactions between host immunity and non-biotrophic fungal pathogens of wheat leaves</article-title>
.
<source>J. Plant Physiol.</source>
<volume>168</volume>
,
<fpage>63</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2010.05.024</pub-id>
<pub-id pub-id-type="pmid">20688416</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dodds</surname>
<given-names>P. N.</given-names>
</name>
<name>
<surname>Rathjen</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Plant immunity: towards an integrated view of plant-pathogen interactions</article-title>
.
<source>Nat. Rev. Genet.</source>
<volume>11</volume>
,
<fpage>539</fpage>
<lpage>548</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrg2812</pub-id>
<pub-id pub-id-type="pmid">20585331</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duplessis</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cuomo</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Aerts</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tisserant</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Veneault-Fourrey</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Obligate biotrophy features unraveled by the genomic analysis of rust fungi</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>108</volume>
,
<fpage>9166</fpage>
<lpage>9171</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1019315108</pub-id>
<pub-id pub-id-type="pmid">21536894</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enright</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Van Dongen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ouzounis</surname>
<given-names>C. A.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>An efficient algorithm for large-scale detection of protein families</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>30</volume>
,
<fpage>1575</fpage>
<lpage>1584</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/30.7.1575</pub-id>
<pub-id pub-id-type="pmid">11917018</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pleiss</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The lipase engineering database: a navigation and analysis tool for protein families</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>31</volume>
,
<fpage>319</fpage>
<lpage>321</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkg015</pub-id>
<pub-id pub-id-type="pmid">12520012</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giraldo</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Valent</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Filamentous plant pathogen effectors in action</article-title>
.
<source>Nat. Rev. Microbiol.</source>
<volume>11</volume>
,
<fpage>800</fpage>
<lpage>814</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrmicro3119</pub-id>
<pub-id pub-id-type="pmid">24129511</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girard</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Dieryckx</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Job</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Job</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Secretomes: the fungal strike force</article-title>
.
<source>Proteomics</source>
<volume>13</volume>
,
<fpage>597</fpage>
<lpage>608</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.201200282</pub-id>
<pub-id pub-id-type="pmid">23349114</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Godfrey</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Böhlenius</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Emmersen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Thordal-Christensen</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif</article-title>
.
<source>BMC Genomics</source>
<volume>11</volume>
:
<fpage>317</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-11-317</pub-id>
<pub-id pub-id-type="pmid">20487537</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gourion</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Berrabah</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ratet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Stacey</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Rhizobium-legume symbioses: the crucial role of plant immunity</article-title>
.
<source>Trends Plant Sci.</source>
<volume>20</volume>
,
<fpage>186</fpage>
<lpage>194</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2014.11.008</pub-id>
<pub-id pub-id-type="pmid">25543258</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guyon</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Balagué</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Roby</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Raffaele</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen
<italic>Sclerotinia sclerotiorum</italic>
</article-title>
.
<source>BMC Genomics</source>
<volume>15</volume>
:
<fpage>336</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-15-336</pub-id>
<pub-id pub-id-type="pmid">24886033</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hacquard</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Joly</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Tisserant</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feau</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Delaruelle</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in
<italic>Melampsora larici-populina</italic>
(poplar leaf rust)</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>25</volume>
,
<fpage>279</fpage>
<lpage>293</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-09-11-0238</pub-id>
<pub-id pub-id-type="pmid">22046958</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hall</surname>
<given-names>B. G.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Building phylogenetic trees from molecular data with MEGA</article-title>
.
<source>Mol. Biol. Evol.</source>
<volume>30</volume>
,
<fpage>1229</fpage>
<lpage>1235</lpage>
.
<pub-id pub-id-type="doi">10.1093/molbev/mst012</pub-id>
<pub-id pub-id-type="pmid">23486614</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horton</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Obayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Adams-Collier</surname>
<given-names>C. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>WoLF PSORT: protein localization predictor</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>35</volume>
,
<fpage>W585</fpage>
<lpage>W587</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkm259</pub-id>
<pub-id pub-id-type="pmid">17517783</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>J. D. G.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The plant immune system</article-title>
.
<source>Nature</source>
<volume>444</volume>
,
<fpage>323</fpage>
<lpage>329</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature05286</pub-id>
<pub-id pub-id-type="pmid">17108957</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Käll</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Krogh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sonnhammer</surname>
<given-names>E. L. L.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>A combined transmembrane topology and signal peptide prediction method</article-title>
.
<source>J. Mol. Biol.</source>
<volume>338</volume>
,
<fpage>1027</fpage>
<lpage>1036</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jmb.2004.03.016</pub-id>
<pub-id pub-id-type="pmid">15111065</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>T. K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y. H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Identification and analysis of
<italic>in planta</italic>
expressed genes of
<italic>Magnaporthe oryzae</italic>
</article-title>
.
