Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000039 ( Pmc/Corpus ); précédent : 0000389; suivant : 0000400 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Repeat-containing protein effectors of plant-associated organisms</title>
<author>
<name sortKey="Mesarich, Carl H" sort="Mesarich, Carl H" uniqKey="Mesarich C" first="Carl H." last="Mesarich">Carl H. Mesarich</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Biological Sciences, The University of Auckland</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K." last="Bowen">Joanna K. Bowen</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hamiaux, Cyril" sort="Hamiaux, Cyril" uniqKey="Hamiaux C" first="Cyril" last="Hamiaux">Cyril Hamiaux</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Human Responses, The New Zealand Institute for Plant & Food Research Limited</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D." last="Templeton">Matthew D. Templeton</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Biological Sciences, The University of Auckland</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26557126</idno>
<idno type="pmc">4617103</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617103</idno>
<idno type="RBID">PMC:4617103</idno>
<idno type="doi">10.3389/fpls.2015.00872</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000039</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000039</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Repeat-containing protein effectors of plant-associated organisms</title>
<author>
<name sortKey="Mesarich, Carl H" sort="Mesarich, Carl H" uniqKey="Mesarich C" first="Carl H." last="Mesarich">Carl H. Mesarich</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Biological Sciences, The University of Auckland</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K." last="Bowen">Joanna K. Bowen</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hamiaux, Cyril" sort="Hamiaux, Cyril" uniqKey="Hamiaux C" first="Cyril" last="Hamiaux">Cyril Hamiaux</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Human Responses, The New Zealand Institute for Plant & Food Research Limited</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D." last="Templeton">Matthew D. Templeton</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Biological Sciences, The University of Auckland</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abramovitch, R B" uniqKey="Abramovitch R">R. B. Abramovitch</name>
</author>
<author>
<name sortKey="Janjusevic, R" uniqKey="Janjusevic R">R. Janjusevic</name>
</author>
<author>
<name sortKey="Stebbins, C E" uniqKey="Stebbins C">C. E. Stebbins</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abramovitch, R B" uniqKey="Abramovitch R">R. B. Abramovitch</name>
</author>
<author>
<name sortKey="Kim, Y J" uniqKey="Kim Y">Y.-J. Kim</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Dickman, M B" uniqKey="Dickman M">M. B. Dickman</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aggarwal, R" uniqKey="Aggarwal R">R. Aggarwal</name>
</author>
<author>
<name sortKey="Subramanyam, S" uniqKey="Subramanyam S">S. Subramanyam</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C. Zhao</name>
</author>
<author>
<name sortKey="Chen, M S" uniqKey="Chen M">M. S. Chen</name>
</author>
<author>
<name sortKey="Harris, M O" uniqKey="Harris M">M. O. Harris</name>
</author>
<author>
<name sortKey="Stuart, J J" uniqKey="Stuart J">J. J. Stuart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, R L" uniqKey="Allen R">R. L. Allen</name>
</author>
<author>
<name sortKey="Bittner Eddy, P D" uniqKey="Bittner Eddy P">P. D. Bittner-Eddy</name>
</author>
<author>
<name sortKey="Grenville Briggs, L J" uniqKey="Grenville Briggs L">L. J. Grenville-Briggs</name>
</author>
<author>
<name sortKey="Meitz, J C" uniqKey="Meitz J">J. C. Meitz</name>
</author>
<author>
<name sortKey="Rehmany, A P" uniqKey="Rehmany A">A. P. Rehmany</name>
</author>
<author>
<name sortKey="Rose, L E" uniqKey="Rose L">L. E. Rose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, R L" uniqKey="Allen R">R. L. Allen</name>
</author>
<author>
<name sortKey="Meitz, J C" uniqKey="Meitz J">J. C. Meitz</name>
</author>
<author>
<name sortKey="Baumber, R E" uniqKey="Baumber R">R. E. Baumber</name>
</author>
<author>
<name sortKey="Hall, S A" uniqKey="Hall S">S. A. Hall</name>
</author>
<author>
<name sortKey="Lee, S C" uniqKey="Lee S">S. C. Lee</name>
</author>
<author>
<name sortKey="Rose, L E" uniqKey="Rose L">L. E. Rose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angot, A" uniqKey="Angot A">A. Angot</name>
</author>
<author>
<name sortKey="Peeters, N" uniqKey="Peeters N">N. Peeters</name>
</author>
<author>
<name sortKey="Lechner, E" uniqKey="Lechner E">E. Lechner</name>
</author>
<author>
<name sortKey="Vailleau, F" uniqKey="Vailleau F">F. Vailleau</name>
</author>
<author>
<name sortKey="Baud, C" uniqKey="Baud C">C. Baud</name>
</author>
<author>
<name sortKey="Gentzbittel, L" uniqKey="Gentzbittel L">L. Gentzbittel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, T L" uniqKey="Bailey T">T. L. Bailey</name>
</author>
<author>
<name sortKey="Johnson, J" uniqKey="Johnson J">J. Johnson</name>
</author>
<author>
<name sortKey="Grant, C E" uniqKey="Grant C">C. E. Grant</name>
</author>
<author>
<name sortKey="Noble, W S" uniqKey="Noble W">W. S. Noble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Block, A" uniqKey="Block A">A. Block</name>
</author>
<author>
<name sortKey="Alfano, J R" uniqKey="Alfano J">J. R. Alfano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boch, J" uniqKey="Boch J">J. Boch</name>
</author>
<author>
<name sortKey="Bonas, U" uniqKey="Bonas U">U. Bonas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boch, J" uniqKey="Boch J">J. Boch</name>
</author>
<author>
<name sortKey="Scholze, H" uniqKey="Scholze H">H. Scholze</name>
</author>
<author>
<name sortKey="Schornack, S" uniqKey="Schornack S">S. Schornack</name>
</author>
<author>
<name sortKey="Landgraf, A" uniqKey="Landgraf A">A. Landgraf</name>
</author>
<author>
<name sortKey="Hahn, S" uniqKey="Hahn S">S. Hahn</name>
</author>
<author>
<name sortKey="Kay, S" uniqKey="Kay S">S. Kay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bohm, H" uniqKey="Bohm H">H. Böhm</name>
</author>
<author>
<name sortKey="Albert, I" uniqKey="Albert I">I. Albert</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L. Fan</name>
</author>
<author>
<name sortKey="Reinhard, A" uniqKey="Reinhard A">A. Reinhard</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T. Nürnberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolton, M D" uniqKey="Bolton M">M. D. Bolton</name>
</author>
<author>
<name sortKey="Van Esse, H P" uniqKey="Van Esse H">H. P. van Esse</name>
</author>
<author>
<name sortKey="Vossen, J H" uniqKey="Vossen J">J. H. Vossen</name>
</author>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R. de Jonge</name>
</author>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I. Stergiopoulos</name>
</author>
<author>
<name sortKey="Stulemeijer, I J" uniqKey="Stulemeijer I">I. J. Stulemeijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bos, J I" uniqKey="Bos J">J. I. Bos</name>
</author>
<author>
<name sortKey="Prince, D" uniqKey="Prince D">D. Prince</name>
</author>
<author>
<name sortKey="Pitino, M" uniqKey="Pitino M">M. Pitino</name>
</author>
<author>
<name sortKey="Maffei, M E" uniqKey="Maffei M">M. E. Maffei</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Hogenhout, S A" uniqKey="Hogenhout S">S. A. Hogenhout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boutemy, L S" uniqKey="Boutemy L">L. S. Boutemy</name>
</author>
<author>
<name sortKey="King, S R F" uniqKey="King S">S. R. F. King</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Hughes, R K" uniqKey="Hughes R">R. K. Hughes</name>
</author>
<author>
<name sortKey="Clarke, T A" uniqKey="Clarke T">T. A. Clarke</name>
</author>
<author>
<name sortKey="Blumenschein, T M A" uniqKey="Blumenschein T">T. M. A. Blumenschein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bozkurt, T O" uniqKey="Bozkurt T">T. O. Bozkurt</name>
</author>
<author>
<name sortKey="Schornack, S" uniqKey="Schornack S">S. Schornack</name>
</author>
<author>
<name sortKey="Banfield, M J" uniqKey="Banfield M">M. J. Banfield</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, C J" uniqKey="Brown C">C. J. Brown</name>
</author>
<author>
<name sortKey="Johnson, A K" uniqKey="Johnson A">A. K. Johnson</name>
</author>
<author>
<name sortKey="Dunker, A K" uniqKey="Dunker A">A. K. Dunker</name>
</author>
<author>
<name sortKey="Daughdrill, G W" uniqKey="Daughdrill G">G. W. Daughdrill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castagnone Sereno, P" uniqKey="Castagnone Sereno P">P. Castagnone-Sereno</name>
</author>
<author>
<name sortKey="Semblat, J P" uniqKey="Semblat J">J.-P. Semblat</name>
</author>
<author>
<name sortKey="Castagnone, C" uniqKey="Castagnone C">C. Castagnone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catanzariti, A M" uniqKey="Catanzariti A">A.-M. Catanzariti</name>
</author>
<author>
<name sortKey="Dodds, P N" uniqKey="Dodds P">P. N. Dodds</name>
</author>
<author>
<name sortKey="Lawrence, G J" uniqKey="Lawrence G">G. J. Lawrence</name>
</author>
<author>
<name sortKey="Ayliffe, M A" uniqKey="Ayliffe M">M. A. Ayliffe</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catanzariti, A M" uniqKey="Catanzariti A">A.-M. Catanzariti</name>
</author>
<author>
<name sortKey="Dodds, P N" uniqKey="Dodds P">P. N. Dodds</name>
</author>
<author>
<name sortKey="Ve, T" uniqKey="Ve T">T. Ve</name>
</author>
<author>
<name sortKey="Kobe, B" uniqKey="Kobe B">B. Kobe</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L Q" uniqKey="Chen L">L. Q. Chen</name>
</author>
<author>
<name sortKey="Hou, B H" uniqKey="Hou B">B. H. Hou</name>
</author>
<author>
<name sortKey="Lalonde, S" uniqKey="Lalonde S">S. Lalonde</name>
</author>
<author>
<name sortKey="Takanaga, H" uniqKey="Takanaga H">H. Takanaga</name>
</author>
<author>
<name sortKey="Hartung, M L" uniqKey="Hartung M">M. L. Hartung</name>
</author>
<author>
<name sortKey="Qu, X Q" uniqKey="Qu X">X. Q. Qu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Lang, P" uniqKey="Lang P">P. Lang</name>
</author>
<author>
<name sortKey="Chronis, D" uniqKey="Chronis D">D. Chronis</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="De Jong, W S" uniqKey="De Jong W">W. S. De Jong</name>
</author>
<author>
<name sortKey="Mitchum, M G" uniqKey="Mitchum M">M. G. Mitchum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, W" uniqKey="Cheng W">W. Cheng</name>
</author>
<author>
<name sortKey="Munkvold, K R" uniqKey="Munkvold K">K. R. Munkvold</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
<author>
<name sortKey="Mathieu, J" uniqKey="Mathieu J">J. Mathieu</name>
</author>
<author>
<name sortKey="Schwizer, S" uniqKey="Schwizer S">S. Schwizer</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chosed, R" uniqKey="Chosed R">R. Chosed</name>
</author>
<author>
<name sortKey="Tomchick, D R" uniqKey="Tomchick D">D. R. Tomchick</name>
</author>
<author>
<name sortKey="Brautigam, C A" uniqKey="Brautigam C">C. A. Brautigam</name>
</author>
<author>
<name sortKey="Mukherjee, S" uniqKey="Mukherjee S">S. Mukherjee</name>
</author>
<author>
<name sortKey="Negi, V S" uniqKey="Negi V">V. S. Negi</name>
</author>
<author>
<name sortKey="Machius, M" uniqKey="Machius M">M. Machius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chou, S" uniqKey="Chou S">S. Chou</name>
</author>
<author>
<name sortKey="Krasileva, K V" uniqKey="Krasileva K">K. V. Krasileva</name>
</author>
<author>
<name sortKey="Holton, J M" uniqKey="Holton J">J. M. Holton</name>
</author>
<author>
<name sortKey="Steinbrenner, A D" uniqKey="Steinbrenner A">A. D. Steinbrenner</name>
</author>
<author>
<name sortKey="Alber, T" uniqKey="Alber T">T. Alber</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Z" uniqKey="Chu Z">Z. Chu</name>
</author>
<author>
<name sortKey="Yuan, M" uniqKey="Yuan M">M. Yuan</name>
</author>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J. Yao</name>
</author>
<author>
<name sortKey="Ge, X" uniqKey="Ge X">X. Ge</name>
</author>
<author>
<name sortKey="Yuan, B" uniqKey="Yuan B">B. Yuan</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, H" uniqKey="Cui H">H. Cui</name>
</author>
<author>
<name sortKey="Tsuda, K" uniqKey="Tsuda K">K. Tsuda</name>
</author>
<author>
<name sortKey="Parker, J E" uniqKey="Parker J">J. E. Parker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cunnac, S" uniqKey="Cunnac S">S. Cunnac</name>
</author>
<author>
<name sortKey="Occhialini, A" uniqKey="Occhialini A">A. Occhialini</name>
</author>
<author>
<name sortKey="Barberis, P" uniqKey="Barberis P">P. Barberis</name>
</author>
<author>
<name sortKey="Boucher, C" uniqKey="Boucher C">C. Boucher</name>
</author>
<author>
<name sortKey="Genin, S" uniqKey="Genin S">S. Genin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R. de Jonge</name>
</author>
<author>
<name sortKey="Van Esse, H P" uniqKey="Van Esse H">H. P. van Esse</name>
</author>
<author>
<name sortKey="Kombrink, A" uniqKey="Kombrink A">A. Kombrink</name>
</author>
<author>
<name sortKey="Shinya, T" uniqKey="Shinya T">T. Shinya</name>
</author>
<author>
<name sortKey="Desaki, Y" uniqKey="Desaki Y">Y. Desaki</name>
</author>
<author>
<name sortKey="Bours, R" uniqKey="Bours R">R. Bours</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Lange, O" uniqKey="De Lange O">O. de Lange</name>
</author>
<author>
<name sortKey="Schreiber, T" uniqKey="Schreiber T">T. Schreiber</name>
</author>
<author>
<name sortKey="Schandry, N" uniqKey="Schandry N">N. Schandry</name>
</author>
<author>
<name sortKey="Radeck, J" uniqKey="Radeck J">J. Radeck</name>
</author>
<author>
<name sortKey="Braun, K H" uniqKey="Braun K">K. H. Braun</name>
</author>
<author>
<name sortKey="Koszinowski, J" uniqKey="Koszinowski J">J. Koszinowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, D" uniqKey="Deng D">D. Deng</name>
</author>
<author>
<name sortKey="Yan, C" uniqKey="Yan C">C. Yan</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X. Pan</name>
</author>
<author>
<name sortKey="Mahfouz, M" uniqKey="Mahfouz M">M. Mahfouz</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Zhu, J K" uniqKey="Zhu J">J. K. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deslandes, L" uniqKey="Deslandes L">L. Deslandes</name>
</author>
<author>
<name sortKey="Rivas, S" uniqKey="Rivas S">S. Rivas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Torres, M" uniqKey="De Torres M">M. de Torres</name>
</author>
<author>
<name sortKey="Mansfield, J W" uniqKey="Mansfield J">J. W. Mansfield</name>
</author>
<author>
<name sortKey="Grabov, N" uniqKey="Grabov N">N. Grabov</name>
</author>
<author>
<name sortKey="Brown, I R" uniqKey="Brown I">I. R. Brown</name>
</author>
<author>
<name sortKey="Ammouneh, H" uniqKey="Ammouneh H">H. Ammouneh</name>
</author>
<author>
<name sortKey="Tsiamis, G" uniqKey="Tsiamis G">G. Tsiamis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, J" uniqKey="Dong J">J. Dong</name>
</author>
<author>
<name sortKey="Xiao, F" uniqKey="Xiao F">F. Xiao</name>
</author>
<author>
<name sortKey="Fan, F" uniqKey="Fan F">F. Fan</name>
</author>
<author>
<name sortKey="Gu, L" uniqKey="Gu L">L. Gu</name>
</author>
<author>
<name sortKey="Cang, H" uniqKey="Cang H">H. Cang</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, S" uniqKey="Dong S">S. Dong</name>
</author>
<author>
<name sortKey="Stam, R" uniqKey="Stam R">R. Stam</name>
</author>
<author>
<name sortKey="Cano, L M" uniqKey="Cano L">L. M. Cano</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J. Song</name>
</author>
<author>
<name sortKey="Sklenar, J" uniqKey="Sklenar J">J. Sklenar</name>
</author>
<author>
<name sortKey="Yoshida, K" uniqKey="Yoshida K">K. Yoshida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dou, D" uniqKey="Dou D">D. Dou</name>
</author>
<author>
<name sortKey="Zhou, J M" uniqKey="Zhou J">J.-M. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyson, H J" uniqKey="Dyson H">H. J. Dyson</name>
</author>
<author>
<name sortKey="Wright, P E" uniqKey="Wright P">P. E. Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elzinga, D A" uniqKey="Elzinga D">D. A. Elzinga</name>
</author>
<author>
<name sortKey="De Vos, M" uniqKey="De Vos M">M. De Vos</name>
</author>
<author>
<name sortKey="Jander, G" uniqKey="Jander G">G. Jander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eves Van Den Akker, S" uniqKey="Eves Van Den Akker S">S. Eves-van den Akker</name>
</author>
<author>
<name sortKey="Lilley, C J" uniqKey="Lilley C">C. J. Lilley</name>
</author>
<author>
<name sortKey="Jones, J T" uniqKey="Jones J">J. T. Jones</name>
</author>
<author>
<name sortKey="Urwin, P E" uniqKey="Urwin P">P. E. Urwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, F" uniqKey="Feng F">F. Feng</name>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F. Yang</name>
</author>
<author>
<name sortKey="Rong, W" uniqKey="Rong W">W. Rong</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H. Gao</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Chai, J" uniqKey="Chai J">J. Chai</name>
</author>
<author>
<name sortKey="Han, Z" uniqKey="Han Z">Z. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaulin, E" uniqKey="Gaulin E">E. Gaulin</name>
</author>
<author>
<name sortKey="Drame, N" uniqKey="Drame N">N. Dramé</name>
</author>
<author>
<name sortKey="Lafitte, C" uniqKey="Lafitte C">C. Lafitte</name>
</author>
<author>
<name sortKey="Torto Alalibo, T" uniqKey="Torto Alalibo T">T. Torto-Alalibo</name>
</author>
<author>
<name sortKey="Martinez, Y" uniqKey="Martinez Y">Y. Martinez</name>
</author>
<author>
<name sortKey="Ameline Torregrosa, C" uniqKey="Ameline Torregrosa C">C. Ameline-Torregrosa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaulin, E" uniqKey="Gaulin E">E. Gaulin</name>
</author>
<author>
<name sortKey="Jauneau, A" uniqKey="Jauneau A">A. Jauneau</name>
</author>
<author>
<name sortKey="Villalba, F" uniqKey="Villalba F">F. Villalba</name>
</author>
<author>
<name sortKey="Rickauer, M" uniqKey="Rickauer M">M. Rickauer</name>
</author>
<author>
<name sortKey="Esquerre Tugaye, M T" uniqKey="Esquerre Tugaye M">M. T. Esquerré-Tugayé</name>
</author>
<author>
<name sortKey="Bottin, A" uniqKey="Bottin A">A. Bottin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gemayel, R" uniqKey="Gemayel R">R. Gemayel</name>
</author>
<author>
<name sortKey="Vinces, M D" uniqKey="Vinces M">M. D. Vinces</name>
</author>
<author>
<name sortKey="Legendre, M" uniqKey="Legendre M">M. Legendre</name>
</author>
<author>
<name sortKey="Verstrepen, K J" uniqKey="Verstrepen K">K. J. Verstrepen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gohre, V" uniqKey="Gohre V">V. Göhre</name>
</author>
<author>
<name sortKey="Spallek, T" uniqKey="Spallek T">T. Spallek</name>
</author>
<author>
<name sortKey="H Weker, H" uniqKey="H Weker H">H. Häweker</name>
</author>
<author>
<name sortKey="Mersmann, S" uniqKey="Mersmann S">S. Mersmann</name>
</author>
<author>
<name sortKey="Mentzel, T" uniqKey="Mentzel T">T. Mentzel</name>
</author>
<author>
<name sortKey="Boller, T" uniqKey="Boller T">T. Boller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gimenez Ibanez, S" uniqKey="Gimenez Ibanez S">S. Gimenez-Ibanez</name>
</author>
<author>
<name sortKey="Hann, D R" uniqKey="Hann D">D. R. Hann</name>
</author>
<author>
<name sortKey="Ntoukakis, V" uniqKey="Ntoukakis V">V. Ntoukakis</name>
</author>
<author>
<name sortKey="Petutschnig, E" uniqKey="Petutschnig E">E. Petutschnig</name>
</author>
<author>
<name sortKey="Lipka, V" uniqKey="Lipka V">V. Lipka</name>
</author>
<author>
<name sortKey="Rathjen, J P" uniqKey="Rathjen J">J. P. Rathjen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goss, E M" uniqKey="Goss E">E. M. Goss</name>
</author>
<author>
<name sortKey="Press, C M" uniqKey="Press C">C. M. Press</name>
</author>
<author>
<name sortKey="Grunwald, N J" uniqKey="Grunwald N">N. J. Grünwald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gornhardt, B" uniqKey="Gornhardt B">B. Görnhardt</name>
</author>
<author>
<name sortKey="Rouhara, I" uniqKey="Rouhara I">I. Rouhara</name>
</author>
<author>
<name sortKey="Schmelzer, E" uniqKey="Schmelzer E">E. Schmelzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grove, T Z" uniqKey="Grove T">T. Z. Grove</name>
</author>
<author>
<name sortKey="Cortajarena, A L" uniqKey="Cortajarena A">A. L. Cortajarena</name>
</author>
<author>
<name sortKey="Regan, L" uniqKey="Regan L">L. Regan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Ni, J" uniqKey="Ni J">J. Ni</name>
</author>
<author>
<name sortKey="Denver, R" uniqKey="Denver R">R. Denver</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Clark, S E" uniqKey="Clark S">S. E. Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gust, A A" uniqKey="Gust A">A. A. Gust</name>
</author>
<author>
<name sortKey="Willmann, R" uniqKey="Willmann R">R. Willmann</name>
</author>
<author>
<name sortKey="Desaki, Y" uniqKey="Desaki Y">Y. Desaki</name>
</author>
<author>
<name sortKey="Grabherr, H M" uniqKey="Grabherr H">H. M. Grabherr</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T. Nürnberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guttman, D S" uniqKey="Guttman D">D. S. Guttman</name>
</author>
<author>
<name sortKey="Vinatzer, B A" uniqKey="Vinatzer B">B. A. Vinatzer</name>
</author>
<author>
<name sortKey="Sarkar, S F" uniqKey="Sarkar S">S. F. Sarkar</name>
</author>
<author>
<name sortKey="Ranall, M V" uniqKey="Ranall M">M. V. Ranall</name>
</author>
<author>
<name sortKey="Kettler, G" uniqKey="Kettler G">G. Kettler</name>
</author>
<author>
<name sortKey="Greenberg, J T" uniqKey="Greenberg J">J. T. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guy, E" uniqKey="Guy E">E. Guy</name>
</author>
<author>
<name sortKey="Lautier, M" uniqKey="Lautier M">M. Lautier</name>
</author>
<author>