<source>BMC Genomics</source>
<volume>11</volume>
:
<fpage>104</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-11-104</pub-id>
<pub-id pub-id-type="pmid">20146797</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kloppholz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Requena</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>A secreted fungal effector of
<italic>Glomus intraradices</italic>
promotes symbiotic biotrophy</article-title>
.
<source>Curr. Biol.</source>
<volume>21</volume>
,
<fpage>1204</fpage>
<lpage>1209</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2011.06.044</pub-id>
<pub-id pub-id-type="pmid">21757354</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krijger</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Thon</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Deising</surname>
<given-names>H. B.</given-names>
</name>
<name>
<surname>Wirsel</surname>
<given-names>S. G. R.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation</article-title>
.
<source>BMC Genomics</source>
<volume>15</volume>
:
<fpage>722</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-15-722</pub-id>
<pub-id pub-id-type="pmid">25159997</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuo</surname>
<given-names>H. C.</given-names>
</name>
<name>
<surname>Hui</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Asiegbu</surname>
<given-names>F. O.</given-names>
</name>
<name>
<surname>Valkonen</surname>
<given-names>J. P. T.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y. H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Secret lifestyles of
<italic>Neurospora crassa</italic>
</article-title>
.
<source>Sci. Rep.</source>
<volume>4</volume>
:
<fpage>5135</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep05135</pub-id>
<pub-id pub-id-type="pmid">24875794</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo Presti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lanver</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Schweizer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tollot</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015</year>
).
<article-title>Fungal effectors and plant susceptibility</article-title>
.
<source>Annu. Rev. Plant Biol.</source>
<volume>66</volume>
,
<fpage>513</fpage>
<lpage>545</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-arplant-043014-114623</pub-id>
<pub-id pub-id-type="pmid">25923844</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowe</surname>
<given-names>R. G. T.</given-names>
</name>
<name>
<surname>Howlett</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi</article-title>
.
<source>PLoS Pathog.</source>
<volume>8</volume>
:
<fpage>e1002515</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002515</pub-id>
<pub-id pub-id-type="pmid">22396640</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Aerts</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ahrén</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Danchin</surname>
<given-names>E. G. J.</given-names>
</name>
<name>
<surname>Duchaussoy</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>The genome of
<italic>Laccaria bicolor</italic>
provides insights into mycorrhizal symbiosis</article-title>
.
<source>Nature</source>
<volume>452</volume>
,
<fpage>88</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature06556</pub-id>
<pub-id pub-id-type="pmid">18322534</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murat</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Balestrini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Coutinho</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Jaillon</surname>
<given-names>O.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis</article-title>
.
<source>Nature</source>
<volume>464</volume>
,
<fpage>1033</fpage>
<lpage>1038</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature08867</pub-id>
<pub-id pub-id-type="pmid">20348908</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meinken</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Asch</surname>
<given-names>D. K.</given-names>
</name>
<name>
<surname>Neizer-Ashun</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>C. R.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Min</surname>
<given-names>X. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>FunSecKB2: a fungal protein subcellular location knowledgebase</article-title>
.
<source>Comput. Mol. Biol.</source>
<volume>4</volume>
,
<fpage>1</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.5376/cmb.2014.04.0007</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plett</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Kemppainen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kale</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Legué</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>A secreted effector protein of
<italic>Laccaria bicolor</italic>
is required for symbiosis development</article-title>
.
<source>Curr. Biol.</source>
<volume>21</volume>
,
<fpage>1197</fpage>
<lpage>1203</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2011.05.033</pub-id>
<pub-id pub-id-type="pmid">21757352</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pliego</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nowara</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bonciani</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gheorghe</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Surana</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>26</volume>
,
<fpage>633</fpage>
<lpage>642</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-01-13-0005-R</pub-id>
<pub-id pub-id-type="pmid">23441578</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Ludowici</surname>
<given-names>V. A.</given-names>
</name>
<name>
<surname>Hardham</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>P. N.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Challenges and progress towards understanding the role of effectors in plant-fungal interactions</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>15</volume>
,
<fpage>477</fpage>
<lpage>482</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2012.05.003</pub-id>
<pub-id pub-id-type="pmid">22658704</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rawlings</surname>
<given-names>N. D.</given-names>
</name>
<name>
<surname>Waller</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>MEROPS: the database of proteolytic enzymes, their substrates and inhibitors</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>42</volume>
,
<fpage>D503</fpage>
<lpage>D509</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkt953</pub-id>
<pub-id pub-id-type="pmid">24157837</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rep</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Small proteins of plant-pathogenic fungi secreted during host colonization</article-title>
.