<name sortKey="Chabannes, M" uniqKey="Chabannes M">M. Chabannes</name>
</author>
<author>
<name sortKey="Roux, B" uniqKey="Roux B">B. Roux</name>
</author>
<author>
<name sortKey="Lauber, E" uniqKey="Lauber E">E. Lauber</name>
</author>
<author>
<name sortKey="Arlat, M" uniqKey="Arlat M">M. Arlat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, P" uniqKey="He P">P. He</name>
</author>
<author>
<name sortKey="Shan, L" uniqKey="Shan L">L. Shan</name>
</author>
<author>
<name sortKey="Lin, N C" uniqKey="Lin N">N. C. Lin</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
<author>
<name sortKey="Kemmerling, B" uniqKey="Kemmerling B">B. Kemmerling</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T. Nürnberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herbers, K" uniqKey="Herbers K">K. Herbers</name>
</author>
<author>
<name sortKey="Conrads Strauch, J" uniqKey="Conrads Strauch J">J. Conrads-Strauch</name>
</author>
<author>
<name sortKey="Bonas, U" uniqKey="Bonas U">U. Bonas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heuer, H" uniqKey="Heuer H">H. Heuer</name>
</author>
<author>
<name sortKey="Yin, Y N" uniqKey="Yin Y">Y. N. Yin</name>
</author>
<author>
<name sortKey="Xue, Q Y" uniqKey="Xue Q">Q. Y. Xue</name>
</author>
<author>
<name sortKey="Smalla, K" uniqKey="Smalla K">K. Smalla</name>
</author>
<author>
<name sortKey="Guo, J H" uniqKey="Guo J">J. H. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hogenhout, S A" uniqKey="Hogenhout S">S. A. Hogenhout</name>
</author>
<author>
<name sortKey="Van Der Hoorn, R A L" uniqKey="Van Der Hoorn R">R. A. L. van der Hoorn</name>
</author>
<author>
<name sortKey="Terauchi, R" uniqKey="Terauchi R">R. Terauchi</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hotson, A" uniqKey="Hotson A">A. Hotson</name>
</author>
<author>
<name sortKey="Chosed, R" uniqKey="Chosed R">R. Chosed</name>
</author>
<author>
<name sortKey="Shu, H" uniqKey="Shu H">H. Shu</name>
</author>
<author>
<name sortKey="Orth, K" uniqKey="Orth K">K. Orth</name>
</author>
<author>
<name sortKey="Mudgett, M B" uniqKey="Mudgett M">M. B. Mudgett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janjusevic, R" uniqKey="Janjusevic R">R. Janjusevic</name>
</author>
<author>
<name sortKey="Abramovitch, R B" uniqKey="Abramovitch R">R. B. Abramovitch</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
<author>
<name sortKey="Stebbins, C E" uniqKey="Stebbins C">C. E. Stebbins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaouannet, M" uniqKey="Jaouannet M">M. Jaouannet</name>
</author>
<author>
<name sortKey="Rodriguez, P A" uniqKey="Rodriguez P">P. A. Rodriguez</name>
</author>
<author>
<name sortKey="Thorpe, P" uniqKey="Thorpe P">P. Thorpe</name>
</author>
<author>
<name sortKey="Lenoir, C J" uniqKey="Lenoir C">C. J. Lenoir</name>
</author>
<author>
<name sortKey="Macleod, R" uniqKey="Macleod R">R. MacLeod</name>
</author>
<author>
<name sortKey="Escudero Martinez, C" uniqKey="Escudero Martinez C">C. Escudero-Martinez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jelenska, J" uniqKey="Jelenska J">J. Jelenska</name>
</author>
<author>
<name sortKey="Van Hal, J A" uniqKey="Van Hal J">J. A. van Hal</name>
</author>
<author>
<name sortKey="Greenberg, J T" uniqKey="Greenberg J">J. T. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jelenska, J" uniqKey="Jelenska J">J. Jelenska</name>
</author>
<author>
<name sortKey="Yao, N" uniqKey="Yao N">N. Yao</name>
</author>
<author>
<name sortKey="Vinatzer, B A" uniqKey="Vinatzer B">B. A. Vinatzer</name>
</author>
<author>
<name sortKey="Wright, C M" uniqKey="Wright C">C. M. Wright</name>
</author>
<author>
<name sortKey="Brodsky, J L" uniqKey="Brodsky J">J. L. Brodsky</name>
</author>
<author>
<name sortKey="Greenberg, J T" uniqKey="Greenberg J">J. T. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, R H" uniqKey="Jiang R">R. H. Jiang</name>
</author>
<author>
<name sortKey="Tripathy, S" uniqKey="Tripathy S">S. Tripathy</name>
</author>
<author>
<name sortKey="Govers, F" uniqKey="Govers F">F. Govers</name>
</author>
<author>
<name sortKey="Tyler, B M" uniqKey="Tyler B">B. M. Tyler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kajava, A V" uniqKey="Kajava A">A. V. Kajava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kappel, C" uniqKey="Kappel C">C. Kappel</name>
</author>
<author>
<name sortKey="Zachariae, U" uniqKey="Zachariae U">U. Zachariae</name>
</author>
<author>
<name sortKey="Dolker, N" uniqKey="Dolker N">N. Dölker</name>
</author>
<author>
<name sortKey="Grubmuller, H" uniqKey="Grubmuller H">H. Grubmüller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kay, S" uniqKey="Kay S">S. Kay</name>
</author>
<author>
<name sortKey="Hahn, S" uniqKey="Hahn S">S. Hahn</name>
</author>
<author>
<name sortKey="Marois, E" uniqKey="Marois E">E. Marois</name>
</author>
<author>
<name sortKey="Hause, G" uniqKey="Hause G">G. Hause</name>
</author>
<author>
<name sortKey="Bonas, U" uniqKey="Bonas U">U. Bonas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khatib, M" uniqKey="Khatib M">M. Khatib</name>
</author>
<author>
<name sortKey="Lafitte, C" uniqKey="Lafitte C">C. Lafitte</name>
</author>
<author>
<name sortKey="Esquerre Tugaye, M T" uniqKey="Esquerre Tugaye M">M.-T. Esquerré-Tugayé</name>
</author>
<author>
<name sortKey="Bottin, A" uniqKey="Bottin A">A. Bottin</name>
</author>
<author>
<name sortKey="Rickauer, M" uniqKey="Rickauer M">M. Rickauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J G" uniqKey="Kim J">J. G. Kim</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Roden, J A" uniqKey="Roden J">J. A. Roden</name>
</author>
<author>
<name sortKey="Taylor, K W" uniqKey="Taylor K">K. W. Taylor</name>
</author>
<author>
<name sortKey="Aakre, C D" uniqKey="Aakre C">C. D. Aakre</name>
</author>
<author>
<name sortKey="Su, B" uniqKey="Su B">B. Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J G" uniqKey="Kim J">J.-G. Kim</name>
</author>
<author>
<name sortKey="Stork, W" uniqKey="Stork W">W. Stork</name>
</author>
<author>
<name sortKey="Mudgett, M B" uniqKey="Mudgett M">M. B. Mudgett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J G" uniqKey="Kim J">J.-G. Kim</name>
</author>
<author>
<name sortKey="Taylor, K W" uniqKey="Taylor K">K. W. Taylor</name>
</author>
<author>
<name sortKey="Hotson, A" uniqKey="Hotson A">A. Hotson</name>
</author>
<author>
<name sortKey="Keegan, M" uniqKey="Keegan M">M. Keegan</name>
</author>
<author>
<name sortKey="Schmelz, E A" uniqKey="Schmelz E">E. A. Schmelz</name>
</author>
<author>
<name sortKey="Mudgett, M B" uniqKey="Mudgett M">M. B. Mudgett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Y J" uniqKey="Kim Y">Y. J. Kim</name>
</author>
<author>
<name sortKey="Lin, N C" uniqKey="Lin N">N.-C. Lin</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kloppholz, S" uniqKey="Kloppholz S">S. Kloppholz</name>
</author>
<author>
<name sortKey="Kuhn, H" uniqKey="Kuhn H">H. Kuhn</name>
</author>
<author>
<name sortKey="Requena, N" uniqKey="Requena N">N. Requena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krasileva, K V" uniqKey="Krasileva K">K. V. Krasileva</name>
</author>
<author>
<name sortKey="Dahlbeck, D" uniqKey="Dahlbeck D">D. Dahlbeck</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucheryava, N" uniqKey="Kucheryava N">N. Kucheryava</name>
</author>
<author>
<name sortKey="Bowen, J K" uniqKey="Bowen J">J. K. Bowen</name>
</author>
<author>
<name sortKey="Sutherland, P W" uniqKey="Sutherland P">P. W. Sutherland</name>
</author>
<author>
<name sortKey="Conolly, J J" uniqKey="Conolly J">J. J. Conolly</name>
</author>
<author>
<name sortKey="Mesarich, C H" uniqKey="Mesarich C">C. H. Mesarich</name>
</author>
<author>
<name sortKey="Rikkerink, E H" uniqKey="Rikkerink E">E. H. Rikkerink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucukoglu, M" uniqKey="Kucukoglu M">M. Kucukoglu</name>
</author>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O. Nilsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laluk, K" uniqKey="Laluk K">K. Laluk</name>
</author>
<author>
<name sortKey="Abuqamar, S" uniqKey="Abuqamar S">S. Abuqamar</name>
</author>
<author>
<name sortKey="Mengiste, T" uniqKey="Mengiste T">T. Mengiste</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lanver, D" uniqKey="Lanver D">D. Lanver</name>
</author>
<author>
<name sortKey="Berndt, P" uniqKey="Berndt P">P. Berndt</name>
</author>
<author>
<name sortKey="Tollot, M" uniqKey="Tollot M">M. Tollot</name>
</author>
<author>
<name sortKey="Naik, V" uniqKey="Naik V">V. Naik</name>
</author>
<author>
<name sortKey="Vranes, M" uniqKey="Vranes M">M. Vranes</name>
</author>
<author>
<name sortKey="Warmann, T" uniqKey="Warmann T">T. Warmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lanver, D" uniqKey="Lanver D">D. Lanver</name>
</author>
<author>
<name sortKey="Mendoza Mendoza, A" uniqKey="Mendoza Mendoza A">A. Mendoza-Mendoza</name>
</author>
<author>
<name sortKey="Brachmann, A" uniqKey="Brachmann A">A. Brachmann</name>
</author>
<author>
<name sortKey="Kahmann, R" uniqKey="Kahmann R">R. Kahmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leonelli, L" uniqKey="Leonelli L">L. Leonelli</name>
</author>
<author>
<name sortKey="Pelton, J" uniqKey="Pelton J">J. Pelton</name>
</author>
<author>
<name sortKey="Schoeffler, A" uniqKey="Schoeffler A">A. Schoeffler</name>
</author>
<author>
<name sortKey="Dahlbeck, D" uniqKey="Dahlbeck D">D. Dahlbeck</name>
</author>
<author>
<name sortKey="Berger, J" uniqKey="Berger J">J. Berger</name>
</author>
<author>
<name sortKey="Wemmer, D E" uniqKey="Wemmer D">D. E. Wemmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Atef, A" uniqKey="Atef A">A. Atef</name>
</author>
<author>
<name sortKey="Piatek, A" uniqKey="Piatek A">A. Piatek</name>
</author>
<author>
<name sortKey="Ali, Z" uniqKey="Ali Z">Z. Ali</name>
</author>
<author>
<name sortKey="Piatek, M" uniqKey="Piatek M">M. Piatek</name>
</author>
<author>
<name sortKey="Aouida, M" uniqKey="Aouida M">M. Aouida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo Presti, L" uniqKey="Lo Presti L">L. Lo Presti</name>
</author>
<author>
<name sortKey="Lanver, D" uniqKey="Lanver D">D. Lanver</name>
</author>
<author>
<name sortKey="Schweizer, G" uniqKey="Schweizer G">G. Schweizer</name>
</author>
<author>
<name sortKey="Tanaka, S" uniqKey="Tanaka S">S. Tanaka</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
<author>
<name sortKey="Tollot, M" uniqKey="Tollot M">M. Tollot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, S W" uniqKey="Lu S">S. W. Lu</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H. Yu</name>
</author>
<author>
<name sortKey="Chronis, D" uniqKey="Chronis D">D. Chronis</name>
</author>
<author>
<name sortKey="Mitchum, M G" uniqKey="Mitchum M">M. G. Mitchum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, H" uniqKey="Luo H">H. Luo</name>
</author>
<author>
<name sortKey="Nijveen, H" uniqKey="Nijveen H">H. Nijveen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macho, A P" uniqKey="Macho A">A. P. Macho</name>
</author>
<author>
<name sortKey="Guidot, A" uniqKey="Guidot A">A. Guidot</name>
</author>
<author>
<name sortKey="Barberis, P" uniqKey="Barberis P">P. Barberis</name>
</author>
<author>
<name sortKey="Beuz N, C R" uniqKey="Beuz N C">C. R. Beuzón</name>
</author>
<author>
<name sortKey="Genin, S" uniqKey="Genin S">S. Genin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madoff, L C" uniqKey="Madoff L">L. C. Madoff</name>
</author>
<author>
<name sortKey="Michel, J L" uniqKey="Michel J">J. L. Michel</name>
</author>
<author>
<name sortKey="Gong, E W" uniqKey="Gong E">E. W. Gong</name>
</author>
<author>
<name sortKey="Kling, D E" uniqKey="Kling D">D. E. Kling</name>
</author>
<author>
<name sortKey="Kasper, D L" uniqKey="Kasper D">D. L. Kasper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mak, A N" uniqKey="Mak A">A. N. Mak</name>
</author>
<author>
<name sortKey="Bradley, P" uniqKey="Bradley P">P. Bradley</name>
</author>
<author>
<name sortKey="Cernadas, R A" uniqKey="Cernadas R">R. A. Cernadas</name>
</author>
<author>
<name sortKey="Bogdanove, A J" uniqKey="Bogdanove A">A. J. Bogdanove</name>
</author>
<author>
<name sortKey="Stoddard, B L" uniqKey="Stoddard B">B. L. Stoddard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marin, M" uniqKey="Marin M">M. Marín</name>
</author>
<author>
<name sortKey="Ott, T" uniqKey="Ott T">T. Ott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marin, M" uniqKey="Marin M">M. Marín</name>
</author>
<author>
<name sortKey="Uversky, V N" uniqKey="Uversky V">V. N. Uversky</name>
</author>
<author>
<name sortKey="Ott, T" uniqKey="Ott T">T. Ott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marois, E" uniqKey="Marois E">E. Marois</name>
</author>
<author>
<name sortKey="Van Den Ackerveken, G" uniqKey="Van Den Ackerveken G">G. Van den Ackerveken</name>
</author>
<author>
<name sortKey="Bonas, U" uniqKey="Bonas U">U. Bonas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mathieu, J" uniqKey="Mathieu J">J. Mathieu</name>
</author>
<author>
<name sortKey="Schwizer, S" uniqKey="Schwizer S">S. Schwizer</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendes, T A" uniqKey="Mendes T">T. A. Mendes</name>
</author>
<author>
<name sortKey="Lobo, F P" uniqKey="Lobo F">F. P. Lobo</name>
</author>
<author>
<name sortKey="Rodrigues, T S" uniqKey="Rodrigues T">T. S. Rodrigues</name>
</author>
<author>
<name sortKey="Rodrigues Luiz, G F" uniqKey="Rodrigues Luiz G">G. F. Rodrigues-Luiz</name>
</author>
<author>
<name sortKey="Darocha, W D" uniqKey="Darocha W">W. D. daRocha</name>
</author>
<author>
<name sortKey="Fujiwara, R T" uniqKey="Fujiwara R">R. T. Fujiwara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mesarich, C H" uniqKey="Mesarich C">C. H. Mesarich</name>
</author>
<author>
<name sortKey="Schmitz, M" uniqKey="Schmitz M">M. Schmitz</name>
</author>
<author>
<name sortKey="Tremouilhac, P" uniqKey="Tremouilhac P">P. Tremouilhac</name>
</author>
<author>
<name sortKey="Mcgillivray, D J" uniqKey="Mcgillivray D">D. J. McGillivray</name>
</author>
<author>
<name sortKey="Templeton, M D" uniqKey="Templeton M">M. D. Templeton</name>
</author>
<author>
<name sortKey="Dingley, A J" uniqKey="Dingley A">A. J. Dingley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitchum, M G" uniqKey="Mitchum M">M. G. Mitchum</name>
</author>
<author>
<name sortKey="Hussey, R S" uniqKey="Hussey R">R. S. Hussey</name>
</author>
<author>
<name sortKey="Baum, T J" uniqKey="Baum T">T. J. Baum</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Elling, A A" uniqKey="Elling A">A. A. Elling</name>
</author>
<author>
<name sortKey="Wubben, M" uniqKey="Wubben M">M. Wubben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moscou, M J" uniqKey="Moscou M">M. J. Moscou</name>
</author>
<author>
<name sortKey="Bogdanove, A J" uniqKey="Bogdanove A">A. J. Bogdanove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mucyn, T S" uniqKey="Mucyn T">T. S. Mucyn</name>
</author>
<author>
<name sortKey="Clemente, A" uniqKey="Clemente A">A. Clemente</name>
</author>
<author>
<name sortKey="Andriotis, V M" uniqKey="Andriotis V">V. M. Andriotis</name>
</author>
<author>
<name sortKey="Balmuth, A L" uniqKey="Balmuth A">A. L. Balmuth</name>
</author>
<author>
<name sortKey="Oldroyd, G E" uniqKey="Oldroyd G">G. E. Oldroyd</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mueller, O" uniqKey="Mueller O">O. Mueller</name>
</author>
<author>
<name sortKey="Kahmann, R" uniqKey="Kahmann R">R. Kahmann</name>
</author>
<author>
<name sortKey="Aguilar, G" uniqKey="Aguilar G">G. Aguilar</name>
</author>
<author>
<name sortKey="Trejo Aguilar, B" uniqKey="Trejo Aguilar B">B. Trejo-Aguilar</name>
</author>
<author>
<name sortKey="Wu, A" uniqKey="Wu A">A. Wu</name>
</author>
<author>
<name sortKey="De Vries, R P" uniqKey="De Vries R">R. P. de Vries</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mukaihara, T" uniqKey="Mukaihara T">T. Mukaihara</name>
</author>
<author>
<name sortKey="Tamura, N" uniqKey="Tamura N">N. Tamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, O" uniqKey="Muller O">O. Müller</name>
</author>
<author>
<name sortKey="Schreier, P H" uniqKey="Schreier P">P. H. Schreier</name>
</author>
<author>
<name sortKey="Uhrig, J F" uniqKey="Uhrig J">J. F. Uhrig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, J" uniqKey="Nilsson J">J. Nilsson</name>
</author>
<author>
<name sortKey="Grahn, M" uniqKey="Grahn M">M. Grahn</name>
</author>
<author>
<name sortKey="Wright, A P H" uniqKey="Wright A">A. P. H. Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nissan, G" uniqKey="Nissan G">G. Nissan</name>
</author>
<author>
<name sortKey="Manulis Sasson, S" uniqKey="Manulis Sasson S">S. Manulis-Sasson</name>
</author>
<author>
<name sortKey="Chalupowicz, L" uniqKey="Chalupowicz L">L. Chalupowicz</name>
</author>
<author>
<name sortKey="Teper, D" uniqKey="Teper D">D. Teper</name>
</author>
<author>
<name sortKey="Yeheskel, A" uniqKey="Yeheskel A">A. Yeheskel</name>
</author>
<author>
<name sortKey="Pasmanik Chor, M" uniqKey="Pasmanik Chor M">M. Pasmanik-Chor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nissan, G" uniqKey="Nissan G">G. Nissan</name>
</author>
<author>
<name sortKey="Manulis Sasson, S" uniqKey="Manulis Sasson S">S. Manulis-Sasson</name>
</author>
<author>
<name sortKey="Weinthal, D" uniqKey="Weinthal D">D. Weinthal</name>
</author>
<author>
<name sortKey="Mor, H" uniqKey="Mor H">H. Mor</name>
</author>
<author>
<name sortKey="Sessa, G" uniqKey="Sessa G">G. Sessa</name>
</author>
<author>
<name sortKey="Barash, I" uniqKey="Barash I">I. Barash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palma, K" uniqKey="Palma K">K. Palma</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peeters, N" uniqKey="Peeters N">N. Peeters</name>
</author>
<author>
<name sortKey="Carrere, S" uniqKey="Carrere S">S. Carrère</name>
</author>
<author>
<name sortKey="Anisimova, M" uniqKey="Anisimova M">M. Anisimova</name>
</author>
<author>
<name sortKey="Plener, L" uniqKey="Plener L">L. Plener</name>
</author>
<author>
<name sortKey="Cazale, A C" uniqKey="Cazale A">A. C. Cazalé</name>
</author>
<author>
<name sortKey="Genin, S" uniqKey="Genin S">S. Genin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petre, B" uniqKey="Petre B">B. Petre</name>
</author>
<author>
<name sortKey="Lorrain, C" uniqKey="Lorrain C">C. Lorrain</name>
</author>
<author>
<name sortKey="Saunders, D G O" uniqKey="Saunders D">D. G. O. Saunders</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Sklenar, J" uniqKey="Sklenar J">J. Sklenar</name>
</author>
<author>
<name sortKey="Duplessis, S" uniqKey="Duplessis S">S. Duplessis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petre, B" uniqKey="Petre B">B. Petre</name>
</author>
<author>
<name sortKey="Saunders, D G" uniqKey="Saunders D">D. G. Saunders</name>
</author>
<author>
<name sortKey="Sklenar, J" uniqKey="Sklenar J">J. Sklenar</name>
</author>
<author>
<name sortKey="Lorrain, C" uniqKey="Lorrain C">C. Lorrain</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Duplessis, S" uniqKey="Duplessis S">S. Duplessis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitino, M" uniqKey="Pitino M">M. Pitino</name>
</author>
<author>
<name sortKey="Coleman, A D" uniqKey="Coleman A">A. D. Coleman</name>
</author>
<author>
<name sortKey="Maffei, M E" uniqKey="Maffei M">M. E. Maffei</name>
</author>
<author>
<name sortKey="Ridout, C J" uniqKey="Ridout C">C. J. Ridout</name>
</author>
<author>
<name sortKey="Hogenhout, S A" uniqKey="Hogenhout S">S. A. Hogenhout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitino, M" uniqKey="Pitino M">M. Pitino</name>
</author>
<author>
<name sortKey="Hogenhout, S A" uniqKey="Hogenhout S">S. A. Hogenhout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pradhan, B B" uniqKey="Pradhan B">B. B. Pradhan</name>
</author>
<author>
<name sortKey="Ranjan, M" uniqKey="Ranjan M">M. Ranjan</name>
</author>
<author>
<name sortKey="Chatterjee, S" uniqKey="Chatterjee S">S. Chatterjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S. Raffaele</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Cano, L M" uniqKey="Cano L">L. M. Cano</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Gan, P H P" uniqKey="Gan P">P. H. P. Gan</name>
</author>
<author>
<name sortKey="Ravensdale, M" uniqKey="Ravensdale M">M. Ravensdale</name>
</author>
<author>
<name sortKey="Lawrence, G J" uniqKey="Lawrence G">G. J. Lawrence</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
<author>
<name sortKey="Jones, D A" uniqKey="Jones D">D. A. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Jelonek, L" uniqKey="Jelonek L">L. Jelonek</name>
</author>
<author>
<name sortKey="Akum, N F" uniqKey="Akum N">N. F. Akum</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Kogel, K H" uniqKey="Kogel K">K.-H. Kogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rehmany, A P" uniqKey="Rehmany A">A. P. Rehmany</name>
</author>
<author>
<name sortKey="Gordon, A" uniqKey="Gordon A">A. Gordon</name>
</author>
<author>
<name sortKey="Rose, L E" uniqKey="Rose L">L. E. Rose</name>
</author>
<author>
<name sortKey="Allen, R L" uniqKey="Allen R">R. L. Allen</name>
</author>
<author>
<name sortKey="Armstrong, M R" uniqKey="Armstrong M">M. R. Armstrong</name>
</author>
<author>
<name sortKey="Whisson, S C" uniqKey="Whisson S">S. C. Whisson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remigi, P" uniqKey="Remigi P">P. Remigi</name>
</author>
<author>
<name sortKey="Anisimova, M" uniqKey="Anisimova M">M. Anisimova</name>
</author>
<author>
<name sortKey="Guidot, A" uniqKey="Guidot A">A. Guidot</name>
</author>
<author>
<name sortKey="Genin, S" uniqKey="Genin S">S. Genin</name>
</author>
<author>
<name sortKey="Peeters, N" uniqKey="Peeters N">N. Peeters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richard, G F" uniqKey="Richard G">G.-F. Richard</name>
</author>
<author>
<name sortKey="Paques, F" uniqKey="Paques F">F. Pâques</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romer, P" uniqKey="Romer P">P. Römer</name>
</author>
<author>
<name sortKey="Hahn, S" uniqKey="Hahn S">S. Hahn</name>
</author>
<author>
<name sortKey="Jordan, T" uniqKey="Jordan T">T. Jordan</name>
</author>
<author>
<name sortKey="Strauss, T" uniqKey="Strauss T">T. Strauss</name>
</author>
<author>
<name sortKey="Bonas, U" uniqKey="Bonas U">U. Bonas</name>
</author>
<author>
<name sortKey="Lahaye, T" uniqKey="Lahaye T">T. Lahaye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romer, P" uniqKey="Romer P">P. Römer</name>
</author>
<author>
<name sortKey="Strauss, T" uniqKey="Strauss T">T. Strauss</name>
</author>
<author>
<name sortKey="Hahn, S" uniqKey="Hahn S">S. Hahn</name>
</author>
<author>
<name sortKey="Scholze, H" uniqKey="Scholze H">H. Scholze</name>
</author>
<author>
<name sortKey="Morbitzer, R" uniqKey="Morbitzer R">R. Morbitzer</name>
</author>
<author>
<name sortKey="Grau, J" uniqKey="Grau J">J. Grau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robold, A V" uniqKey="Robold A">A. V. Robold</name>
</author>
<author>
<name sortKey="Hardham, A R" uniqKey="Hardham A">A. R. Hardham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roden, J A" uniqKey="Roden J">J. A. Roden</name>
</author>
<author>
<name sortKey="Belt, B" uniqKey="Belt B">B. Belt</name>
</author>
<author>
<name sortKey="Ross, J B" uniqKey="Ross J">J. B. Ross</name>
</author>
<author>
<name sortKey="Tachibana, T" uniqKey="Tachibana T">T. Tachibana</name>
</author>
<author>
<name sortKey="Vargas, J" uniqKey="Vargas J">J. Vargas</name>
</author>
<author>
<name sortKey="Mudgett, M B" uniqKey="Mudgett M">M. B. Mudgett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosebrock, T R" uniqKey="Rosebrock T">T. R. Rosebrock</name>
</author>
<author>
<name sortKey="Zeng, L" uniqKey="Zeng L">L. Zeng</name>
</author>
<author>
<name sortKey="Brady, J J" uniqKey="Brady J">J. J. Brady</name>
</author>
<author>
<name sortKey="Abramovitch, R B" uniqKey="Abramovitch R">R. B. Abramovitch</name>
</author>
<author>
<name sortKey="Xiao, F" uniqKey="Xiao F">F. Xiao</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rudd, J J" uniqKey="Rudd J">J. J. Rudd</name>
</author>
<author>
<name sortKey="Antoniw, J" uniqKey="Antoniw J">J. Antoniw</name>
</author>
<author>
<name sortKey="Marshall, R" uniqKey="Marshall R">R. Marshall</name>
</author>
<author>
<name sortKey="Motteram, J" uniqKey="Motteram J">J. Motteram</name>
</author>
<author>
<name sortKey="Fraaije, B" uniqKey="Fraaije B">B. Fraaije</name>
</author>
<author>
<name sortKey="Hammond Kosack, K" uniqKey="Hammond Kosack K">K. Hammond-Kosack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutter, W B" uniqKey="Rutter W">W. B. Rutter</name>
</author>
<author>
<name sortKey="Hewezi, T" uniqKey="Hewezi T">T. Hewezi</name>
</author>
<author>
<name sortKey="Maier, T R" uniqKey="Maier T">T. R. Maier</name>
</author>
<author>
<name sortKey="Mitchum, M G" uniqKey="Mitchum M">M. G. Mitchum</name>
</author>
<author>
<name sortKey="Davis, E L" uniqKey="Davis E">E. L. Davis</name>
</author>
<author>
<name sortKey="Hussey, R S" uniqKey="Hussey R">R. S. Hussey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Vallet, A" uniqKey="Sanchez Vallet A">A. Sánchez-Vallet</name>
</author>
<author>
<name sortKey="Saleem Batcha, R" uniqKey="Saleem Batcha R">R. Saleem-Batcha</name>
</author>
<author>
<name sortKey="Kombrink, A" uniqKey="Kombrink A">A. Kombrink</name>
</author>
<author>
<name sortKey="Hansen, G" uniqKey="Hansen G">G. Hansen</name>
</author>
<author>
<name sortKey="Valkenburg, D J" uniqKey="Valkenburg D">D. J. Valkenburg</name>
</author>
<author>
<name sortKey="Thomma, B P" uniqKey="Thomma B">B. P. Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, D G" uniqKey="Saunders D">D. G. Saunders</name>
</author>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Cano, L M" uniqKey="Cano L">L. M. Cano</name>
</author>
<author>
<name sortKey="Szabo, L J" uniqKey="Szabo L">L. J. Szabo</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
<author>
<name sortKey="Raffaele, S" uniqKey="Raffaele S">S. Raffaele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sejalon Delmas, N" uniqKey="Sejalon Delmas N">N. Séjalon-Delmas</name>
</author>
<author>
<name sortKey="Mateos, F V" uniqKey="Mateos F">F. V. Mateos</name>
</author>
<author>
<name sortKey="Bottin, A" uniqKey="Bottin A">A. Bottin</name>
</author>
<author>
<name sortKey="Rickauer, M" uniqKey="Rickauer M">M. Rickauer</name>
</author>
<author>
<name sortKey="Dargent, R" uniqKey="Dargent R">R. Dargent</name>
</author>
<author>
<name sortKey="Esquerre Tugaye, M T" uniqKey="Esquerre Tugaye M">M. T. Esquerre-Tugaye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semblat, J P" uniqKey="Semblat J">J. P. Semblat</name>
</author>
<author>
<name sortKey="Rosso, M N" uniqKey="Rosso M">M. N. Rosso</name>
</author>
<author>
<name sortKey="Hussey, R S" uniqKey="Hussey R">R. S. Hussey</name>
</author>
<author>
<name sortKey="Abad, P" uniqKey="Abad P">P. Abad</name>
</author>
<author>
<name sortKey="Castagnone Sereno, P" uniqKey="Castagnone Sereno P">P. Castagnone-Sereno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shan, L" uniqKey="Shan L">L. Shan</name>
</author>
<author>
<name sortKey="He, P" uniqKey="He P">P. He</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Heese, A" uniqKey="Heese A">A. Heese</name>
</author>
<author>
<name sortKey="Peck, S C" uniqKey="Peck S">S. C. Peck</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T. Nürnberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singer, A U" uniqKey="Singer A">A. U. Singer</name>
</author>
<author>
<name sortKey="Schulze, S" uniqKey="Schulze S">S. Schulze</name>
</author>
<author>
<name sortKey="Skarina, T" uniqKey="Skarina T">T. Skarina</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Cui, H" uniqKey="Cui H">H. Cui</name>
</author>
<author>
<name sortKey="Eschen Lippold, L" uniqKey="Eschen Lippold L">L. Eschen-Lippold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sohn, K H" uniqKey="Sohn K">K. H. Sohn</name>
</author>
<author>
<name sortKey="Lei, R" uniqKey="Lei R">R. Lei</name>
</author>
<author>
<name sortKey="Nemri, A" uniqKey="Nemri A">A. Nemri</name>
</author>
<author>
<name sortKey="Jones, J D" uniqKey="Jones J">J. D. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinbrenner, A D" uniqKey="Steinbrenner A">A. D. Steinbrenner</name>
</author>
<author>
<name sortKey="Goritschnig, S" uniqKey="Goritschnig S">S. Goritschnig</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stergiopoulos, I" uniqKey="Stergiopoulos I">I. Stergiopoulos</name>
</author>
<author>
<name sortKey="De Kock, M J D" uniqKey="De Kock M">M. J. D. De Kock</name>
</author>
<author>
<name sortKey="Lindhout, P" uniqKey="Lindhout P">P. Lindhout</name>
</author>
<author>
<name sortKey="De Wit, P J" uniqKey="De Wit P">P. J. De Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, K W" uniqKey="Taylor K">K. W. Taylor</name>
</author>
<author>
<name sortKey="Kim, J G" uniqKey="Kim J">J.-G. Kim</name>
</author>
<author>
<name sortKey="Su, X B" uniqKey="Su X">X. B. Su</name>
</author>
<author>
<name sortKey="Aakre, C D" uniqKey="Aakre C">C. D. Aakre</name>
</author>
<author>
<name sortKey="Roden, J A" uniqKey="Roden J">J. A. Roden</name>
</author>
<author>
<name sortKey="Adams, C M" uniqKey="Adams C">C. M. Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teertstra, W R" uniqKey="Teertstra W">W. R. Teertstra</name>
</author>
<author>
<name sortKey="Deelstra, H J" uniqKey="Deelstra H">H. J. Deelstra</name>
</author>
<author>
<name sortKey="Vranes, M" uniqKey="Vranes M">M. Vranes</name>
</author>
<author>
<name sortKey="Bohlmann, R" uniqKey="Bohlmann R">R. Bohlmann</name>
</author>
<author>
<name sortKey="Kahmann, R" uniqKey="Kahmann R">R. Kahmann</name>
</author>
<author>
<name sortKey="K Mper, J" uniqKey="K Mper J">J. Kämper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teertstra, W R" uniqKey="Teertstra W">W. R. Teertstra</name>
</author>
<author>
<name sortKey="Van Der Velden, G J" uniqKey="Van Der Velden G">G. J. van der Velden</name>
</author>
<author>
<name sortKey="De Jong, J F" uniqKey="De Jong J">J. F. de Jong</name>
</author>
<author>
<name sortKey="Kruijtzer, J A" uniqKey="Kruijtzer J">J. A. Kruijtzer</name>
</author>
<author>
<name sortKey="Liskamp, R M" uniqKey="Liskamp R">R. M. Liskamp</name>
</author>
<author>
<name sortKey="Kroon Batenburg, L M" uniqKey="Kroon Batenburg L">L. M. Kroon-Batenburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomma, B P H J" uniqKey="Thomma B">B. P. H. J. Thomma</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T. Nürnberger</name>
</author>
<author>
<name sortKey="Joosten, M H A J" uniqKey="Joosten M">M. H. A. J. Joosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valinsky, L" uniqKey="Valinsky L">L. Valinsky</name>
</author>
<author>
<name sortKey="Manulis, S" uniqKey="Manulis S">S. Manulis</name>
</author>
<author>
<name sortKey="Nizan, R" uniqKey="Nizan R">R. Nizan</name>
</author>
<author>
<name sortKey="Ezra, D" uniqKey="Ezra D">D. Ezra</name>
</author>
<author>
<name sortKey="Barash, I" uniqKey="Barash I">I. Barash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ve, T" uniqKey="Ve T">T. Ve</name>
</author>
<author>
<name sortKey="Williams, S J" uniqKey="Williams S">S. J. Williams</name>
</author>
<author>
<name sortKey="Catanzariti, A M" uniqKey="Catanzariti A">A.-M. Catanzariti</name>
</author>
<author>
<name sortKey="Rafiqi, M" uniqKey="Rafiqi M">M. Rafiqi</name>
</author>
<author>
<name sortKey="Rahman, M" uniqKey="Rahman M">M. Rahman</name>
</author>
<author>
<name sortKey="Ellis, J G" uniqKey="Ellis J">J. G. Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verstrepen, K J" uniqKey="Verstrepen K">K. J. Verstrepen</name>
</author>
<author>
<name sortKey="Fink, G R" uniqKey="Fink G">G. R. Fink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vieira, P" uniqKey="Vieira P">P. Vieira</name>
</author>
<author>
<name sortKey="Danchin, E G J" uniqKey="Danchin E">E. G. J. Danchin</name>
</author>
<author>
<name sortKey="Neveu, C" uniqKey="Neveu C">C. Neveu</name>
</author>
<author>
<name sortKey="Crozat, C" uniqKey="Crozat C">C. Crozat</name>
</author>
<author>
<name sortKey="Jaubert, S" uniqKey="Jaubert S">S. Jaubert</name>
</author>
<author>
<name sortKey="Hussey, R S" uniqKey="Hussey R">R. S. Hussey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villalba Mateos, F" uniqKey="Villalba Mateos F">F. Villalba Mateos</name>
</author>
<author>
<name sortKey="Rickauer, M" uniqKey="Rickauer M">M. Rickauer</name>
</author>
<author>
<name sortKey="Esquerre Tugaye, M T" uniqKey="Esquerre Tugaye M">M. T. Esquerré-Tugayé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Roux, B" uniqKey="Roux B">B. Roux</name>
</author>
<author>
<name sortKey="Feng, F" uniqKey="Feng F">F. Feng</name>
</author>
<author>
<name sortKey="Guy, E" uniqKey="Guy E">E. Guy</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
<author>
<name sortKey="Remigi, P" uniqKey="Remigi P">P. Remigi</name>
</author>
<author>
<name sortKey="Anisimova, M" uniqKey="Anisimova M">M. Anisimova</name>
</author>
<author>
<name sortKey="Lonjon, F" uniqKey="Lonjon F">F. Lonjon</name>
</author>
<author>
<name sortKey="Kars, I" uniqKey="Kars I">I. Kars</name>
</author>
<author>
<name sortKey="Kajava, A" uniqKey="Kajava A">A. Kajava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y S" uniqKey="Wang Y">Y.-S. Wang</name>
</author>
<author>
<name sortKey="Pi, L Y" uniqKey="Pi L">L.-Y. Pi</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Chakrabarty, P K" uniqKey="Chakrabarty P">P. K. Chakrabarty</name>
</author>
<author>
<name sortKey="Jiang, J" uniqKey="Jiang J">J. Jiang</name>
</author>
<author>
<name sortKey="De Leon, A L" uniqKey="De Leon A">A. L. De Leon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, F F" uniqKey="White F">F. F. White</name>
</author>
<author>
<name sortKey="Potnis, N" uniqKey="Potnis N">N. Potnis</name>
</author>
<author>
<name sortKey="Jones, J B" uniqKey="Jones J">J. B. Jones</name>
</author>
<author>
<name sortKey="Koebnik, R" uniqKey="Koebnik R">R. Koebnik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Chaparro Garcia, A" uniqKey="Chaparro Garcia A">A. Chaparro-Garcia</name>
</author>
<author>
<name sortKey="Belhaj, K" uniqKey="Belhaj K">K. Belhaj</name>
</author>
<author>
<name sortKey="Saunders, D G" uniqKey="Saunders D">D. G. Saunders</name>
</author>
<author>
<name sortKey="Yoshida, K" uniqKey="Yoshida K">K. Yoshida</name>
</author>
<author>
<name sortKey="Dong, S" uniqKey="Dong S">S. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Krasileva, K V" uniqKey="Krasileva K">K. V. Krasileva</name>
</author>
<author>
<name sortKey="Kamoun, S" uniqKey="Kamoun S">S. Kamoun</name>
</author>
<author>
<name sortKey="Shirasu, K" uniqKey="Shirasu K">K. Shirasu</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
<author>
<name sortKey="Banfield, M J" uniqKey="Banfield M">M. J. Banfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Win, J" uniqKey="Win J">J. Win</name>
</author>
<author>
<name sortKey="Morgan, W" uniqKey="Morgan W">W. Morgan</name>
</author>
<author>
<name sortKey="Bos, J" uniqKey="Bos J">J. Bos</name>
</author>
<author>
<name sortKey="Krasileva, K V" uniqKey="Krasileva K">K. V. Krasileva</name>
</author>
<author>
<name sortKey="Cano, L M" uniqKey="Cano L">L. M. Cano</name>
</author>
<author>
<name sortKey="Chaparro Garcia, A" uniqKey="Chaparro Garcia A">A. Chaparro-Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wosten, H A" uniqKey="Wosten H">H. A. Wösten</name>
</author>
<author>
<name sortKey="Bohlmann, R" uniqKey="Bohlmann R">R. Bohlmann</name>
</author>
<author>
<name sortKey="Eckerskorn, C" uniqKey="Eckerskorn C">C. Eckerskorn</name>
</author>
<author>
<name sortKey="Lottspeich, F" uniqKey="Lottspeich F">F. Lottspeich</name>
</author>
<author>
<name sortKey="Bolker, M" uniqKey="Bolker M">M. Bolker</name>
</author>
<author>
<name sortKey="Kahmann, R" uniqKey="Kahmann R">R. Kahmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, F" uniqKey="Xiao F">F. Xiao</name>
</author>
<author>
<name sortKey="He, P" uniqKey="He P">P. He</name>
</author>
<author>
<name sortKey="Abramovitch, R B" uniqKey="Abramovitch R">R. B. Abramovitch</name>
</author>
<author>
<name sortKey="Dawson, J E" uniqKey="Dawson J">J. E. Dawson</name>
</author>
<author>
<name sortKey="Nicholson, L K" uniqKey="Nicholson L">L. K. Nicholson</name>
</author>
<author>
<name sortKey="Sheen, J" uniqKey="Sheen J">J. Sheen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, R Q" uniqKey="Xu R">R.-Q. Xu</name>
</author>
<author>
<name sortKey="Blanvillain, S" uniqKey="Blanvillain S">S. Blanvillain</name>
</author>
<author>
<name sortKey="Feng, J X" uniqKey="Feng J">J.-X. Feng</name>
</author>
<author>
<name sortKey="Jiang, B L" uniqKey="Jiang B">B.-L. Jiang</name>
</author>
<author>
<name sortKey="Li, X Z" uniqKey="Li X">X.-Z. Li</name>
</author>
<author>
<name sortKey="Wei, H Y" uniqKey="Wei H">H.-Y. Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Sugio, A" uniqKey="Sugio A">A. Sugio</name>
</author>
<author>
<name sortKey="White, F F" uniqKey="White F">F. F. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Sugio, A" uniqKey="Sugio A">A. Sugio</name>
</author>
<author>
<name sortKey="White, F F" uniqKey="White F">F. F. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="White, F F" uniqKey="White F">F. F. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Gabriel, D W" uniqKey="Gabriel D">D. W. Gabriel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, W" uniqKey="Ye W">W. Ye</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, M" uniqKey="Yuan M">M. Yuan</name>
</author>
<author>
<name sortKey="Chu, Z" uniqKey="Chu Z">Z. Chu</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C. Xu</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, L" uniqKey="Zeng L">L. Zeng</name>
</author>
<author>
<name sortKey="Velasquez, A C" uniqKey="Velasquez A">A. C. Velásquez</name>
</author>
<author>
<name sortKey="Munkvold, K R" uniqKey="Munkvold K">K. R. Munkvold</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C. Zhao</name>
</author>
<author>
<name sortKey="Escalante, L N" uniqKey="Escalante L">L. N. Escalante</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Benatti, T R" uniqKey="Benatti T">T. R. Benatti</name>
</author>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J. Qu</name>
</author>
<author>
<name sortKey="Chellapilla, S" uniqKey="Chellapilla S">S. Chellapilla</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26557126</article-id>
<article-id pub-id-type="pmc">4617103</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2015.00872</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Repeat-containing protein effectors of plant-associated organisms</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mesarich</surname>
<given-names>Carl H.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/186884/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bowen</surname>
<given-names>Joanna K.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/282977/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hamiaux</surname>
<given-names>Cyril</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/260102/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Templeton</surname>
<given-names>Matthew D.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/282980/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>School of Biological Sciences, The University of Auckland</institution>
<country>Auckland, New Zealand</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research Ltd</institution>
<country>Auckland, New Zealand</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Human Responses, The New Zealand Institute for Plant & Food Research Limited</institution>
<country>Auckland, New Zealand</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Maryam Rafiqi, Computomics GmbH, Germany</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Ralph Panstruga, RWTH Aachen University, Germany; Francine Govers, Wageningen University, Netherlands</p>
</fn>
<corresp id="fn001">*Correspondence: Carl H. Mesarich
<email xlink:type="simple">carl.mesarich@gmail.com</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Plant Biotic Interactions, a section of the journal Frontiers in Plant Science</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>21</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>6</volume>
<elocation-id>872</elocation-id>
<history>
<date date-type="received">
<day>03</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>01</day>
<month>10</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 Mesarich, Bowen, Hamiaux and Templeton.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Mesarich, Bowen, Hamiaux and Templeton</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.</p>
</abstract>
<kwd-group>
<kwd>repeat-containing protein effectors</kwd>
<kwd>plant-associated organisms</kwd>
<kwd>microbes</kwd>
<kwd>nematodes</kwd>
<kwd>insects</kwd>
</kwd-group>
<counts>
<fig-count count="3"></fig-count>
<table-count count="3"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="156"></ref-count>
<page-count count="19"></page-count>
<word-count count="15003"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Effectors of plant-associated organisms</title>
<p>Diverse plant-associated organisms, including bacteria, fungi, oomycetes, nematodes, and insects, secrete or inject a suite of proteins, termed effectors, into the tissues of their prospective hosts (Bozkurt et al.,
<xref rid="B15" ref-type="bibr">2012</xref>
; Deslandes and Rivas,
<xref rid="B31" ref-type="bibr">2012</xref>
; Mitchum et al.,
<xref rid="B92" ref-type="bibr">2013</xref>
; Jaouannet et al.,
<xref rid="B59" ref-type="bibr">2014</xref>
; Lo Presti et al.,
<xref rid="B80" ref-type="bibr">2015</xref>
). These effectors, which localize to the host apoplast, or are targeted to various plant cell compartments, function to promote colonization, typically by altering host physiology or by modulating host immune responses (Hogenhout et al.,
<xref rid="B56" ref-type="bibr">2009</xref>
; Win et al.,
<xref rid="B143" ref-type="bibr">2012a</xref>
). Certain host plants however, have evolved immune receptor proteins that are capable of directly or indirectly recognizing one or more of these effectors or their modulated host targets respectively, to trigger immune responses that prevent colonization (Böhm et al.,
<xref rid="B11" ref-type="bibr">2014</xref>
; Cui et al.,
<xref rid="B26" ref-type="bibr">2015</xref>
). To circumvent these recognition events, or to provide novel, altered, or extended effector functionalities that further enhance the colonization of susceptible hosts, plant-associated organisms often rely on effector modification through adaptive evolution, as driven by host-imposed selection pressure (e.g., Stergiopoulos et al.,
<xref rid="B129" ref-type="bibr">2007</xref>
; Win et al.,
<xref rid="B145" ref-type="bibr">2007</xref>
; Dong et al.,
<xref rid="B34" ref-type="bibr">2014</xref>
).</p>
</sec>
<sec id="s2">
<title>Several effectors of plant-associated organisms are repeat-containing proteins</title>
<p>Proteins that make up the effector repertoires of plant-associated organisms possess a range of different features. For example, most carry a signal peptide for targeted secretion or delivery to the host environment. In addition, many effectors, particularly those of fungi, are small and/or cysteine-rich, while others may possess a nuclear localization signal (NLS) or, as shown for several effectors of filamentous plant-associated organisms, a conserved effector motif (Dou and Zhou,
<xref rid="B35" ref-type="bibr">2012</xref>
). The secretomes, and thus effector repertoires, of plant-associated organisms also differ in their proportion of repeat-containing proteins (RCPs). This is best illustrated by the predicted secretomes of
<italic>Melampsora larici-populina</italic>
and
<italic>Puccinia graminis</italic>
f. sp.