<source>FEMS Microbiol. Lett.</source>
<volume>253</volume>
,
<fpage>19</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.femsle.2005.09.014</pub-id>
<pub-id pub-id-type="pmid">16216445</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riley</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Salamov</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>L. G.</given-names>
</name>
<name>
<surname>Floudas</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Held</surname>
<given-names>B. W.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>111</volume>
,
<fpage>14959</fpage>
<lpage>14959</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1418116111</pub-id>
<pub-id pub-id-type="pmid">24958869</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogers</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Flaishman</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Kolattukudy</surname>
<given-names>P. E.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Cutinase gene disruption in
<italic>Fusarium solani</italic>
f sp pisi decreases its virulence on pea</article-title>
.
<source>Plant Cell</source>
<volume>6</volume>
,
<fpage>935</fpage>
<lpage>945</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.6.7.935</pub-id>
<pub-id pub-id-type="pmid">8069105</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rovenich</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Boshoven</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>B. P.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Filamentous pathogen effector functions: of pathogens, hosts and microbiomes</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>20</volume>
,
<fpage>96</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2014.05.001</pub-id>
<pub-id pub-id-type="pmid">24879450</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santhanam</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>B. P.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>
<italic>Verticillium dahliae</italic>
Sge1 differentially regulates expression of candidate effector genes</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>26</volume>
,
<fpage>249</fpage>
<lpage>256</lpage>
.
<pub-id pub-id-type="doi">10.1094/Mpmi-08-12-0198-R</pub-id>
<pub-id pub-id-type="pmid">22970788</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>D. G. O.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Raffaele</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e29847</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0029847</pub-id>
<pub-id pub-id-type="pmid">22238666</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schirawski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mannhaupt</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Münch</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Brefort</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schipper</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Doehlemann</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Pathogenicity determinants in smut fungi revealed by genome comparison</article-title>
.
<source>Science</source>
<volume>330</volume>
,
<fpage>1546</fpage>
<lpage>1548</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1195330</pub-id>
<pub-id pub-id-type="pmid">21148393</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Panstruga</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis?</article-title>
<source>Curr. Opin. Plant Biol.</source>
<volume>14</volume>
,
<fpage>392</fpage>
<lpage>399</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2011.03.006</pub-id>
<pub-id pub-id-type="pmid">21458359</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seidl</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Faino</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shi-Kunne</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>van den Berg</surname>
<given-names>G. C. M.</given-names>
</name>
<name>
<surname>Bolton</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>B. P.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The genome of the saprophytic fungus
<italic>Verticillium tricorpus</italic>
reveals a complex effector repertoire resembling that of its pathogenic relatives</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>28</volume>
,
<fpage>362</fpage>
<lpage>373</lpage>
.
<pub-id pub-id-type="doi">10.1094/Mpmi-06-14-0173-R</pub-id>
<pub-id pub-id-type="pmid">25208342</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soto</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Sanjuán</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Olivares</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Rhizobia and plant-pathogenic bacteria: common infection weapons</article-title>
.
<source>Microbiology</source>
<volume>152</volume>
,
<fpage>3167</fpage>
<lpage>3174</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.29112-0</pub-id>
<pub-id pub-id-type="pmid">17074888</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spanu</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Amselem</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Burgis</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Soanes</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Stüber</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism</article-title>
.
<source>Science</source>
<volume>330</volume>
,
<fpage>1543</fpage>
<lpage>1546</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1194573</pub-id>
<pub-id pub-id-type="pmid">21148392</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sreedhar</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>D. Y.</given-names>
</name>
<name>
<surname>Bunting</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Hillman</surname>
<given-names>B. I.</given-names>
</name>
<name>
<surname>Belanger</surname>
<given-names>F. C.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Fungal proteinase expression in the interaction of the plant pathogen
<italic>Magnaporthe poae</italic>
with its host</article-title>
.
<source>Gene</source>
<volume>235</volume>
,
<fpage>121</fpage>
<lpage>129</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0378-1119(99)00201-2</pub-id>
<pub-id pub-id-type="pmid">10415340</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staats</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Junges</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Guedes</surname>
<given-names>R. L. M.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>de Morais</surname>
<given-names>G. L.</given-names>
</name>
<name>
<surname>Boldo</surname>
<given-names>J. T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins</article-title>
.
<source>BMC Genomics</source>
<volume>15</volume>
:
<fpage>822</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-15-822</pub-id>
<pub-id pub-id-type="pmid">25263348</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stergiopoulos</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>P. J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Fungal effector proteins</article-title>
.