<italic>tritici</italic>
, the fungal pathogens responsible for poplar leaf rust and wheat stem rust, respectively. In a study by Saunders et al. (
<xref rid="B122" ref-type="bibr">2012</xref>
), it was revealed that of the 1549 secreted proteins predicted from the proteome of
<italic>M. larici-populina</italic>
, 493 (~32%) were RCPs. In contrast, no RCPs could be identified among the 1852 secreted proteins predicted from the proteome of
<italic>P. graminis</italic>
f. sp.
<italic>tritici</italic>
(Saunders et al.,
<xref rid="B122" ref-type="bibr">2012</xref>
). As such, RCP effectors are expected to play an important role in promoting the colonization of some, but not all, plant-associated organisms. This is supported by the fact that several known effectors of plant-associated organisms are RCPs (Tables
<xref ref-type="table" rid="T1">1</xref>
<xref ref-type="table" rid="T3">3</xref>
). For the purpose of this review, we define RCPs as those proteins that carry two or more copies of a tandemly or non-tandemly duplicated sequence or structural motif that is at least five amino acid residues in length.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Examples of repeat-containing protein (RCP) effectors from plant-associated bacteria</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>RCP (aa
<xref ref-type="table-fn" rid="TN1">
<sup>a</sup>
</xref>
)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Plant-associated organism</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Host plant (relationship with host)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Repeat features
<xref ref-type="table-fn" rid="TN2">
<sup>b</sup>
</xref>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Localization
<italic>in planta</italic>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Part of an RCP effector family?</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">AvrPtoB/HopAB2 (553)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Pseudomonas syringae</italic>
pv.
<italic>tomato</italic>
(plant-pathogenic bacterium)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tomato (causes speck disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic degenerate non-tandem repeats of 85 and 110 aa identified by structural analyses that each adopt a four-helix bundle fold</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell cytoplasm</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Kim et al.,
<xref rid="B70" ref-type="bibr">2002</xref>
; Abramovitch et al.,
<xref rid="B2" ref-type="bibr">2003</xref>
,
<xref rid="B1" ref-type="bibr">2006</xref>
; de Torres et al.,
<xref rid="B32" ref-type="bibr">2006</xref>
; He et al.,
<xref rid="B53" ref-type="bibr">2006</xref>
; Janjusevic et al.,
<xref rid="B58" ref-type="bibr">2006</xref>
; Mucyn et al.,
<xref rid="B94" ref-type="bibr">2006</xref>
; Rosebrock et al.,
<xref rid="B118" ref-type="bibr">2007</xref>
; Xiao et al.,
<xref rid="B147" ref-type="bibr">2007</xref>
; Göhre et al.,
<xref rid="B44" ref-type="bibr">2008</xref>
; Shan et al.,
<xref rid="B125" ref-type="bibr">2008</xref>
; Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
; Gimenez-Ibanez et al.,
<xref rid="B45" ref-type="bibr">2009</xref>
; Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
; Zeng et al.,
<xref rid="B155" ref-type="bibr">2012</xref>
; Mathieu et al.,
<xref rid="B89" ref-type="bibr">2014</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: AvrPtoB, a type III effector that suppresses host immunity, carries an amino (N)-terminal and central repeat unit (repeat units one and two, respectively), as well as a carboxyl (C)-terminal U-box-type E3 ubiquitin ligase domain. Repeat units one and two bind and inhibit the kinase domain of the plasma membrane (PM)-localized host lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK immune receptors, Bti9 and BAK1, respectively, to suppress immunity related signaling. Repeat units one and two also bind the kinase domain of the LysM-RLK CERK1 and LRR-RLK FLS2 immune receptors, respectively, which may promote their ubiquitination and subsequent proteasome-dependent degradation via the E3 ligase domain. In addition, repeat unit one interacts with the host receptor-like cytoplasmic kinase (RLCK), Pto, while repeat unit two interacts with Pto and a related host RLCK, Fen. Following interaction with AvrPtoB, Pto activates host immunity in conjunction with Prf, an immune receptor of tomato. Fen however, can only activate host immunity in the absence of the E3 ubiquitin ligase domain. Interaction of Pto or Fen with repeat unit two results in the proteasome-dependent degradation of these proteins as above. Pto however, is able to resist degradation to activate Prf-dependent immunity upon interaction with repeat unit one, as this repeat unit is further away from the E3 ubiquitin ligase domain</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">HopI1 (432)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Pseudomonas syringae</italic>
pv.
<italic>maculicola</italic>
(plant-pathogenic bacterium)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Brassicaceae (causes leaf spot disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Four hydrophilic imperfect intrinsically disordered tandem proline and glutamine (P/Q)-rich repeats of 27, 37, or 38 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell chloroplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Guttman et al.,
<xref rid="B51" ref-type="bibr">2002</xref>
; Jelenska et al.,
<xref rid="B61" ref-type="bibr">2007</xref>
,
<xref rid="B60" ref-type="bibr">2010</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: HopI1 is a type III effector that carries an N-terminal region of unknown function, a central repeat domain, and a C-terminal J-domain. HopI1 suppresses salicylic acid (SA) accumulation and related plant defenses. HopI1 also induces the remodeling of thylakoid stacks within chloroplasts. The J-domain of HopI1 directly binds to different plant Hsp70 isoforms and stimulates Hsp70 ATP hydrolysis activity
<italic>in vitro</italic>
. In association with Hsp70, HopI1 forms large complexes
<italic>in planta</italic>
, and recruits cytosolic Hsp70 to chloroplasts, a requirement for its virulence function. It has been suggested that Hsp70 may affect the folding/complex assembly of chloroplast factors related to plant immunity, including those required for SA biosynthesis and transport. The HopI1 repeat domain is not required for the interaction with Hsp70 or the association of this effector with chloroplasts. However, it is required for HopI1 virulence function. Thus, the HopI1 repeat domain may for example, interfere with these processes by actively affecting Hsp70 activity and/or substrate specificity</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">HsvG (671)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Pantoea agglomerans</italic>
pv.
<italic>gypsophilae</italic>
(plant-pathogenic bacterium)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Gypsophila (root and crown gall disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic imperfect tandem repeats of 75 and 71 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell nucleus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Valinsky et al.,
<xref rid="B134" ref-type="bibr">1998</xref>
; Nissan et al.,
<xref rid="B100" ref-type="bibr">2006</xref>
,
<xref rid="B99" ref-type="bibr">2012</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: HsvG is a type III effector that carries a central DNA-binding region and repeat domain (transcription activation domain; TAD). HsvG functions as a transcription factor that binds and activates the
<italic>HSVGT</italic>
gene promoter from
<italic>Gypsophila paniculata</italic>
.
<italic>HSVGT</italic>
encodes a predicted protein of the DnaJ family that has features typical of eukaryotic transcription factors, but lacks a J-domain. In addition to transcriptional activation, the HsvG repeat domain is required for host specificity (
<italic>P. agglomerans</italic>
pv.
<italic>gypsophilae</italic>
pathogenicity on gypsophila). HsvG requires two repeat units for pathogenicity on gypsophila (one is not sufficient)</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">PthXo1 (1373)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Xanthomonas oryzae</italic>
pv.
<italic>oryzae</italic>
(plant-pathogenic bacterium)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Rice (causes blight disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Four amphipathic degenerate tandem repeats of 25 or 34 aa, followed by 23.5 amphipathic imperfect tandem repeats of 33 or 34 aa. All repeat units adopt a two-helix bundle fold</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell nucleus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yang and White,
<xref rid="B151" ref-type="bibr">2004</xref>
; Chu et al.,
<xref rid="B25" ref-type="bibr">2006</xref>
; Yang et al.,
<xref rid="B150" ref-type="bibr">2006</xref>
; Yuan et al.,
<xref rid="B154" ref-type="bibr">2009</xref>
; Chen et al.,
<xref rid="B20" ref-type="bibr">2010</xref>
; Gao et al.,
<xref rid="B40" ref-type="bibr">2012</xref>
; Mak et al.,
<xref rid="B85" ref-type="bibr">2012</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: PthXo1 is a type III transcription activator-like (TAL) effector that binds and transcriptionally activates the promoter of
<italic>OsSWEET11</italic>
, a susceptibility gene from rice that encodes a SWEET sugar transporter, to promote colonization. It is thought that OsSWEET11 expression results in an excess of sucrose transport to the site of infection by
<italic>X. oryzae</italic>
pv.
<italic>oryzae</italic>
, which in turn provides the pathogen with a source of carbon. PthXo1 carries a central repeat domain, which forms a left-handed superhelix (α-solenoid) that physically wraps around the effector-binding element (EBE) of
<italic>OsSWEET11</italic>
, as well as a C-terminal eukaryotic activation domain (AD), which induces
<italic>OsSWEET11</italic>
transcription. The first two degenerate repeat units of PthXo1 mediate non-base-specific interactions with the EBE, while the two subsequent degenerate repeat units mediate pairing with the EBE's initial 5′ thymine base. The remaining imperfect repeat units mediate base-specific interactions with the EBE, with specificity determined by the repeat-variable di-residues (RVDs) at positions 12 and 13 of each repeat unit. The recessive
<italic>OsSWEET11</italic>
allele,
<italic>xa13</italic>
, confers resistance to
<italic>X. oryzae</italic>
pv.
<italic>oryzae</italic>
, and is based on a naturally mutated EBE that can neither be bound nor transcriptionally activated by PthXo1</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">RipG7/GALA7 (647)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ralstonia solanacearum</italic>
(plant-pathogenic bacterium)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Broad host range (causes wilt disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fifteen amphipathic degenerate mostly tandem LRRs of ~21–25 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Intracellular (host)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cunnac et al.,
<xref rid="B27" ref-type="bibr">2004</xref>
; Angot et al.,
<xref rid="B6" ref-type="bibr">2006</xref>
; Remigi et al.,
<xref rid="B112" ref-type="bibr">2011</xref>
; Wang et al.,
<xref rid="B140" ref-type="bibr">2015a</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: RipG7 is a type III effector that carries an N-terminal F-box domain followed by a LRR domain. RipG7 interacts with several
<italic>Arabidopsis thaliana</italic>
SKP1-like (ASK) proteins. Together with six of its paralogs (RipG1–RipG6), RipG7 is essential for pathogenicity on
<italic>A. thaliana</italic>
, although functionally redundant with RipG2, 3 and 6, and required for full virulence on tomato. RipG7 is a virulence factor required for host-specific colonization of
<italic>Medicago truncatula</italic>
, with the F-box being essential for virulence, suggesting that RipG7 may mimic host F-box proteins and be recruited to SCF-type E3 ubiquitin ligase complexes to interfere with host ubiquitination and proteasome processing. The LRR domain is expected to recruit specific plant proteins to a SCF
<sup>RipG7</sup>
E3 ubiquitin ligase for subsequent ubiquitination and possible degradation. Ten of 11 amino acid residue sites identified as being under strong positive selection across RipG7 from phylogenetically diverse strains of
<italic>R. solanacearum</italic>
are located within, or in loops between, predicted LRRs. This suggests an evolutionary arms race between
<italic>R. solanacearum</italic>
and its hosts that occurs at the interaction interface between RipG7 and its putative host targets</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">RipL (1390)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. solanacearum</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Five amphipathic degenerate tandem pentatricopeptide repeats (PPRs) of 35 aa
<xref ref-type="table-fn" rid="TN3">
<sup>c</sup>
</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Intracellular (host)</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cunnac et al.,
<xref rid="B27" ref-type="bibr">2004</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: RipL is a type III effector with unknown function. PRRs possibly mediate the binding of RNA</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">RipS4/SKWP4 (2574)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. solanacearum</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">At least 18 amphipathic imperfect/degenerate tandem HEAT/armadillo repeats of 40–42 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Intracellular (host)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mukaihara and Tamura,
<xref rid="B96" ref-type="bibr">2009</xref>
; Macho et al.,
<xref rid="B83" ref-type="bibr">2010</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: RipS4 is a type III effector required for full virulence on eggplant, although its specific function is unknown</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">RipTAL1 (1245)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. solanacearum</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic degenerate tandem repeats of 34 or 35 aa, followed by 16 amphipathic imperfect tandem repeats of 35 aa, and two amphipathic degenerate tandem repeats of 34 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell nucleus</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Macho et al.,
<xref rid="B83" ref-type="bibr">2010</xref>
; de Lange et al.,
<xref rid="B29" ref-type="bibr">2013</xref>
; Li et al.,
<xref rid="B79" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: RipTAL1 is a type III TAL effector required for full virulence of
<italic>R. solanacearum</italic>
on eggplant, and probably promotes virulence through the transcriptional activation of a host susceptibility gene. RipTAL1 carries a central repeat domain, which mediates interaction with the EBE of a target host gene promoter, and a C-terminal eukaryotic acidic AD, which induces transcription of the target host gene. The N-terminal degenerate repeat units of RipTAL1 mediate pairing with EBEs containing an initial 5′ guanine base. The imperfect repeat units mediate base-specific interactions with the EBE, with specificity mainly determined by RVDs at positions 12 and 13 of each repeat unit, although certain non-RVD residues also have a significant impact on DNA recognition</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">RipY (912)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>R. solanacearum</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">At least six amphipathic degenerate mostly tandem ankyrin repeats of 31 aa
<xref ref-type="table-fn" rid="TN3">
<sup>c</sup>
</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Intracellular (host)</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cunnac et al.,
<xref rid="B27" ref-type="bibr">2004</xref>
; Macho et al.,
<xref rid="B83" ref-type="bibr">2010</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: RipY is a type III effector required for full virulence on eggplant, although its specific function is unknown</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">XopAC/AvrAC (536)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Xanthomonas campestris</italic>
pv.
<italic>campestris</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Brassicaceae (causes black rot disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Six amphipathic degenerate tandem LRRs of 23–24 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Intracellular (host PM)</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Xu et al.,
<xref rid="B148" ref-type="bibr">2008</xref>
; Feng et al.,
<xref rid="B39" ref-type="bibr">2012</xref>
; Guy et al.,
<xref rid="B52" ref-type="bibr">2013</xref>
; Wang et al.,
<xref rid="B139" ref-type="bibr">2015b</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: XopAC is a type III effector that enhances the virulence of
<italic>X. campestris</italic>
pv.
<italic>campestris</italic>
and suppresses plant immunity. It has an N-terminal region, followed by a LRR domain, and a C-terminal FIC (filamentation induced by cyclic AMP) domain, with the latter possessing uridine 5′-monophosphate (UMP) transferase enzymatic activity. In susceptible
<italic>A. thaliana</italic>
plants, the FIC domain transfers UMP to phosphorylation sites in the activation loop of several immunity-related RLCKs, including BIK1, PBL1, and RIPK. This prevents their phosphorylation, thereby reducing their kinase activities and inhibiting their downstream immune signaling. In
<italic>A. thaliana</italic>
ecotype Col-0 vascular tissues, XopAC is recognized as an avirulence protein, with the LRRs, as well as the FIC domain and its associated uridylylation activity required to trigger the avirulent phenotype. Such immunity is dependent upon the RLCK, PBL2. Although PBL2 is a paralog of BIK1, it is solely required for immunity, indicating that PBS2 is a decoy of BIK1 that enables XopAC recognition by the host. Notably, the N-terminal region and LRR domain of XopAC are required for the interaction with RLCKs, with localization of XopAC to the host PM also dependent upon the LRRs</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">XopD (760)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Xanthomonas euvesicatoria</italic>
(plant-pathogenic bacterium)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tomato/pepper (causes leaf spot disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic tandem ERF-associated repression (EAR) motifs of 6 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell nucleus (subnuclear foci)</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hotson et al.,
<xref rid="B57" ref-type="bibr">2003</xref>
; Chosed et al.,
<xref rid="B23" ref-type="bibr">2007</xref>
; Kim et al.,
<xref rid="B69" ref-type="bibr">2008</xref>
,
<xref rid="B68" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: XopD is a type III effector that promotes pathogen growth by suppressing activation of host immunity via plant SUMO protease mimicry. It has an N-terminal DNA-binding domain (DBD), two EAR motifs (typically found in plant repressors that regulate stress-induced transcription) in the central domain and a C-terminal SUMO peptidase domain. XopD possesses both plant-specific peptidase activity, resulting in cleavage of SUMO isoforms, and isopeptidase activity, resulting in cleavage of SUMO from SUMO conjugates. All three domains are collectively required to desumoylate the transcription factor SIERF4 to suppress ethylene production and signaling. The mechanism by which the DBD and EAR motifs modulate the protease activity is not known, however they may mediate critical interactions with DNA or proteins within plant transcription factor complexes to influence effector specificity</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">XopL (660)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>X. euvesicatoria</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Nine amphipathic degenerate tandem LRRs of 23–33 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Intracellular (host)</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Singer et al.,
<xref rid="B126" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: XopL is a type III effector that has E3 ubiquitin ligase activity responsible for initiating cell death in the non-host
<italic>Nicotiana benthamiana</italic>
, but not in the hosts tomato and pepper. The N-terminal LRR domain is solely required for host immunity-related gene expression when assayed in
<italic>A. thaliana</italic>
. XopL recruits plant E2 enzymes, mimicking components of the host ubiquitination machinery, with the LRRs possibly acting as protein–protein interaction modules for ubiquitination target recognition</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">XopN (733)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>X. euvesicatoria</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Seven amphipathic degenerate tandem HEAT/armadillo-like repeats</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cytoplasm and PM</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Roden et al.,
<xref rid="B117" ref-type="bibr">2004</xref>
; Kim et al.,
<xref rid="B67" ref-type="bibr">2009</xref>
; Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: XopN is a type III effector that suppresses host immune responses. It interacts with the atypical LRR-RLK, TARK1 (via the non-repetitive N-terminal region), and the tomato 14-3-3 isoform TFT1 (via the C-terminal HEAT/armadillo-like repeats), both of which are positive regulators of host immunity in tomato. XopN is expected to promote and/or stabilize TARK1/TFT1 complex formation by functioning as a protein bridge or molecular scaffold, since these proteins only interact in the presence of XopN. It remains unclear how these interactions repress the host immune response, although XopN may interfere with TARK1 protein–protein interactions, stability and/or signal transduction, and TFT1 client interactions. Another possibility is that the action of XopN leads to the sequestration of inactive immune complexes, preventing downstream immune signaling</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN1">
<label>a</label>
<p>
<italic>Protein length in amino acids (aa)</italic>
.</p>
</fn>
<fn id="TN2">
<label>b</label>
<p>
<italic>Repeat hydropathy profiles were determined using the Expasy ProtScale server (
<ext-link ext-link-type="uri" xlink:href="http://web.expasy.org/protscale/">http://web.expasy.org/protscale/</ext-link>
), with default server settings</italic>
.</p>
</fn>
<fn id="TN3">
<label>c</label>
<p>
<italic>PPR and ankyrin repeats were predicted using TPRpred (
<ext-link ext-link-type="uri" xlink:href="http://toolkit.tuebingen.mpg.de/tprpred">http://toolkit.tuebingen.mpg.de/tprpred</ext-link>
) and InterProScan 5 (
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/Tools/pfa/iprscan5/">http://www.ebi.ac.uk/Tools/pfa/iprscan5/</ext-link>
), respectively</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>Examples of repeat-containing protein (RCP) effectors and surface-associated RCPs from plant-associated fungi and oomycetes</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>RCP (aa
<xref ref-type="table-fn" rid="TN4">
<sup>a</sup>
</xref>
)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Plant-associated organism</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Host plant (relationship with host)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Repeat features
<xref ref-type="table-fn" rid="TN5">
<sup>b</sup>
</xref>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Localization
<italic>in planta</italic>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Part of an RCP effector family?</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">ATR1
<sup>Emoy2</sup>
(311)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Hyaloperonospora arabidopsidis</italic>
(plant-pathogenic oomycete)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
(causes downy mildew disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic degenerate tandem WY domain repeats of 83 and 100 aa identified by structural analysis that adopt a five-helix bundle fold</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell cytoplasm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Rehmany et al.,
<xref rid="B111" ref-type="bibr">2005</xref>
; Sohn et al.,
<xref rid="B127" ref-type="bibr">2007</xref>
; Krasileva et al.,
<xref rid="B72" ref-type="bibr">2010</xref>
; Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
; Steinbrenner et al.,
<xref rid="B128" ref-type="bibr">2015</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: ATR1 from isolate Emoy2 (ATR1
<sup>Emoy2</sup>
) contributes to pathogen virulence, although its specific function is unknown. ATR1
<sup>Emoy2</sup>
is directly recognized by the RPP1
<sup>NdA</sup>
and RPP1
<sup>WsB</sup>
immune receptors of
<italic>A. thaliana</italic>
. One and two aa residues in ATR1
<sup>Emoy2</sup>
associated with the recognition of this effector by RPP1
<sup>NdA</sup>
and RPP1
<sup>WsB</sup>
, respectively, are located on the surface of repeat unit one. Other aa residues, as identified by gain-of-(RPP1
<sup>NdA</sup>
)-recognition mutagenesis screens using traditionally non-recognized ATR1 alleles are also located on the surface of repeat unit one</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">ATR13 (187)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>H. arabidopsidis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Six hydrophilic degenerate tandem leucine/isoleucine repeats of 7 aa, followed by 4 hydrophilic imperfect tandem repeats of 11 aa. Repeats are located in a disordered region of the protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell nucleolus</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Allen et al.,
<xref rid="B4" ref-type="bibr">2004</xref>
,
<xref rid="B5" ref-type="bibr">2008</xref>
; Sohn et al.,
<xref rid="B127" ref-type="bibr">2007</xref>
; Leonelli et al.,
<xref rid="B78" ref-type="bibr">2011</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: ATR13 contributes to pathogen virulence, possibly by suppressing host immune responses, although its specific function is unknown. ATR13 is recognized by the RPP13
<sup>Nd</sup>
immune receptor of
<italic>A. thaliana</italic>
. Mutations cannot be made to particular leucine or isoleucine residues within the 7-aa repeats of ATR13 without altering recognition by RPP13
<sup>Nd</sup>
. The 11-aa repeats of ATR13 are required for nucleolar localization. Alleles of ATR13 carrying only one of the four 11-aa repeats do not localize to the nucleolus. However, when the three missing repeats are added to these alleles, nucleolar localization is observed</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">AvrM-A (343)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Melampsora lini</italic>
(plant-pathogenic fungus)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Flax (causes leaf rust disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two hydrophilic degenerate tandem repeats of 68 aa identified by structural analysis that adopt a four-helix bundle fold. Repeats share some similarity in the overall architecture to the WY domain of several oomycete effectors</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell cytoplasm</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Catanzariti et al.,
<xref rid="B18" ref-type="bibr">2006</xref>
,
<xref rid="B19" ref-type="bibr">2010</xref>
; Rafiqi et al.,
<xref rid="B109" ref-type="bibr">2010</xref>
; Ve et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: AvrM-A function unknown. AvrM is directly recognized by the M immune receptor of flax. Several residues of AvrM required for recognition by M are located on the surface of repeat unit two</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">CBEL (268)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Phytophthora parasitica</italic>
var.
<italic>nicotianae</italic>
(plant-pathogenic oomycete)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tobacco (causes black shank root and crown rot disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic imperfect near-tandem repeats of 113 and 114 aa comprising a carbohydrate-binding module family 1 (CBM1)/fungal-type cellulose-binding domain (CBD) linked to a PAN/APPLE domain</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cyst surface and hyphal cell wall</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Séjalon-Delmas et al.,
<xref rid="B123" ref-type="bibr">1997</xref>
; Villalba Mateos et al.,
<xref rid="B138" ref-type="bibr">1997</xref>
; Gaulin et al.,
<xref rid="B42" ref-type="bibr">2002</xref>
,
<xref rid="B41" ref-type="bibr">2006</xref>
; Khatib et al.,
<xref rid="B66" ref-type="bibr">2004</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: the CBDs of CBEL play a role in the adhesion of mycelia to cellulosic substrates, including plant cell walls, and in the organized deposition of the
<italic>P. parasitica</italic>
var.
<italic>nicotianae</italic>
cell wall polysaccharide, β-glucan. However, knockdown transformants do not display significantly reduced virulence. CBEL also elicits strong host immune responses when infiltrated into tobacco, as well as various non-host plants, including
<italic>A. thaliana</italic>
. These immune responses require the binding of CBEL to the plant cell wall, as mediated through the CBDs</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">Cin1
<xref ref-type="table-fn" rid="TN6">
<sup>c</sup>
</xref>
(523)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Venturia inaequalis</italic>
(plant-pathogenic fungus)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Apple (causes scab disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Eight hydrophilic imperfect tandem repeats of 52–64 aa that adopt a core helix-loop-helix motif as part of a three-helix bundle fold</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Kucheryava et al.,
<xref rid="B73" ref-type="bibr">2008</xref>
; Mesarich et al.,
<xref rid="B91" ref-type="bibr">2012</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: Cin1 function unknown.
<italic>Cin1</italic>
gene expression is induced
<italic>in planta</italic>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">CTP1 (171)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Melampsora larici-populina</italic>
(plant-pathogenic fungus)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Poplar (causes leaf rust disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Two amphipathic imperfect near-tandem repeats of 64 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell chloroplast (stroma) and mitochondria</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Petre et al.,
<xref rid="B103" ref-type="bibr">2015a</xref>
,
<xref rid="B104" ref-type="bibr">b</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: CTP1 function unknown. Repeat unit one overlaps with a predicted chloroplast transit peptide</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">Ecp6 (222)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Cladosporium fulvum</italic>
(plant-pathogenic fungus)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tomato (causes leaf mold disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Three amphipathic degenerate near-tandem lysin motif (LysM) domain repeats of 44 or 45 aa that adopt a β
<italic>ααβ</italic>
-fold</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host apoplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Bolton et al.,
<xref rid="B12" ref-type="bibr">2008</xref>
; de Jonge et al.,
<xref rid="B28" ref-type="bibr">2010</xref>
; Thomma et al.,
<xref rid="B133" ref-type="bibr">2011</xref>
; Sánchez-Vallet et al.,
<xref rid="B121" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: Ecp6 perturbs chitin-triggered immunity in tomato by sequestering chitin oligosaccharides released from the fungal cell wall. More specifically, LysM1 and LysM3 domain repeats out-compete host chitin receptors for the binding of chitin oligosaccharides. The LysM2 domain repeat may perturb chitin-triggered immunity through a yet unknown mechanism. Ecp6 is recognized by the Cf-Ecp6 immune receptor of tomato</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">Hum3 (828)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ustilago maydis</italic>
(plant-pathogenic fungus)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Maize (causes smut disease)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Seventeen amphipathic imperfect tandem repeats of 31–36 aa. Fourteen repeats are separated by putative Kex2 processing motifs</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">(Teertstra et al.,
<xref rid="B131" ref-type="bibr">2006</xref>
; Müller et al.,
<xref rid="B97" ref-type="bibr">2008</xref>
)</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: Hum3 function unknown. Deletion of
<italic>Hum3</italic>
alone does not affect virulence of
<italic>U. maydis</italic>
on maize. However, the pathogenic development of a
<italic>Hum3</italic>
/
<italic>Rsp1</italic>
double knock-out mutant is halted
<italic>in planta</italic>
shortly after penetration. The Hum3 repeat domain is followed by a hydrophobin domain</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">Rep1 (652)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>U. maydis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Twelve amphipathic imperfect mostly tandem repeats of 34–55 aa. Repeats are separated by Kex2 sites, and are proteolytically processed into 10 small amphipathic peptides (Rep1-1–Rep1-10) of 35–53 aa, and one of 228 aa (Rep1-11)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hyphal cell wall</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wösten et al.,
<xref rid="B146" ref-type="bibr">1996</xref>
; Teertstra et al.,
<xref rid="B131" ref-type="bibr">2006</xref>
,
<xref rid="B132" ref-type="bibr">2009</xref>
; Müller et al.,
<xref rid="B97" ref-type="bibr">2008</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: Rep1 is a repellent protein. Following the proteolytic processing of Rep1 by Kex2, processed repellent peptides form surface-active amyloid-like fibrils at the hyphal surface that play a role in cellular attachment to hydrophobic surfaces (e.g., the host surface) and in the formation of aerial hyphae. Rep1 does not appear to be required for the virulence of
<italic>U. maydis</italic>
on maize</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">Rsp1 (260)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>U. maydis</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Eleven hydrophilic imperfect tandem repeats of 18 or 21 aa. Repeats are separated by putative Kex2 processing motifs</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Müller et al.,
<xref rid="B97" ref-type="bibr">2008</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: Rsp1 function unknown. Deletion of
<italic>Rsp1</italic>
alone does not affect virulence of
<italic>U. maydis</italic>
on maize. However, the pathogenic development of a
<italic>Hum3</italic>
/
<italic>Rsp1</italic>
double knock-out mutant is halted
<italic>in planta</italic>
shortly after penetration</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">SP7 (499)
<xref ref-type="table-fn" rid="TN7">
<sup>d</sup>
</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Rhizophagus irregularis</italic>
(arbuscular mycorrhizal fungus)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Broad host range (mutualistic symbiont of plant roots)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Up to 10 hydrophilic imperfect repeats of 6–16 aa, separated by four hydrophilic imperfect repeats of 7 or 8 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host cell nucleus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Kloppholz et al.,
<xref rid="B71" ref-type="bibr">2011</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: SP7 interacts with the pathogenesis-related ethylene-responsive host transcription factor ERF19 to promote symbiotic biotrophy. Possibly counteracts ERF19-regulated host defense responses</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN4">
<label>a</label>
<p>
<italic>Protein length in amino acids (aa)</italic>
.</p>
</fn>
<fn id="TN5">
<label>b</label>
<p>
<italic>Repeat hydropathy profiles were determined using the Expasy ProtScale server (
<ext-link ext-link-type="uri" xlink:href="http://web.expasy.org/protscale/">http://web.expasy.org/protscale/</ext-link>
), with default server settings</italic>
.</p>
</fn>
<fn id="TN6">
<label>c</label>
<p>
<italic>Cin1 is a candidate effector of V. inaequalis (Kucheryava et al.,
<xref rid="B73" ref-type="bibr">2008</xref>
)</italic>
.</p>
</fn>
<fn id="TN7">
<label>d</label>
<p>
<italic>The length of SP7 remains unclear due to differential transcript splicing, with five versions of the mRNA transcript found at different developmental stages (Kloppholz et al.,
<xref rid="B71" ref-type="bibr">2011</xref>
)</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>
<bold>Examples of repeat-containing protein (RCP) effectors from plant-associated nematodes and insects</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>RCP (aa
<xref ref-type="table-fn" rid="TN8">
<sup>a</sup>
</xref>
)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Plant-associated organism</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Host plant (relationship with host)</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Repeat features
<xref ref-type="table-fn" rid="TN9">
<sup>b</sup>
</xref>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Localization
<italic>in planta</italic>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Part of an RCP effector family?</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">Gp-HYP (varies
<xref ref-type="table-fn" rid="TN10">
<sup>c</sup>
</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Globodera pallida</italic>
(plant-parasitic nematode)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Solanaceae (sedentary endoparasite of plant roots)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Three Gp-HYP effector subfamilies (Gp-HYP-1, Gp-HYP-2, and Gp-HYP-3) containing a various number of hydrophilic perfect and imperfect tandem repeats of 5–17 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host apoplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Eves-van den Akker et al.,
<xref rid="B38" ref-type="bibr">2014</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: Gp-HYP effectors contribute to
<italic>G. pallida</italic>
parasitism, although their specific functions are unknown</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">GrCLE1 (204)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Globodera rostochiensis</italic>
(plant-parasitic nematode)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Solanaceae (sedentary endoparasite of plant roots)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Four hydrophilic imperfect CLAVATA3 (CLV3)/endosperm surrounding region (ESR) (CLE)-like motif repeats of 12 aa (three identical), separated by a hydrophilic imperfect spacer repeat of 9 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host apoplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Lu et al.,
<xref rid="B81" ref-type="bibr">2009</xref>
; Guo et al.,
<xref rid="B49" ref-type="bibr">2011</xref>
; Chen et al.,
<xref rid="B21" ref-type="bibr">2015</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: GrCLE1 is processed into at least three arabinosylated CLE-like peptides by host proteases. These CLE-like peptides directly bind plant receptor-like kinases (RLKs), including CLV2, BAM1, and BAM2, where they function as endogenous plant CLE peptide mimics to incite changes in plant root growth and development that facilitate parasitism</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">MAP (varies
<xref ref-type="table-fn" rid="TN10">
<sup>c</sup>
</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Meloidogyne incognita</italic>
(plant-parasitic nematode)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Broad host range (sedentary endoparasite of plant roots)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Up to nine hydrophilic imperfect CLE-like motif repeats of 14 aa. A hydrophilic imperfect
<italic>Heterodera</italic>
variable domain-like motif (HVLM) repeat of 15 aa is often interspersed between CLE-like motifs</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host apoplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Semblat et al.,
<xref rid="B124" ref-type="bibr">2001</xref>
; Castagnone-Sereno et al.,
<xref rid="B17" ref-type="bibr">2009</xref>
; Vieira et al.,
<xref rid="B137" ref-type="bibr">2011</xref>
; Rutter et al.,
<xref rid="B120" ref-type="bibr">2014</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: MAP effectors are possibly processed into CLE-like peptides that function as mimics of endogenous plant CLE peptides. These peptides then possibly interact with cognate host RLKs to incite changes in plant root growth and development that facilitate parasitism. HVLM repeats may function in the trafficking of MAP effectors into the host apoplast, the processing of MAP effectors to mature CLE-like peptides, and/or host specificity. MAP-1 may be recognized by the Mi-1 immune receptor of tomato, with the number/arrangement of repeats in MAP-1 correlated with avirulence of
<italic>M. incognita</italic>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">MpC002 (265)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Myzus persicae</italic>
(aphid; plant pest)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Broad host range (phloem feeder)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Five hydrophilic perfect tandem repeats of 7 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Host vascular tissue (phloem)?</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Bos et al.,
<xref rid="B13" ref-type="bibr">2010</xref>
; Pitino et al.,
<xref rid="B105" ref-type="bibr">2011</xref>
; Pitino and Hogenhout,
<xref rid="B106" ref-type="bibr">2013</xref>
; Elzinga et al.,
<xref rid="B37" ref-type="bibr">2014</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: MpC002 increases
<italic>M. persicae</italic>
fecundity on
<italic>Arabidopsis thaliana, Nicotiana benthamiana</italic>
, and
<italic>Nicotiana tabacum</italic>
through an unknown mechanism. The repeat domain is required for this increased fecundity</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">SSGP-71 (varies
<xref ref-type="table-fn" rid="TN10">
<sup>c</sup>
</xref>
)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Mayetiola destructor</italic>
(Hessian fly; plant pest)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cereals (gall-forming pest)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Typically 13 amphipathic degenerate tandem leucine-rich repeats (LRRs) of ~20–30 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Likely intracellular (host)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Yes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Zhao et al.,
<xref rid="B156" ref-type="bibr">2015</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: SSGP-71 effectors typically contain an amino (N)-terminal cyclin-like F-box, followed by carboxyl (C)-terminal LRRs. These effectors, which interact with host Skp proteins, are suspected to mimic host F-box-LRR proteins in order to hijack the plant proteasome for the purpose of directly producing nutritive tissue, defeating plant immunity, and/or stunting plant growth. The LRR domain of SSGP-71 effectors is expected to provide target (host protein) specificity. The SSGP-71 effectors Mdes009086-RA and Mdes015365-RA are recognized by the H6 and H9 immune receptors of wheat, respectively. Unlike Mdes009086-RA, Mdes015365-RA does not possess an F-box</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">vH13 (116)</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>M. destructor</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Three hydrophilic imperfect tandem repeats of 12 or 14 aa</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">No</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aggarwal et al.,
<xref rid="B3" ref-type="bibr">2014</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" colspan="7" rowspan="1">Biological function: vH13 function unknown. vH13 is recognized by the H13 immune receptor of wheat</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN8">
<label>a</label>
<p>
<italic>Protein length in amino acids (aa)</italic>
.</p>
</fn>
<fn id="TN9">
<label>b</label>
<p>
<italic>Repeat hydropathy profiles were determined using the Expasy ProtScale server (
<ext-link ext-link-type="uri" xlink:href="http://web.expasy.org/protscale/">http://web.expasy.org/protscale/</ext-link>
), with default server settings</italic>
.</p>
</fn>
<fn id="TN10">
<label>c</label>
<p>
<italic>The protein length varies between members of the RCP effector family</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Various bioinformatic tools, databases, and servers are available for the detection of repeat domains in protein sequences (reviewed in Kajava,
<xref rid="B63" ref-type="bibr">2012</xref>
; Luo and Nijveen,
<xref rid="B82" ref-type="bibr">2014</xref>
). Typically, perfect (identical) or imperfect (near-identical) sequence repeats are easily detected, as are those repeats with homology to known functional domains. However, the detection of highly degenerate (divergent) sequence repeats, which carry amino acid substitutions, insertions, or deletions that have accumulated during evolution, is often more difficult. In some instances, degenerate sequence repeats may only be identified following an analysis of protein tertiary structure, for which servers are again available (see Kajava,
<xref rid="B63" ref-type="bibr">2012</xref>
). Indeed, this has been the case for several effectors of plant-associated organisms. As an example of this, structural characterization of both the AvrM-A effector from
<italic>Melampsora lini</italic>
, a fungal rust pathogen of flax, as well as AvrPtoB, a type III effector from
<italic>Pseudomonas syringae</italic>
pv.
<italic>tomato</italic>
(
<italic>Pst</italic>
), the bacterial speck pathogen of tomato, revealed the presence of two four-helix bundle repeats (Figures
<xref ref-type="fig" rid="F1">1A,B</xref>
,
<xref ref-type="fig" rid="F2">2B</xref>
) (Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
; Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
; Ve et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
). Bioinformatic tools though, have been shown to play a key role in the identification of certain highly degenerate repeat domains. For example, Jiang et al. (
<xref rid="B62" ref-type="bibr">2008</xref>
) used the MEME algorithm (Bailey et al.,
<xref rid="B7" ref-type="bibr">2015</xref>
), together with hidden Markov model (HMM) searches, to identify RXLR effectors from two plant-associated oomycete species (
<italic>Phytophthora sojae</italic>
and
<italic>Phytophthora ramorum</italic>
) that carry conserved, but highly degenerate, C-terminal WYL motifs, or WY motifs, which often form tandem repeats. In oomycete plant pathogens, RXLR effectors represent one of the largest and most diverse effector families (Jiang et al.,
<xref rid="B62" ref-type="bibr">2008</xref>
). Jiang et al. (
<xref rid="B62" ref-type="bibr">2008</xref>
) demonstrated that approximately half of the abovementioned RXLR effectors possess WYL motifs, with 30% possessing between two and eight repeated WYL modules. A comparison of RXLR effector tertiary structures has since revealed that a three-helix bundle fold, termed the WY domain, is the basic structural unit adopted by the WY motifs (Boutemy et al.,
<xref rid="B14" ref-type="bibr">2011</xref>
; Win et al.,
<xref rid="B144" ref-type="bibr">2012b</xref>
). One of these structurally characterized RXLR effectors, ATR1, which is produced by
<italic>Hyaloperonospora arabidopsidis</italic>
, the oomycete downy mildew pathogen of
<italic>Arabidopsis thaliana</italic>
, carries two five-helix bundle WY domain repeats (Figure
<xref ref-type="fig" rid="F2">2A</xref>
) (Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
). Notably though, this tandem repeat was only identified upon structural characterization of ATR1, with a prior HMM-based bioinformatic screen identifying only one of the two WY domains present in this effector (Boutemy et al.,
<xref rid="B14" ref-type="bibr">2011</xref>
). This example therefore highlights the difficulties associated with identifying highly degenerate repeat domains. More recently though, Ye et al. (
<xref rid="B153" ref-type="bibr">2015</xref>
) have demonstrated that WYL motifs have highly conserved α-helical secondary structures. Furthermore, the few amino acid residues that are conserved between such WYL or WY motifs have been shown to be hydrophobic, occupying buried positions within these α-helices (Boutemy et al.,
<xref rid="B14" ref-type="bibr">2011</xref>
; Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
; Win et al.,
<xref rid="B144" ref-type="bibr">2012b</xref>
; Ye et al.,
<xref rid="B153" ref-type="bibr">2015</xref>
). Thus, an integrated approach, combining HMM screens, together with secondary structure predictions and surface accessibility profiles, can be employed to identify the degenerate, and often repeated, WYL or WY motifs present in oomycete RXLR effectors.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Primary and tertiary structures of repeat domains from RCP effectors of plant-associated bacteria</bold>
.
<bold>(A)</bold>
Crystal structure of repeat unit one from the AvrPtoB effector of the tomato bacterial speck pathogen,
<italic>Pseudomonas syringae</italic>
pv.
<italic>tomato</italic>
(
<italic>Pst</italic>
), in complex with the tomato Pto kinase (Protein Data Bank [PDB] code 3HGK; Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
).