<source>Annu. Rev. Phytopathol.</source>
<volume>47</volume>
,
<fpage>233</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.phyto.112408.132637</pub-id>
<pub-id pub-id-type="pmid">19400631</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stergiopoulos</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kourmpetis</surname>
<given-names>Y. A. I.</given-names>
</name>
<name>
<surname>Slot</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Bakker</surname>
<given-names>F. T.</given-names>
</name>
<name>
<surname>De Wit</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Rokas</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>
<italic>In silico</italic>
characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins</article-title>
.
<source>Mol. Biol. Evol.</source>
<volume>29</volume>
,
<fpage>3371</fpage>
<lpage>3384</lpage>
.
<pub-id pub-id-type="doi">10.1093/molbev/mss143</pub-id>
<pub-id pub-id-type="pmid">22628532</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tisserant</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dozolme-Seddas</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Balestrini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Benabdellah</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Colard</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>The transcriptome of the arbuscular mycorrhizal fungus
<italic>Glomus intraradices</italic>
(DAOM 197198) reveals functional tradeoffs in an obligate symbiont</article-title>
.
<source>New Phytol.</source>
<volume>193</volume>
,
<fpage>755</fpage>
<lpage>769</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2011.03948.x</pub-id>
<pub-id pub-id-type="pmid">22092242</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tisserant</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Malbreil</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Symeonidi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Balestrini</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>110</volume>
,
<fpage>20117</fpage>
<lpage>20122</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1313452110</pub-id>
<pub-id pub-id-type="pmid">24277808</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Urban</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pant</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Raghunath</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Irvine</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Pedro</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>K. E.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The Pathogen-Host Interactions database (PHI-base): additions and future developments</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>43</volume>
,
<fpage>D645</fpage>
<lpage>D655</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gku1165</pub-id>
<pub-id pub-id-type="pmid">25414340</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Esse</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Bolton</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Stergiopoulos</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>B. P.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The chitin-binding
<italic>Cladosporium fulvum</italic>
effector protein Avr4 is a virulence factor</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>20</volume>
,
<fpage>1092</fpage>
<lpage>1101</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-20-9-1092</pub-id>
<pub-id pub-id-type="pmid">17849712</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vargas</surname>
<given-names>W. A.</given-names>
</name>
<name>
<surname>Mandawe</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Kenerley</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Plant-derived sucrose is a key element in the symbiotic association between
<italic>Trichoderma virens</italic>
and maize plants</article-title>
.
<source>Plant Physiol.</source>
<volume>151</volume>
,
<fpage>792</fpage>
<lpage>808</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.109.141291</pub-id>
<pub-id pub-id-type="pmid">19675155</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whisson</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Boevink</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Moleleki</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Avrova</surname>
<given-names>A. O.</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Gilroy</surname>
<given-names>E. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>A translocation signal for delivery of oomycete effector proteins into host plant cells</article-title>
.
<source>Nature</source>
<volume>450</volume>
,
<fpage>115</fpage>
<lpage>118</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature06203</pub-id>
<pub-id pub-id-type="pmid">17914356</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>37</volume>
,
<fpage>W174</fpage>
<lpage>W178</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkp278</pub-id>
<pub-id pub-id-type="pmid">19398429</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>dbCAN: a web resource for automated carbohydrate-active enzyme annotation</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>40</volume>
,
<fpage>W445</fpage>
<lpage>W451</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gks479</pub-id>
<pub-id pub-id-type="pmid">22645317</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zamioudis</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pieterse</surname>
<given-names>C. M. J.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Modulation of host immunity by beneficial microbes</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>25</volume>
,
<fpage>139</fpage>
<lpage>150</lpage>
.
<pub-id pub-id-type="doi">10.1094/Mpmi-06-11-0179</pub-id>
<pub-id pub-id-type="pmid">21995763</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Effectors and effector delivery in
<italic>Magnaporthe oryzae</italic>
</article-title>
.
<source>PLoS Pathog.</source>
<volume>10</volume>
:
<fpage>e1003826</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1003826</pub-id>
<pub-id pub-id-type="pmid">24391496</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi</article-title>
.
<source>BMC Genomics</source>
<volume>15</volume>
:
<fpage>6</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-15-6</pub-id>
<pub-id pub-id-type="pmid">24422981</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zuccaro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lahrmann</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Güldener</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Langen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pfiffi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Biedenkopf</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont
<italic>Piriformospora indica</italic>
</article-title>
.
<source>PLoS Pathog.</source>
<volume>7</volume>
:
<fpage>e1002290</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002290</pub-id>
<pub-id pub-id-type="pmid">22022265</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>SSPs</term>
<def>
<p>small secreted proteins</p>
</def>
</def-item>
<def-item>
<term>SSSPs</term>
<def>
<p>species-specific SSPs</p>
</def>
</def-item>
<def-item>
<term>CSSPs</term>
<def>
<p>conserved SSPs.</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000606 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000606 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020