<bold>(B)</bold>
Nuclear magnetic resonance (NMR) structure of repeat unit two from AvrPtoB of
<italic>Pst</italic>
in complex with the BAK1 kinase domain from
<italic>Arabidopsis thaliana</italic>
(3TL8; Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
). Note that in
<bold>(A)</bold>
, AvrPtoB repeat unit one interacts with the Pto kinase in a different orientation to that of AvrPtoB repeat unit two with the BAK1 kinase domain in
<bold>(B)</bold>
.
<bold>(C)</bold>
Crystal structure of the repeat domain from the PthXo1 transcription activator-like (TAL) effector of the bacterial rice pathogen,
<italic>Xanthomonas oryzae</italic>
pv.
<italic>oryzae</italic>
, bound to its natural DNA target (36 bp). The repeats pack together to form a left-handed superhelix (α-solenoid) that wraps around the DNA molecule (3UGM; Mak et al.,
<xref rid="B85" ref-type="bibr">2012</xref>
).
<bold>(D)</bold>
Crystal structure of the N-terminal leucine-rich repeat (LRR) domain from the XopL effector of the bacterial leaf spot pathogen of pepper and tomato,
<italic>Xanthomonas euvesicatoria</italic>
(4FCG; Singer et al.,
<xref rid="B126" ref-type="bibr">2013</xref>
). Structural coordinate files were downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) PDB (
<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/home/home.do">http://www.rcsb.org/pdb/home/home.do</ext-link>
). Alternating repeat units are colored blue, slate, and cyan, respectively. Non-repetitive sequence is colored gray. The molecular surface of Pto kinase in
<bold>(A)</bold>
and BAK1 kinase domain in
<bold>(B)</bold>
are shown in gray, while the DNA molecule in
<bold>(C)</bold>
is colored red. An amino acid sequence alignment detailing the primary structure of each RCP effector repeat domain is shown to the right of each tertiary structure (as based on that presented in each tertiary structure). Repeat (R) units are numbered according to their position in the RCP effector. The start and end position of each repeat unit in the full-length RCP effector is shown. Conserved (
<sup>*</sup>
) and strongly similar (:) amino acid residues shared between repeat units are shown below the sequence alignment (based on full-length repeat units only). The figure was prepared using PyMol (
<ext-link ext-link-type="uri" xlink:href="https://www.pymol.org/">https://www.pymol.org/</ext-link>
) and Clustal Omega (
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/Tools/msa/clustalo/">http://www.ebi.ac.uk/Tools/msa/clustalo/</ext-link>
).</p>
</caption>
<graphic xlink:href="fpls-06-00872-g0001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Primary and tertiary structures of repeat domains from RCP effectors of plant-associated fungi and an oomycete</bold>
.
<bold>(A)</bold>
Crystal structure of the ATR1 effector from the
<italic>Arabidopsis thaliana</italic>
oomycete pathogen,
<italic>Hyaloperonospora arabidopsidis</italic>
(Protein Data Bank [PDB] code 3RMR; Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
).
<bold>(B)</bold>
Crystal structure of the AvrM-A effector from the flax rust fungus,
<italic>Melampsora lini</italic>
(4BJN; Ve et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
).
<bold>(C)</bold>
Nuclear magnetic resonance (NMR) structure of repeat units 1 and 2 from the candidate effector Cin1 of the apple scab fungus,
<italic>Venturia inaequalis</italic>
(2LHT; Mesarich et al.,
<xref rid="B91" ref-type="bibr">2012</xref>
).
<bold>(D)</bold>
Crystal structure of the Ecp6 effector from the tomato leaf mold fungus,
<italic>Cladosporium fulvum</italic>
. The lysin motif (LysM) repeat units 1 and 3 coordinate the binding of a single chitin tetramer by means of an inter-repeat domain groove (4B8V; Sánchez-Vallet et al.,
<xref rid="B121" ref-type="bibr">2013</xref>
). Structural coordinate files were downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) PDB (
<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/home/home.do">http://www.rcsb.org/pdb/home/home.do</ext-link>
). Alternating repeat units are colored blue, slate, and cyan, respectively. Non-repetitive sequence is colored gray. The chitin tetramer in
<bold>(D)</bold>
is colored red. An amino acid sequence alignment detailing the primary structure of each RCP effector repeat domain is shown to the right of each tertiary structure (as based on that presented in each tertiary structure). Repeat (R) units are numbered according to their position in the RCP effector. The start and end position of each repeat unit in the full-length RCP effector is shown. Conserved (
<sup>*</sup>
) and strongly similar (:) amino acid residues shared between repeat units are shown below the sequence alignment. The figure was prepared using PyMol (
<ext-link ext-link-type="uri" xlink:href="https://www.pymol.org/">https://www.pymol.org/</ext-link>
) and Clustal Omega (
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/Tools/msa/clustalo/">http://www.ebi.ac.uk/Tools/msa/clustalo/</ext-link>
). Structure-based sequence alignments of repeat units from ATR1 and AvrM-A are adapted from Chou et al. (
<xref rid="B24" ref-type="bibr">2011</xref>
) and Ve et al. (
<xref rid="B135" ref-type="bibr">2013</xref>
), respectively.</p>
</caption>
<graphic xlink:href="fpls-06-00872-g0002"></graphic>
</fig>
</sec>
<sec id="s3">
<title>Repeat domains play diverse roles in RCP effector function</title>
<p>Collectively, repeat domains play diverse roles in the biological function of RCP effectors from plant-associated organisms (Tables
<xref ref-type="table" rid="T1">1</xref>
<xref ref-type="table" rid="T3">3</xref>
). In brief, these roles can range from directing effector localization, to mediating interaction with one or more specific RNA, DNA, protein, or carbohydrate targets, to providing effector stability. It is becoming increasingly clear that these roles are intimately linked to the composition or architecture of the repeat domains that perform them. For example, as shown in Figures
<xref ref-type="fig" rid="F1">1</xref>
,
<xref ref-type="fig" rid="F2">2</xref>
, the repeat domain of an RCP effector, like that of many other RCPs (Grove et al.,
<xref rid="B48" ref-type="bibr">2008</xref>
), frequently exhibits an extended modular, non-globular architecture. This in turn provides the effector with a larger surface area-to-volume ratio than that of a typical globular protein of equivalent amino acid length, a feature that is particularly well-suited to certain functional roles. This is elegantly illustrated by the transcription activator-like (TAL) effectors of the bacterial plant pathogens,
<italic>Xanthomonas</italic>
spp., which interact with host DNA in the plant cell nucleus to hijack host genes (by transcriptional activation) whose expression promotes bacterial growth and/or disease symptom formation (Boch and Bonas,
<xref rid="B9" ref-type="bibr">2010</xref>
). TAL effectors carry a central repeat domain that possesses up to 33.5 near-identical tandem repeats of 30–42 amino acids in length, followed by a carboxyl (C)-terminal region that contains both NLSs and a eukaryotic acidic activation domain (Boch and Bonas,
<xref rid="B9" ref-type="bibr">2010</xref>
). As shown for PthXo1, a TAL effector from the rice blight pathogen,
<italic>Xanthomonas oryzae</italic>
pv.
<italic>oryzae</italic>
, the central repeat domain forms an extended surface area of interaction with host DNA, in which the repeat domain adopts an α-solenoid structure that physically wraps around the DNA molecule (Figure
<xref ref-type="fig" rid="F1">1C</xref>
) (Deng et al.,
<xref rid="B30" ref-type="bibr">2012</xref>
; Mak et al.,
<xref rid="B85" ref-type="bibr">2012</xref>
). More specifically, the individual repeat units mediate the direct binding of single consecutive nucleotide bases within the promoter sequence (i.e., the effector-binding element; EBE) of a host gene. This specificity is governed by amino acid residues 12 and 13 of each repeat unit, termed the repeat-variable di-residues (RVDs), which make specific contact with the host DNA and play a stabilizing role, respectively (Boch et al.,
<xref rid="B10" ref-type="bibr">2009</xref>
; Moscou and Bogdanove,
<xref rid="B93" ref-type="bibr">2009</xref>
). The functional relevance of this repeat structure was reinforced by artificial TAL effectors carrying a variable number of repeat units. Boch et al. (
<xref rid="B10" ref-type="bibr">2009</xref>
) were able to show that a minimum of 6.5 repeat units are necessary for EBE recognition and subsequent transcriptional activation, while 10.5 or more repeat units are required for strong target gene expression.</p>
<p>An extended modular, non-globular architecture, as adopted by the repeat domains of many RCPs, is also particularly well-suited to mediating various protein–protein interactions (Grove et al.,
<xref rid="B48" ref-type="bibr">2008</xref>
). Indeed, many classes of repeat domains serve as scaffolds or adaptors. When performing this role, different repeat units, or regions of a repeat unit, may organize multiple proteins into functional complexes. Alternatively, interactions between different proteins, or between proteins and other functional domains present in the RCP, may be facilitated (Grove et al.,
<xref rid="B48" ref-type="bibr">2008</xref>
). Importantly, these roles are supported by the inherent conformational flexibility of the repeat domain, as mediated through for instance, a flexible hydrophobic core (Kappel et al.,
<xref rid="B64" ref-type="bibr">2010</xref>
), or flexible inter-repeat hinges, loops, or linkers, similar to those found in Cin1, a candidate effector of unknown function from the apple scab fungus,
<italic>Venturia inaequalis</italic>
(Figure
<xref ref-type="fig" rid="F2">2C</xref>
) (Mesarich et al.,
<xref rid="B91" ref-type="bibr">2012</xref>
). Domains that may perform such a role include, for example, those comprising ankyrin or HEAT/armadillo repeats, which, like the repeat domains present in TAL effectors, adopt an α-solenoid-type architecture, as well as leucine-rich repeats (LRRs), which adopt an α/β-solenoid-like or horseshoe-type fold (Kajava,
<xref rid="B63" ref-type="bibr">2012</xref>
). Notably, several effectors from plant-associated organisms carry such repeat domains. For example, effectors of the bacterial wilt pathogen,
<italic>Ralstonia solanacearum</italic>
, including RipAP, RipBB, RipBC, and RipY, carry ankyrin repeats (Peeters et al.,
<xref rid="B102" ref-type="bibr">2013</xref>
), while other effectors of
<italic>R. solanacearum</italic>
and
<italic>Xanthomonas</italic>
spp., including RipS1–RipS8, XopAD, and XopN, carry HEAT/armadillo repeats (White et al.,
<xref rid="B142" ref-type="bibr">2009</xref>
; Peeters et al.,
<xref rid="B102" ref-type="bibr">2013</xref>
). In addition, several effectors from
<italic>R. solanacearum</italic>
(RipG1–RipG7),
<italic>Xanthomonas</italic>
spp. (XopAC, XopAE, and XopL), and the gall-forming pest of cereals,
<italic>Mayetiola destructor</italic>
(SSGP-71 family), carry LRRs (Figure
<xref ref-type="fig" rid="F1">1D</xref>
) (Xu et al.,
<xref rid="B148" ref-type="bibr">2008</xref>
; White et al.,
<xref rid="B142" ref-type="bibr">2009</xref>
; Peeters et al.,
<xref rid="B102" ref-type="bibr">2013</xref>
; Zhao et al.,
<xref rid="B156" ref-type="bibr">2015</xref>
).</p>
<p>Of the effectors mentioned above, one of the best characterized to date is XopN, a type III effector widely conserved across
<italic>Xanthomonas</italic>
spp. that suppresses host immune responses (Roden et al.,
<xref rid="B117" ref-type="bibr">2004</xref>
; Kim et al.,
<xref rid="B67" ref-type="bibr">2009</xref>
; Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
). XopN from the leaf spot pathogen of pepper and tomato,
<italic>Xanthomonas euvesicatoria</italic>
, carries seven tandem HEAT/armadillo-like repeats (Roden et al.,
<xref rid="B117" ref-type="bibr">2004</xref>
). This effector interacts with the atypical LRR-receptor-like kinase (RLK), TARK1 (via the XopN non-repetitive N-terminal region), and the 14-3-3 isoform, TFT1 (via the XopN C-terminal HEAT/armadillo-like repeats), two positive regulators of host immunity in tomato, near and at the plant cytoplasmic–plasma membrane (PM) interface, respectively (Kim et al.,
<xref rid="B67" ref-type="bibr">2009</xref>
; Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
). In addition to these binary interactions, XopN also engages in tertiary interactions with TARK1 and TFT1 at the plant cytoplasmic–PM interface (Kim et al.,
<xref rid="B67" ref-type="bibr">2009</xref>
; Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
). Here XopN is expected to promote and/or stabilize TARK1/TFT1 complex formation by functioning as a protein bridge or molecular scaffold (Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
). Currently however, it remains unclear how these interactions suppress host immune responses. One possibility is that XopN interferes with TARK1 protein–protein interactions, stability and/or signal transduction, and in the case of TFT1, client interactions (Kim et al.,
<xref rid="B67" ref-type="bibr">2009</xref>
; Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
). Another possibility, given that TARK1 and TFT1 do not interact in the absence of XopN, is that the binding of this effector to these proteins in either binary or tertiary complexes leads to the sequestration of inactive immune complexes at or near the plant cytoplasmic–PM interface, thereby preventing downstream immune signaling (Taylor et al.,
<xref rid="B130" ref-type="bibr">2012</xref>
).</p>
<p>Other repeat domain architectures and compositions have been shown to play an important role in the function of RCP effectors from plant-associated organisms. One such example is provided by Ecp6, an effector of the tomato leaf mold fungus,
<italic>Cladosporium fulvum</italic>
, which carries three lysin motif (LysM) domains that each adopt a β
<italic>ααβ</italic>
-fold as part of an overall globular structure (Figure
<xref ref-type="fig" rid="F2">2D</xref>
) (Bolton et al.,
<xref rid="B12" ref-type="bibr">2008</xref>
; Sánchez-Vallet et al.,
<xref rid="B121" ref-type="bibr">2013</xref>
). Ecp6 molecules sequester chitin oligosaccharides released from the cell wall of
<italic>C. fulvum</italic>
during infection. In doing so, Ecp6 prevents the recognition of these oligosaccharides by host chitin immune receptors, thereby perturbing chitin-triggered immunity (de Jonge et al.,
<xref rid="B28" ref-type="bibr">2010</xref>
). More specifically, two of the three LysM domains, LysM1, and LysM3, undergo chitin-induced dimerization, in which the domains cooperate to produce a deeply buried chitin-binding groove (Figure
<xref ref-type="fig" rid="F2">2D</xref>
). This groove binds a single chitin oligosaccharide with ultra-high affinity, and is sufficient to out-compete host chitin immune receptors for chitin binding (Sánchez-Vallet et al.,
<xref rid="B121" ref-type="bibr">2013</xref>
). Another example is provided by GrCLE1, an effector of the potato cyst nematode,
<italic>Globodera rostochiensis</italic>
(Lu et al.,
<xref rid="B81" ref-type="bibr">2009</xref>
). GrCLE1 possesses a variable domain, followed by a C-terminal region with four 12-amino acid repeats that have similarity to plant CLAVATA3 (CLV3)/endosperm surrounding region (ESR)-related (CLE) peptides (Lu et al.,
<xref rid="B81" ref-type="bibr">2009</xref>
). In plants, endogenous CLE protein precursors are post-translationally modified and proteolytically processed to give bioactive CLE peptides. These peptides then function as hormones that interact with various extracellular plant receptors to regulate many aspects of plant growth and development (Kucukoglu and Nilsson,
<xref rid="B74" ref-type="bibr">2015</xref>
). Like plant CLE protein precursors, GrCLE1 is post-translationally modified and proteolytically processed by plant machinery to produce bioactive CLE-like peptides (Guo et al.,
<xref rid="B49" ref-type="bibr">2011</xref>
; Chen et al.,
<xref rid="B21" ref-type="bibr">2015</xref>
). These peptides then function as endogenous plant CLE peptide mimics, directly binding plant RLKs, including CLV2, BAM1, and BAM2, to alter plant root growth and development for the promotion of plant parasitism (Lu et al.,
<xref rid="B81" ref-type="bibr">2009</xref>
; Guo et al.,
<xref rid="B49" ref-type="bibr">2011</xref>
; Chen et al.,
<xref rid="B21" ref-type="bibr">2015</xref>
).</p>
</sec>
<sec id="s4">
<title>Several RCPs of plant-associated organisms are surface-associated</title>
<p>An important point to stress is that several RCPs of plant-associated organisms are surface-associated. That is, they are attached to, or are integrated into, the cell wall and/or PM through various covalent/non-covalent linkages or transmembrane domains, and are at least partially exposed to the extracellular environment. Although not classified as typical secreted effectors, a number of these surface-associated RCPs, and more specifically their repeat domains, have been shown or are hypothesized to play a role in interactions between plant-associated organisms and their hosts (e.g., Görnhardt et al.,
<xref rid="B47" ref-type="bibr">2000</xref>
; Robold and Hardham,
<xref rid="B116" ref-type="bibr">2005</xref>
; Lanver et al.,
<xref rid="B77" ref-type="bibr">2010</xref>
; Pradhan et al.,
<xref rid="B107" ref-type="bibr">2012</xref>
). An example is provided by CBEL, a cell wall glycoprotein from
<italic>Phytophthora parasitica</italic>
var.
<italic>nicotianae</italic>
(
<italic>Ppn</italic>
), the oomycete root pathogen responsible for black shank disease of tobacco (
<italic>Nicotiana tabacum</italic>
) (Séjalon-Delmas et al.,
<xref rid="B123" ref-type="bibr">1997</xref>
; Villalba Mateos et al.,
<xref rid="B138" ref-type="bibr">1997</xref>
). CBEL possesses two repeats, each comprising a carbohydrate-binding module family 1 (CBM1)/fungal-type cellulose-binding domain (CBD) attached to a PAN/APPLE domain (Séjalon-Delmas et al.,
<xref rid="B123" ref-type="bibr">1997</xref>
; Villalba Mateos et al.,
<xref rid="B138" ref-type="bibr">1997</xref>
). Functional analyses have determined that these CBDs play a role in the adhesion of
<italic>Ppn</italic>
mycelia to cellulosic substrates, including plant cell walls, and in the organized deposition of the
<italic>Ppn</italic>
cell wall polysaccharide, β-glucan (Villalba Mateos et al.,
<xref rid="B138" ref-type="bibr">1997</xref>
; Gaulin et al.,
<xref rid="B42" ref-type="bibr">2002</xref>
,
<xref rid="B41" ref-type="bibr">2006</xref>
). Interestingly, CBEL also elicits strong host immune responses when infiltrated into tobacco (Villalba Mateos et al.,
<xref rid="B138" ref-type="bibr">1997</xref>
), as well as various non-host plants, including
<italic>A. thaliana</italic>
(Khatib et al.,
<xref rid="B66" ref-type="bibr">2004</xref>
; Gaulin et al.,
<xref rid="B41" ref-type="bibr">2006</xref>
). These responses are dependent upon the binding of CBEL to the plant cell wall, as mediated through the CBDs (Gaulin et al.,
<xref rid="B41" ref-type="bibr">2006</xref>
). A second example is provided by Rep1 of the corn smut fungus,
<italic>Ustilago maydis</italic>
, which carries 12 mostly tandem repeats of 34–55 amino acids in length (Wösten et al.,
<xref rid="B146" ref-type="bibr">1996</xref>
). These repeats, which carry Kex2 recognition sites, are processed in the secretory pathway to 11 repellent peptides that form rigid surface-active amyloid-like fibrils at the hyphal surface, and play a role in cellular attachment to hydrophobic surfaces (e.g., the plant surface) and in the formation of aerial hyphae (Wösten et al.,
<xref rid="B146" ref-type="bibr">1996</xref>
; Teertstra et al.,
<xref rid="B131" ref-type="bibr">2006</xref>
,
<xref rid="B132" ref-type="bibr">2009</xref>
; Müller et al.,
<xref rid="B97" ref-type="bibr">2008</xref>
; Lanver et al.,
<xref rid="B76" ref-type="bibr">2014</xref>
).</p>
</sec>
<sec id="s5">
<title>Repeat domains may contribute to the adaptive evolution of RCP effectors</title>
<p>Repeat domains can evolve in several different ways, including through changes in repeat unit number or order, as well as through amino acid substitutions or insertions/deletions (indels) in repeat units and/or associated interconnecting loop/linker regions. Changes in number or order, particularly for those repeat units encoded by long nucleotide sequences (≥10 nucleotides in length), likely evolve through intra- and inter-genic recombination events (Richard and Pâques,
<xref rid="B113" ref-type="bibr">2000</xref>
). As shown in other systems, the mutation rates associated with these changes can be orders of magnitude greater than those associated with point mutations, accelerating the evolution of the coding sequence to which they belong (reviewed in Gemayel et al.,
<xref rid="B43" ref-type="bibr">2010</xref>
). Indeed, repeat unit number and/or order has commonly been shown to vary between RCP effectors and RCP effector candidates of individuals, strains, or isolates of the same species or pathovar of plant-associated organism (e.g., Allen et al.,
<xref rid="B4" ref-type="bibr">2004</xref>
; Heuer et al.,
<xref rid="B55" ref-type="bibr">2007</xref>
; Jelenska et al.,
<xref rid="B61" ref-type="bibr">2007</xref>
; Kucheryava et al.,
<xref rid="B73" ref-type="bibr">2008</xref>
; Aggarwal et al.,
<xref rid="B3" ref-type="bibr">2014</xref>
). Changes in repeat unit number have also been shown to accompany the evolutionary paths of certain effector families from plant-associated organisms (e.g., Goss et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
). Furthermore, chimeric RCP effectors, resulting from a recombination event between homologous repeat domains, have been reported (e.g., Yang et al.,
<xref rid="B149" ref-type="bibr">2005</xref>
), a finding that is not surprising, given the high number of RCP effectors that belong to multi-protein families (Tables
<xref ref-type="table" rid="T1">1</xref>
<xref ref-type="table" rid="T3">3</xref>
). Although generally not as quick to accumulate, amino acid substitutions, and indels also play an important role in generating sequence diversity within a repeat domain. However, these types of modification only occur following a duplication event. Again, such sequence variation has commonly been found to occur between the repeat units of RCP effectors or RCP effector candidates (see imperfect or degenerate repeat units listed in Tables
<xref ref-type="table" rid="T1">1</xref>
<xref ref-type="table" rid="T3">3</xref>
), as well as between the repeat domains of RCP effectors and RCP effector candidates from individuals, strains, or isolates of the same species or pathovar of plant-associated organism (e.g., Kucheryava et al.,
<xref rid="B73" ref-type="bibr">2008</xref>
; Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
; Ve et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
).</p>
<p>Of what relevance could this repeat domain variability be to plant-associated organisms? In industrial and animal-pathogenic yeasts, alterations to the repeat unit number, and/or order of surface-associated RCPs, termed adhesins, have been shown to impart changes in adhesion phenotype, which may permit the rapid adaptation of these organisms to different substrates and host tissues, respectively (reviewed in Verstrepen and Fink,
<xref rid="B136" ref-type="bibr">2009</xref>
). Furthermore, variability in the repeat domains of RCPs has been linked to the evasion of host immune responses in animal systems (e.g., Madoff et al.,
<xref rid="B84" ref-type="bibr">1996</xref>
; Mendes et al.,
<xref rid="B90" ref-type="bibr">2013</xref>
). In plant-associated organisms, the first indication that repeat domain variability could confer RCP effectors with an adaptive advantage, by providing a source of functional diversity, flexibility, and/or a means of evading host recognition, was provided by the experimental manipulation of AvrBs3, a TAL effector from
<italic>X. euvesicatoria</italic>
(Herbers et al.,
<xref rid="B54" ref-type="bibr">1992</xref>
). Typically, in a compatible interaction with pepper plants, AvrBs3 transcriptionally activates
<italic>UPA20</italic>
, a host gene that encodes a basic helix-loop-helix transcription factor, to trigger plant cell hypertrophy (Marois et al.,
<xref rid="B88" ref-type="bibr">2002</xref>
; Kay et al.,
<xref rid="B65" ref-type="bibr">2007</xref>
). However, in an incompatible interaction, AvrBs3 transcriptionally activates
<italic>Bs3</italic>
, a pepper gene that encodes an executor resistance protein with homology to flavin monooxygenases, to trigger host immunity (Römer et al.,
<xref rid="B114" ref-type="bibr">2007</xref>
,
<xref rid="B115" ref-type="bibr">2009</xref>
). To dissect the molecular basis of
<italic>Bs3</italic>
-dependent immunity, Herbers et al. (
<xref rid="B54" ref-type="bibr">1992</xref>
) generated random deletion derivatives of AvrBs3 that differed in their repeat unit number. While most AvrBs3 deletion derivatives lost their ability to trigger
<italic>Bs3</italic>
-dependent immunity, others gained a new host specificity, triggering immunity in pepper plants carrying
<italic>Bs3-E</italic>
, an allele of
<italic>Bs3</italic>
(Herbers et al.,
<xref rid="B54" ref-type="bibr">1992</xref>
). This research, which was subsequently confirmed by repeat domain swaps between other TAL effectors (e.g., Yang et al.,
<xref rid="B149" ref-type="bibr">2005</xref>
), demonstrated that it is the order, and thus the sequence, of TAL repeat units that determines host specificity. In addition, this research raised the possibility that recombination within or between the repeat domains of TAL effectors could produce novel effectors capable of activating different host genes (and thus promoting different host interaction phenotypes) as a consequence of their altered DNA recognition specificities. Indeed, evidence for inter- and intra-genic recombination events between TAL effectors has since been provided (Yang and Gabriel,
<xref rid="B152" ref-type="bibr">1995</xref>
; Yang et al.,
<xref rid="B149" ref-type="bibr">2005</xref>
).</p>
<p>Aside from those present in TAL effectors, other repeat domains have been implicated in the adaptive evolution of RCP effectors from plant-associated organisms. An example is provided by the hypervariable (Gp-HYP) effectors of the potato cyst nematode,
<italic>Globodera pallida</italic>
, which are targeted to the host apoplast throughout biotrophy, and are required for successful root colonization (Eves-van den Akker et al.,
<xref rid="B38" ref-type="bibr">2014</xref>
). Gp-HYP effectors, which possess several conserved regions and a central repeat domain, are encoded by a large and incredibly complex gene family. Based on repeat domain amino acid sequence, these effectors can be assigned to one of three subfamilies (Gp-HYP-1, -2, and -3), with members of Gp-HYP-1 and -3 demonstrating high variability in the number, sequence, and order of their tandem repeats (Eves-van den Akker et al.,
<xref rid="B38" ref-type="bibr">2014</xref>
). Notably,
<italic>Gp-HYP</italic>
genes exhibit unparalleled diversity between individuals of the same population, with no two nematodes possessing the same genetic complement of
<italic>Gp-HYP-1</italic>
and
<italic>-3</italic>
genes. While it remains unclear what functional role the Gp-HYP repeat domains play in the context of plant parasitism by
<italic>G. pallida</italic>
, it has been suggested that their variability may reflect functional diversity, possibly in specificity of ligand binding. It has also been suggested that this variability may reflect the need to evade host recognition, possibly providing an explanation as to why breeding broad-spectrum resistance against this nematode has been so difficult (Eves-van den Akker et al.,
<xref rid="B38" ref-type="bibr">2014</xref>
). In another example, it has been suggested that the duplication and subsequent sequence diversification of CLE-like repeats present in the GrCLE effectors of
<italic>G. rostochiensis</italic>
may represent an important mechanism for generating functional diversity required for host parasitism. This is based on the finding that the ectopic over-expression of different GrCLE RCP effectors in
<italic>A. thaliana</italic>
leads to a wide range of plant phenotypes (Lu et al.,
<xref rid="B81" ref-type="bibr">2009</xref>
).</p>
<p>For several RCP effectors, including ATR1 of
<italic>H. arabidopsidis</italic>
(and other RXLR effectors from plant-pathogenic oomycetes), as well as AvrM-A of
<italic>M. lini</italic>
, and AvrPtoB of
<italic>Pst</italic>
, sequence diversification has been shown to play a particularly important role in driving repeat domain evolution, with the repeat units present in these effectors lacking significant amino acid sequence homology (Jiang et al.,
<xref rid="B62" ref-type="bibr">2008</xref>
; Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
; Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
; Ve et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
). Instead, typically only those amino acid residues required for maintenance or stabilization of the overall tertiary fold or structural core have remained conserved or physicochemically similar between repeat units (Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
; Chou et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
; Ve et al.,
<xref rid="B135" ref-type="bibr">2013</xref>
). This in turn has provided these effectors with a conserved structural framework for rapid diversification, a feature that may promote functional diversity, flexibility, and/or a means of evading host recognition. Certainly, the repeat units of AvrPtoB provide an excellent example of functional flexibility. As mentioned previously, the N terminus and central region of this effector each carry a single repeat unit that adopts a four-helix bundle fold (repeat units one and two, respectively; Figures
<xref ref-type="fig" rid="F1">1A,B</xref>
), while the C terminus carries a U-box-type E3 ubiquitin ligase domain (Abramovitch et al.,
<xref rid="B1" ref-type="bibr">2006</xref>
; Janjusevic et al.,
<xref rid="B58" ref-type="bibr">2006</xref>
; Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
; Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
). Remarkably, both repeat units play distinct and multiple roles in modulating host immune responses. For example, repeat units one and two bind and inhibit the kinase domain of the PM-localized host LysM-RLK and LRR-RLK immune receptors, Bti9 and BAK1, respectively, to suppress immunity-related signaling (Göhre et al.,
<xref rid="B44" ref-type="bibr">2008</xref>
; Shan et al.,
<xref rid="B125" ref-type="bibr">2008</xref>
; Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
; Zeng et al.,
<xref rid="B155" ref-type="bibr">2012</xref>
). Repeat units one and two also bind the kinase domain of the LysM-RLK CERK1 and LRR-RLK FLS2 immune receptors, respectively, which may promote their ubiquitination and subsequent proteasome-dependent degradation via the AvrPtoB E3 ligase domain (Göhre et al.,
<xref rid="B44" ref-type="bibr">2008</xref>
; Gimenez-Ibanez et al.,
<xref rid="B45" ref-type="bibr">2009</xref>
). In addition, repeat unit one interacts with the host receptor-like cytoplasmic kinase (RLCK) Pto, while repeat unit two interacts with Pto and a related host RLCK, Fen (Rosebrock et al.,
<xref rid="B118" ref-type="bibr">2007</xref>
; Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
; Mathieu et al.,
<xref rid="B89" ref-type="bibr">2014</xref>
). Of note, in line with the observed sequence diversity, structural analyses have determined that repeat unit one interacts with the Pto kinase in a different orientation to that of repeat unit two with the BAK1 kinase domain (Figures
<xref ref-type="fig" rid="F1">1A,B</xref>
) (Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
; Cheng et al.,
<xref rid="B22" ref-type="bibr">2011</xref>
). Interestingly, in conjunction with Prf, an immune receptor of tomato, Pto is able to activate host immunity following its interaction with AvrPtoB (Kim et al.,
<xref rid="B70" ref-type="bibr">2002</xref>
; Mucyn et al.,
<xref rid="B94" ref-type="bibr">2006</xref>
; Dong et al.,
<xref rid="B33" ref-type="bibr">2009</xref>
). Fen however, can only activate host immunity in the absence of the E3 ubiquitin ligase domain (Rosebrock et al.,
<xref rid="B118" ref-type="bibr">2007</xref>
). It has now been shown that interaction of either Pto or Fen with repeat unit two results in the proteasome-dependent degradation of these RLCKs as above (Rosebrock et al.,
<xref rid="B118" ref-type="bibr">2007</xref>
; Mathieu et al.,
<xref rid="B89" ref-type="bibr">2014</xref>
). Pto however, is able to resist AvrPtoB-mediated degradation and activate Prf-dependent immunity following its interaction with repeat unit one, as this repeat unit is further away from the E3 ubiquitin ligase domain (Mathieu et al.,
<xref rid="B89" ref-type="bibr">2014</xref>
). It has been suggested that Pto and Fen evolved as decoys of the aforementioned non-cytoplasmic kinases to provide immunity against
<italic>Pst</italic>
(Block and Alfano,
<xref rid="B8" ref-type="bibr">2011</xref>
).</p>
</sec>
<sec id="s6">
<title>Conclusion and perspective</title>
<p>Analyses of protein sequence and tertiary structure have revealed that several effectors of plant-associated organisms are RCPs. As reviewed here, repeat domains play diverse roles in RCP effector function. Furthermore, repeat domains may contribute to the rapid adaptive evolution of RCP effectors, providing a source of functional diversity, flexibility, and/or a means of evading host recognition. With these points in mind, it is perhaps not surprising that increased attention has been given to the identification of RCP effectors from plant-associated organisms (e.g., Mueller et al.,
<xref rid="B95" ref-type="bibr">2008</xref>
; Raffaele et al.,
<xref rid="B108" ref-type="bibr">2010</xref>
; Rudd et al.,
<xref rid="B119" ref-type="bibr">2010</xref>
; Saunders et al.,
<xref rid="B122" ref-type="bibr">2012</xref>
; Rafiqi et al.,
<xref rid="B110" ref-type="bibr">2013</xref>
). Undoubtedly, as (1) more genomes of plant-associated organisms are sequenced; (2) the tools of repeat identification become more powerful; and (3) additional effectors are structurally characterized, many more RCP effectors will be identified. The ongoing challenge will be to understand the precise roles that repeat domains play in the function and adaptive evolution of these effectors. Curiously, many of the repeat domain classes discussed in this review are also co-opted by plants to mediate ligand recognition and/or signaling associated with symbiosis, immunity, as well as physiology and development (Palma et al.,
<xref rid="B101" ref-type="bibr">2005</xref>
; Wang et al.,
<xref rid="B141" ref-type="bibr">2006</xref>
; Laluk et al.,
<xref rid="B75" ref-type="bibr">2011</xref>
; Gust et al.,
<xref rid="B50" ref-type="bibr">2012</xref>
; Böhm et al.,
<xref rid="B11" ref-type="bibr">2014</xref>
; Cui et al.,
<xref rid="B26" ref-type="bibr">2015</xref>
; Kucukoglu and Nilsson,
<xref rid="B74" ref-type="bibr">2015</xref>
). Thus, as shown for the CLE-like repeats of GrCLE1 from
<italic>G. rostochiensis</italic>
(Lu et al.,
<xref rid="B81" ref-type="bibr">2009</xref>
; Guo et al.,
<xref rid="B49" ref-type="bibr">2011</xref>
), it is likely that many RCP effector repeat domains mimic host components associated with these processes to facilitate colonization.</p>
<p>Although not discussed in this review, we acknowledge that repeat domains can be intrinsically disordered (ID); a feature characterized by conformational flexibility and a lack of secondary or tertiary structure under physiological conditions (Dyson and Wright,
<xref rid="B36" ref-type="bibr">2005</xref>
). In fact, repetitive sequence, along with a preponderance of charged and hydrophilic amino acid residues, is often a hallmark of ID (Dyson and Wright,
<xref rid="B36" ref-type="bibr">2005</xref>
). Like the ordered (structured) repeat domains described above, ID regions carry out diverse roles in protein function, ranging from providing a flexible linker between structured domains, to mediating protein–protein interactions (Dyson and Wright,
<xref rid="B36" ref-type="bibr">2005</xref>
). To date, examples of RCP effectors with such a repeat domain architecture remain limited, although ID has been predicted for the P/Q-rich repeats of HopI1, a type III effector from the Brassicaceae leaf spot pathogen,
<italic>P. syringae</italic>
pv.
<italic>maculicola</italic>
(Table
<xref ref-type="table" rid="T1">1</xref>
; Jelenska et al.,
<xref rid="B60" ref-type="bibr">2010</xref>
; Marín and Ott,
<xref rid="B86" ref-type="bibr">2014</xref>
). Of relevance, many ID regions are known to undergo induced folding upon interaction with their physiological targets, a process that gives rise to the unusual combination of low affinity and high specificity, which may allow these interactions to be readily reversible or may confer flexibility and promiscuity to target binding (Dyson and Wright,
<xref rid="B36" ref-type="bibr">2005</xref>
). Furthermore, likely owing to a lack of structural constraints, ID protein sequences often evolve at a faster rate than ordered protein sequences, acquiring a greater number of single amino acid substitutions, insertions, deletions, and repeat unit expansions (Brown et al.,
<xref rid="B16" ref-type="bibr">2011</xref>
; Nilsson et al.,
<xref rid="B98" ref-type="bibr">2011</xref>
). Consequently, ID repeat domains are also of great interest to understanding how RCP effectors circumvent host recognition, or acquire novel, altered, and extended effector functionalities that further enhance the colonization of susceptible hosts (Marín et al.,
<xref rid="B87" ref-type="bibr">2013</xref>
; Marín and Ott,
<xref rid="B86" ref-type="bibr">2014</xref>
).</p>
</sec>
<sec id="s7">
<title>Author contributions</title>
<p>CM, JB, and MT conceived the review. CM wrote the manuscript. CM and CH prepared Figures
<xref ref-type="fig" rid="F1">1</xref>
,
<xref ref-type="fig" rid="F2">2</xref>
. CM and JB constructed Tables
<xref ref-type="table" rid="T1">1</xref>
<xref ref-type="table" rid="T3">3</xref>
. CM, JB, CH, and MT critically revised the manuscript. All authors approved the final version of the manuscript.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We thank Erik Rikkerink and Xiaolin Sun (The New Zealand Institute for Plant & Food Research) for critically reviewing the manuscript. CM acknowledges financial support provided by The New Zealand Bio-Protection Research Centre (BPRC), Lincoln University.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abramovitch</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Janjusevic</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stebbins</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>103</volume>
,
<fpage>2851</fpage>
<lpage>2856</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0507892103</pub-id>
<pub-id pub-id-type="pmid">16477026</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abramovitch</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dickman</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>
<italic>Pseudomonas</italic>
type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death</article-title>
.
<source>EMBO J.</source>
<volume>22</volume>
,
<fpage>60</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1093/emboj/cdg006</pub-id>
<pub-id pub-id-type="pmid">12505984</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aggarwal</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Subramanyam</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>M. O.</given-names>
</name>
<name>
<surname>Stuart</surname>
<given-names>J. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (
<italic>Mayetiola destructor</italic>
)</article-title>
.
<source>PLoS ONE</source>
<volume>9</volume>
:
<fpage>e100958</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0100958</pub-id>
<pub-id pub-id-type="pmid">24964065</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Bittner-Eddy</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Grenville-Briggs</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Meitz</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Rehmany</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>L. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Host-parasite coevolutionary conflict between
<italic>Arabidopsis</italic>
and downy mildew</article-title>
.
<source>Science</source>
<volume>306</volume>
,
<fpage>1957</fpage>
<lpage>1960</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1104022</pub-id>
<pub-id pub-id-type="pmid">15591208</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Meitz</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Baumber</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>L. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Natural variation reveals key amino acids in a downy mildew effector that alters recognition specificity by an
<italic>Arabidopsis</italic>
resistance gene</article-title>
.
<source>Mol. Plant Pathol.</source>
<volume>9</volume>
,
<fpage>511</fpage>
<lpage>523</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2008.00481.x</pub-id>
<pub-id pub-id-type="pmid">18705864</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angot</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Peeters</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lechner</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Vailleau</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Baud</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gentzbittel</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>
<italic>Ralstonia solanacearum</italic>
requires F-box-like domain-containing type III effectors to promote disease on several host plants</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>103</volume>
,
<fpage>14620</fpage>
<lpage>14625</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0509393103</pub-id>
<pub-id pub-id-type="pmid">16983093</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Noble</surname>
<given-names>W. S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The MEME suite</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>43</volume>
,
<fpage>W39</fpage>
<lpage>W49</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkv416</pub-id>
<pub-id pub-id-type="pmid">25953851</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Block</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Alfano</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Plant targets for
<italic>Pseudomonas syringae</italic>
type III effectors: virulence targets or guarded decoys?</article-title>
<source>Curr. Opin. Microbiol.</source>
<volume>14</volume>
,
<fpage>39</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.mib.2010.12.011</pub-id>
<pub-id pub-id-type="pmid">21227738</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boch</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bonas</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>
<italic>Xanthomonas</italic>
AvrBs3 family-type III effectors: discovery and function</article-title>
.
<source>Ann. Rev. Phytopathol.</source>
<volume>48</volume>
,
<fpage>419</fpage>
<lpage>436</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-phyto-080508-081936</pub-id>
<pub-id pub-id-type="pmid">19400638</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boch</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Scholze</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Schornack</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Landgraf</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Breaking the code of DNA binding specificity of TAL-type III effectors</article-title>
.
<source>Science</source>
<volume>326</volume>
,
<fpage>1509</fpage>
<lpage>1512</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1178811</pub-id>
<pub-id pub-id-type="pmid">19933107</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Böhm</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Albert</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Reinhard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nürnberger</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Immune receptor complexes at the plant cell surface</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>20</volume>
,
<fpage>47</fpage>
<lpage>54</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2014.04.007</pub-id>
<pub-id pub-id-type="pmid">24835204</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bolton</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>van Esse</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Vossen</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>de Jonge</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stergiopoulos</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Stulemeijer</surname>
<given-names>I. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>The novel
<italic>Cladosporium fulvum</italic>
lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species</article-title>
.
<source>Mol. Microbiol.</source>
<volume>69</volume>
,
<fpage>119</fpage>
<lpage>136</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2008.06270.x</pub-id>
<pub-id pub-id-type="pmid">18452583</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bos</surname>
<given-names>J. I.</given-names>
</name>
<name>
<surname>Prince</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pitino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Maffei</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hogenhout</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>A functional genomics approach identifies candidate effectors from the aphid species
<italic>Myzus persicae</italic>
(green peach aphid)</article-title>
.
<source>PLoS Genet.</source>
<volume>6</volume>
:
<fpage>e1001216</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pgen.1001216</pub-id>
<pub-id pub-id-type="pmid">21124944</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boutemy</surname>
<given-names>L. S.</given-names>
</name>
<name>
<surname>King</surname>
<given-names>S. R. F.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Blumenschein</surname>
<given-names>T. M. A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Structures of
<italic>Phytophthora</italic>
RXLR effector proteins</article-title>
.
<source>J. Biol. Chem.</source>
<volume>286</volume>
,
<fpage>35834</fpage>
<lpage>35842</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M111.262303</pub-id>
<pub-id pub-id-type="pmid">21813644</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bozkurt</surname>
<given-names>T. O.</given-names>
</name>
<name>
<surname>Schornack</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Banfield</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Oomycetes, effectors, and all that jazz</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>15</volume>
,
<fpage>483</fpage>
<lpage>492</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2012.03.008</pub-id>
<pub-id pub-id-type="pmid">22483402</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Dunker</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Daughdrill</surname>
<given-names>G. W.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Evolution and disorder</article-title>
.
<source>Curr. Opin. Struct. Biol.</source>
<volume>21</volume>
,
<fpage>441</fpage>
<lpage>446</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.sbi.2011.02.005</pub-id>
<pub-id pub-id-type="pmid">21482101</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castagnone-Sereno</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Semblat</surname>
<given-names>J.-P.</given-names>
</name>
<name>
<surname>Castagnone</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Modular architecture and evolution of the
<italic>map-1</italic>
gene family in the root-knot nematode
<italic>Meloidogyne incognita</italic>
</article-title>
.
<source>Mol. Genet. Genomics</source>
<volume>282</volume>
,
<fpage>547</fpage>
<lpage>554</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00438-009-0487-x</pub-id>
<pub-id pub-id-type="pmid">19787376</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Catanzariti</surname>
<given-names>A.-M.</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>P. N.</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Ayliffe</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
,
<fpage>243</fpage>
<lpage>256</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.105.035980</pub-id>
<pub-id pub-id-type="pmid">16326930</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Catanzariti</surname>
<given-names>A.-M.</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>P. N.</given-names>
</name>
<name>
<surname>Ve</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kobe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>23</volume>
,
<fpage>49</fpage>
<lpage>57</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-23-1-0049</pub-id>
<pub-id pub-id-type="pmid">19958138</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>L. Q.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>B. H.</given-names>
</name>
<name>
<surname>Lalonde</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takanaga</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hartung</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>X. Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Sugar transporters for intercellular exchange and nutrition of pathogens</article-title>
.
<source>Nature</source>
<volume>468</volume>
,
<fpage>527</fpage>
<lpage>532</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature09606</pub-id>
<pub-id pub-id-type="pmid">21107422</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chronis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>De Jong</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Mitchum</surname>
<given-names>M. G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015</year>
).
<article-title>In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism</article-title>
.
<source>Plant Physiol.</source>
<volume>167</volume>
,
<fpage>262</fpage>
<lpage>272</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.114.251637</pub-id>
<pub-id pub-id-type="pmid">25416475</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Munkvold</surname>
<given-names>K. R.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mathieu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Schwizer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Structural analysis of
<italic>Pseudomonas syringae</italic>
AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III effector</article-title>
.
<source>Cell Host Microbe</source>
<volume>10</volume>
,
<fpage>616</fpage>
<lpage>626</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chom.2011.10.013</pub-id>
<pub-id pub-id-type="pmid">22169508</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chosed</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tomchick</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Brautigam</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Negi</surname>
<given-names>V. S.</given-names>
</name>
<name>
<surname>Machius</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Structural analysis of
<italic>Xanthomonas</italic>
XopD provides insights into substrate specificity of ubiquitin-like protein proteases</article-title>
.
<source>J. Biol. Chem.</source>
<volume>282</volume>
,
<fpage>6773</fpage>
<lpage>6782</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M608730200</pub-id>
<pub-id pub-id-type="pmid">17204475</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chou</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krasileva</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Holton</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Steinbrenner</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Alber</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>
<italic>Hyaloperonospora arabidopsidis</italic>
ATR1 effector is a repeat protein with distributed recognition surfaces</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>108</volume>
,
<fpage>13323</fpage>
<lpage>13328</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1109791108</pub-id>
<pub-id pub-id-type="pmid">21788488</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Promoter mutations of an essential gene for pollen development result in disease resistance in rice</article-title>
.
<source>Genes Dev.</source>
<volume>20</volume>
,
<fpage>1250</fpage>
<lpage>1255</lpage>
.
<pub-id pub-id-type="doi">10.1101/gad.1416306</pub-id>
<pub-id pub-id-type="pmid">16648463</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tsuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>J. E.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Effector-triggered immunity: from pathogen perception to robust defense</article-title>
.
<source>Ann. Rev. Plant Biol.</source>
<volume>66</volume>
,
<fpage>487</fpage>
<lpage>511</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-arplant-050213-040012</pub-id>
<pub-id pub-id-type="pmid">25494461</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cunnac</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Occhialini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barberis</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Genin</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Inventory and functional analysis of the large Hrp regulon in
<italic>Ralstonia solanacearum</italic>
: identification of novel effector proteins translocated to plant host cells through the type III secretion system</article-title>
.
<source>Mol. Microbiol.</source>
<volume>53</volume>
,
<fpage>115</fpage>
<lpage>128</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2004.04118.x</pub-id>
<pub-id pub-id-type="pmid">15225308</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Jonge</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van Esse</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Kombrink</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shinya</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Desaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bours</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants</article-title>
.
<source>Science</source>
<volume>329</volume>
,
<fpage>953</fpage>
<lpage>955</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1190859</pub-id>
<pub-id pub-id-type="pmid">20724636</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Lange</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schandry</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Radeck</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Braun</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Koszinowski</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Breaking the DNA-binding code of
<italic>Ralstonia solanacearum</italic>
TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease</article-title>
.
<source>New Phytol.</source>
<volume>199</volume>
,
<fpage>773</fpage>
<lpage>786</lpage>
.
<pub-id pub-id-type="doi">10.1111/nph.12324</pub-id>
<pub-id pub-id-type="pmid">23692030</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Mahfouz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J. K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Structural basis for sequence-specific recognition of DNA by TAL effectors</article-title>
.
<source>Science</source>
<volume>335</volume>
,
<fpage>720</fpage>
<lpage>723</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1215670</pub-id>
<pub-id pub-id-type="pmid">22223738</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deslandes</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rivas</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Catch me if you can: bacterial effectors and plant targets</article-title>
.
<source>Trends Plant Sci.</source>
<volume>17</volume>
,
<fpage>644</fpage>
<lpage>655</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2012.06.011</pub-id>
<pub-id pub-id-type="pmid">22796464</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Torres</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mansfield</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Grabov</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>I. R.</given-names>
</name>
<name>
<surname>Ammouneh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tsiamis</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>
<italic>Pseudomonas syringae</italic>
effector AvrPtoB suppresses basal defence in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Plant J.</source>
<volume>47</volume>
,
<fpage>368</fpage>
<lpage>382</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2006.02798.x</pub-id>
<pub-id pub-id-type="pmid">16792692</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Crystal structure of the complex between
<italic>Pseudomonas</italic>
effector AvrPtoB and the tomato Pto kinase reveals both a shared and a unique interface compared with AvrPto-Pto</article-title>
.
<source>Plant Cell</source>
<volume>21</volume>
,
<fpage>1846</fpage>
<lpage>1859</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.109.066878</pub-id>
<pub-id pub-id-type="pmid">19509331</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Stam</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sklenar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Effector specialization in a lineage of the Irish potato famine pathogen</article-title>
.
<source>Science</source>
<volume>343</volume>
,
<fpage>552</fpage>
<lpage>555</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1246300</pub-id>
<pub-id pub-id-type="pmid">24482481</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dou</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.-M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Phytopathogen effectors subverting host immunity: different foes, similar battleground</article-title>
.
<source>Cell Host Microbe</source>
<volume>12</volume>
,
<fpage>484</fpage>
<lpage>495</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chom.2012.09.003</pub-id>
<pub-id pub-id-type="pmid">23084917</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dyson</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>P. E.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Intrinsically unstructured proteins and their functions</article-title>
.
<source>Nat. Rev. Mol. Cell Biol.</source>
<volume>6</volume>
,
<fpage>197</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm1589</pub-id>
<pub-id pub-id-type="pmid">15738986</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elzinga</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>De Vos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jander</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Suppression of plant defenses by a
<italic>Myzus persicae</italic>
(green peach aphid) salivary effector protein</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>27</volume>
,
<fpage>747</fpage>
<lpage>756</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-01-14-0018-R</pub-id>
<pub-id pub-id-type="pmid">24654979</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eves-van den Akker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lilley</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Urwin</surname>
<given-names>P. E.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes</article-title>
.
<source>PLoS Pathog.</source>
<volume>10</volume>
:
<fpage>e1004391</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004391</pub-id>
<pub-id pub-id-type="pmid">25255291</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>A
<italic>Xanthomonas</italic>
uridine 5′-monophosphate transferase inhibits plant immune kinases</article-title>
.
<source>Nature</source>
<volume>485</volume>
,
<fpage>114</fpage>
<lpage>118</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature10962</pub-id>
<pub-id pub-id-type="pmid">22504181</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region</article-title>
.
<source>Cell Res.</source>
<volume>22</volume>
,
<fpage>1716</fpage>
<lpage>1720</lpage>
.
<pub-id pub-id-type="doi">10.1038/cr.2012.156</pub-id>
<pub-id pub-id-type="pmid">23147789</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaulin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Dramé</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lafitte</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Torto-Alalibo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ameline-Torregrosa</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Cellulose binding domains of a
<italic>Phytophthora</italic>
cell wall protein are novel pathogen-associated molecular patterns</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
,
<fpage>1766</fpage>
<lpage>1777</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.105.038687</pub-id>
<pub-id pub-id-type="pmid">16766692</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaulin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jauneau</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Villalba</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rickauer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Esquerré-Tugayé</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Bottin</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The CBEL glycoprotein of
<italic>Phytophthora parasitica</italic>
var-
<italic>nicotianae</italic>
is involved in cell wall deposition and adhesion to cellulosic substrates</article-title>
.
<source>J. Cell Sci.</source>
<volume>115</volume>
,
<fpage>4565</fpage>
<lpage>4575</lpage>
.
<pub-id pub-id-type="doi">10.1242/jcs.00138</pub-id>
<pub-id pub-id-type="pmid">12415001</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gemayel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vinces</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Legendre</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Verstrepen</surname>
<given-names>K. J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Variable tandem repeats accelerate evolution of coding and regulatory sequences</article-title>
.
<source>Ann. Rev. Genet.</source>
<volume>44</volume>
,
<fpage>445</fpage>
<lpage>477</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-genet-072610-155046</pub-id>
<pub-id pub-id-type="pmid">20809801</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Göhre</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Spallek</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Häweker</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mersmann</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mentzel</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Boller</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB</article-title>
.
<source>Curr. Biol.</source>
<volume>18</volume>
,
<fpage>1824</fpage>
<lpage>1832</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2008.10.063</pub-id>
<pub-id pub-id-type="pmid">19062288</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gimenez-Ibanez</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hann</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Ntoukakis</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Petutschnig</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lipka</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Rathjen</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants</article-title>
.
<source>Curr. Biol.</source>
<volume>19</volume>
,
<fpage>423</fpage>
<lpage>429</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2009.01.054</pub-id>
<pub-id pub-id-type="pmid">19249211</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goss</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Press</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Grünwald</surname>
<given-names>N. J.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Evolution of RXLR-class effectors in the oomycete plant pathogen
<italic>Phytophthora ramorum</italic>
</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>e79347</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0079347</pub-id>
<pub-id pub-id-type="pmid">24244484</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Görnhardt</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rouhara</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Schmelzer</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Cyst germination proteins of the potato pathogen
<italic>Phytophthora infestans</italic>
share homology with human mucins</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>13</volume>
,
<fpage>32</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.2000.13.1.32</pub-id>
<pub-id pub-id-type="pmid">10656583</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grove</surname>
<given-names>T. Z.</given-names>
</name>
<name>
<surname>Cortajarena</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Regan</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Ligand binding by repeat proteins: natural and designed</article-title>
.
<source>Curr. Opin. Struct. Biol.</source>
<volume>18</volume>
,
<fpage>507</fpage>
<lpage>515</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.sbi.2008.05.008</pub-id>
<pub-id pub-id-type="pmid">18602006</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Denver</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>S. E.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode
<italic>Globodera rostochiensis</italic>
</article-title>
.
<source>Plant Phys.</source>
<volume>157</volume>
,
<fpage>476</fpage>
<lpage>484</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.111.180554</pub-id>
<pub-id pub-id-type="pmid">21750229</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gust</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Willmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Desaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Grabherr</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>Nürnberger</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Plant LysM proteins: modules mediating symbiosis and immunity</article-title>
.
<source>Trends Plant Sci.</source>
<volume>17</volume>
,
<fpage>495</fpage>
<lpage>502</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2012.04.003</pub-id>
<pub-id pub-id-type="pmid">22578284</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guttman</surname>
<given-names>D. S.</given-names>
</name>
<name>
<surname>Vinatzer</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Ranall</surname>
<given-names>M. V.</given-names>
</name>
<name>
<surname>Kettler</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>A functional screen for the type III (Hrp) secretome of the plant pathogen
<italic>Pseudomonas syringae</italic>
</article-title>
.
<source>Science</source>
<volume>295</volume>
,
<fpage>1722</fpage>
<lpage>1726</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.295.5560.1722</pub-id>
<pub-id pub-id-type="pmid">11872842</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lautier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chabannes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lauber</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Arlat</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>
<italic>xopAC</italic>
-triggered immunity against
<italic>Xanthomonas</italic>
depends on
<italic>Arabidopsis</italic>
receptor-like cytoplasmic kinase genes
<italic>PBL2</italic>
and
<italic>RIPK</italic>
</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>e73469</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0073469</pub-id>
<pub-id pub-id-type="pmid">23951354</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>N. C.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Kemmerling</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nürnberger</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in
<italic>Arabidopsis</italic>
innate immunity</article-title>
.
<source>Cell</source>
<volume>125</volume>
,
<fpage>563</fpage>
<lpage>575</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2006.02.047</pub-id>
<pub-id pub-id-type="pmid">16678099</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herbers</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Conrads-Strauch</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bonas</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein</article-title>
.
<source>Nature</source>
<volume>356</volume>
,
<fpage>172</fpage>
<lpage>174</lpage>
.
<pub-id pub-id-type="doi">10.1038/356172a0</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heuer</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>Y. N.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>Q. Y.</given-names>
</name>
<name>
<surname>Smalla</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J. H.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Repeat domain diversity of
<italic>avrBs3</italic>
-like genes in
<italic>Ralstonia solanacearum</italic>
strains and association with host preferences in the field</article-title>
.
<source>Appl. Environ. Microbiol.</source>
<volume>73</volume>
,
<fpage>4379</fpage>
<lpage>4384</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.00367-07</pub-id>
<pub-id pub-id-type="pmid">17468277</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hogenhout</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>van der Hoorn</surname>
<given-names>R. A. L.</given-names>
</name>
<name>
<surname>Terauchi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Emerging concepts in effector biology of plant-associated organisms</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>22</volume>
,
<fpage>115</fpage>
<lpage>122</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-22-2-0115</pub-id>
<pub-id pub-id-type="pmid">19132864</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hotson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chosed</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Orth</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mudgett</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>
<italic>Xanthomonas</italic>
type III effector XopD targets SUMO-conjugated proteins
<italic>in planta</italic>
</article-title>
.
<source>Mol. Microbiol.</source>
<volume>50</volume>
,
<fpage>377</fpage>
<lpage>389</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1365-2958.2003.03730.x</pub-id>
<pub-id pub-id-type="pmid">14617166</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janjusevic</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Abramovitch</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Stebbins</surname>
<given-names>C. E.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase</article-title>
.
<source>Science</source>
<volume>311</volume>
,
<fpage>222</fpage>
<lpage>226</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1120131</pub-id>
<pub-id pub-id-type="pmid">16373536</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaouannet</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Thorpe</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lenoir</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>MacLeod</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Escudero-Martinez</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Plant immunity in plant-aphid interactions</article-title>
.
<source>Front. Plant Sci.</source>
<volume>5</volume>
:
<issue>663</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2014.00663</pub-id>
<pub-id pub-id-type="pmid">25520727</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jelenska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>van Hal</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>
<italic>Pseudomonas syringae</italic>
hijacks plant stress chaperone machinery for virulence</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>107</volume>
,
<fpage>13177</fpage>
<lpage>13182</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0910943107</pub-id>
<pub-id pub-id-type="pmid">20615948</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jelenska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Vinatzer</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Brodsky</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>A J domain virulence effector of
<italic>Pseudomonas syringae</italic>
remodels host chloroplasts and suppresses defenses</article-title>
.
<source>Curr. Biol.</source>
<volume>17</volume>
,
<fpage>499</fpage>
<lpage>508</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2007.02.028</pub-id>
<pub-id pub-id-type="pmid">17350264</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>R. H.</given-names>
</name>
<name>
<surname>Tripathy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Govers</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Tyler</surname>
<given-names>B. M.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>RXLR effector reservoir in two
<italic>Phytophthora</italic>
species is dominated by a single rapidly evolving superfamily with more than 700 members</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>105</volume>
,
<fpage>4874</fpage>
<lpage>4879</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0709303105</pub-id>
<pub-id pub-id-type="pmid">18344324</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kajava</surname>
<given-names>A. V.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Tandem repeats in proteins: from sequence to structure</article-title>
.
<source>J. Struct. Biol.</source>
<volume>179</volume>
,
<fpage>279</fpage>
<lpage>288</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jsb.2011.08.009</pub-id>
<pub-id pub-id-type="pmid">21884799</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kappel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zachariae</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Dölker</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Grubmüller</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins</article-title>
.
<source>Biophys. J.</source>
<volume>99</volume>
,
<fpage>1596</fpage>
<lpage>1603</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bpj.2010.06.032</pub-id>
<pub-id pub-id-type="pmid">20816072</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kay</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Marois</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hause</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bonas</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>A bacterial effector acts as a plant transcription factor and induces a cell size regulator</article-title>
.
<source>Science</source>
<volume>318</volume>
,
<fpage>648</fpage>
<lpage>651</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1144956</pub-id>
<pub-id pub-id-type="pmid">17962565</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khatib</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lafitte</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Esquerré-Tugayé</surname>
<given-names>M.-T.</given-names>
</name>
<name>
<surname>Bottin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rickauer</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The CBEL elicitor of
<italic>Phytophthora parasitica</italic>
var. nicotianae activates defence in
<italic>Arabidopsis thaliana</italic>
via three different signalling pathways</article-title>
.
<source>New Phytol.</source>
<volume>162</volume>
,
<fpage>501</fpage>
<lpage>510</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2004.01043.x</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Roden</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Aakre</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>
<italic>Xanthomonas</italic>
T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1</article-title>
.
<source>Plant Cell</source>
<volume>21</volume>
,
<fpage>1305</fpage>
<lpage>1323</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.108.063123</pub-id>
<pub-id pub-id-type="pmid">19366901</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.-G.</given-names>
</name>
<name>
<surname>Stork</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Mudgett</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>
<italic>Xanthomonas</italic>
type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth</article-title>
.
<source>Cell Host Microbe</source>
<volume>13</volume>
,
<fpage>143</fpage>
<lpage>154</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chom.2013.01.006</pub-id>
<pub-id pub-id-type="pmid">23414755</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.-G.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Hotson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Keegan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schmelz</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Mudgett</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in
<italic>Xanthomonas</italic>
-infected tomato leaves</article-title>
.
<source>Plant Cell</source>
<volume>20</volume>
,
<fpage>1915</fpage>
<lpage>1929</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.108.058529</pub-id>
<pub-id pub-id-type="pmid">18664616</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>Y. J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>N.-C.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Two distinct
<italic>Pseudomonas</italic>
effector proteins interact with the Pto kinase and activate plant immunity</article-title>
.
<source>Cell</source>
<volume>109</volume>
,
<fpage>589</fpage>
<lpage>598</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0092-8674(02)00743-2</pub-id>
<pub-id pub-id-type="pmid">12062102</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kloppholz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Requena</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>A secreted fungal effector of
<italic>Glomus intraradices</italic>
promotes symbiotic biotrophy</article-title>
.
<source>Curr. Biol.</source>
<volume>21</volume>
,
<fpage>1204</fpage>
<lpage>1209</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2011.06.044</pub-id>
<pub-id pub-id-type="pmid">21757354</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krasileva</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Dahlbeck</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Activation of an
<italic>Arabidopsis</italic>
resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector</article-title>
.
<source>Plant Cell</source>
<volume>22</volume>
,
<fpage>2444</fpage>
<lpage>2458</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.110.075358</pub-id>
<pub-id pub-id-type="pmid">20601497</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucheryava</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Sutherland</surname>
<given-names>P. W.</given-names>
</name>
<name>
<surname>Conolly</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Mesarich</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Rikkerink</surname>
<given-names>E. H.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Two novel
<italic>Venturia inaequalis</italic>
genes induced upon morphogenetic differentiation during infection and
<italic>in vitro</italic>
growth on cellophane</article-title>
.
<source>Fungal Genet. Biol.</source>
<volume>45</volume>
,
<fpage>1329</fpage>
<lpage>1339</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.fgb.2008.07.010</pub-id>
<pub-id pub-id-type="pmid">18692586</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucukoglu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>O.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>CLE peptide signaling in plants – the power of moving around</article-title>
.
<source>Physiol. Plant.</source>
<volume>155</volume>
,
<fpage>74</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.1111/ppl.12358</pub-id>
<pub-id pub-id-type="pmid">26096704</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laluk</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Abuqamar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mengiste</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>The
<italic>Arabidopsis</italic>
mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance</article-title>
.
<source>Plant Phys.</source>
<volume>156</volume>
,
<fpage>2053</fpage>
<lpage>2068</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.111.177501</pub-id>
<pub-id pub-id-type="pmid">21653783</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lanver</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Berndt</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tollot</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Naik</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Vranes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Warmann</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Plant surface cues prime
<italic>Ustilago maydis</italic>
for biotrophic development</article-title>
.
<source>PLoS Pathog.</source>
<volume>10</volume>
:
<fpage>e1004272</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004272</pub-id>
<pub-id pub-id-type="pmid">25033195</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lanver</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mendoza-Mendoza</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brachmann</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kahmann</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus
<italic>Ustilago maydis</italic>
</article-title>
.
<source>Plant Cell</source>
<volume>22</volume>
,
<fpage>2085</fpage>
<lpage>2101</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.109.073734</pub-id>
<pub-id pub-id-type="pmid">20587773</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leonelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pelton</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Schoeffler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dahlbeck</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wemmer</surname>
<given-names>D. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Structural elucidation and functional characterization of the
<italic>Hyaloperonospora arabidopsidis</italic>
effector protein ATR13</article-title>
.
<source>PLoS Pathog.</source>
<volume>7</volume>
:
<fpage>e1002428</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002428</pub-id>
<pub-id pub-id-type="pmid">22194684</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Atef</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Piatek</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Piatek</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Aouida</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Characterization and DNA-binding specificities of
<italic>Ralstonia</italic>
TAL-like effectors</article-title>
.
<source>Mol. Plant</source>
<volume>6</volume>
,
<fpage>1318</fpage>
<lpage>1330</lpage>
.
<pub-id pub-id-type="doi">10.1093/mp/sst006</pub-id>
<pub-id pub-id-type="pmid">23300258</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo Presti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lanver</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Schweizer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tollot</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015</year>
).
<article-title>Fungal effectors and plant susceptibility</article-title>
.
<source>Ann. Rev. Plant Biol.</source>
<volume>66</volume>
,
<fpage>513</fpage>
<lpage>545</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-arplant-043014-114623</pub-id>
<pub-id pub-id-type="pmid">25923844</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>S. W.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chronis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mitchum</surname>
<given-names>M. G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode
<italic>Globodera rostochiensis</italic>
</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>22</volume>
,
<fpage>1128</fpage>
<lpage>1142</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-22-9-1128</pub-id>
<pub-id pub-id-type="pmid">19656047</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nijveen</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Understanding and identifying amino acid repeats</article-title>
.
<source>Brief. Bioinformatics.</source>
<volume>15</volume>
,
<fpage>582</fpage>
<lpage>591</lpage>
.
<pub-id pub-id-type="doi">10.1093/bib/bbt003</pub-id>
<pub-id pub-id-type="pmid">23418055</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macho</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Guidot</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barberis</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Beuzón</surname>
<given-names>C. R.</given-names>
</name>
<name>
<surname>Genin</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>A competitive index assay identifies several
<italic>Ralstonia solanacearum</italic>
type III effector mutant strains with reduced fitness in host plants</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>23</volume>
,
<fpage>1197</fpage>
<lpage>1205</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-23-9-1197</pub-id>
<pub-id pub-id-type="pmid">20687809</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madoff</surname>
<given-names>L. C.</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>E. W.</given-names>
</name>
<name>
<surname>Kling</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Kasper</surname>
<given-names>D. L.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Group B streptococci escape host immunity by deletion of tandem repeat elements of the alpha C protein</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>93</volume>
,
<fpage>4131</fpage>
<lpage>4136</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.93.9.4131</pub-id>
<pub-id pub-id-type="pmid">8633028</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mak</surname>
<given-names>A. N.</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cernadas</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Bogdanove</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Stoddard</surname>
<given-names>B. L.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The crystal structure of TAL effector PthXo1 bound to its DNA target</article-title>
.
<source>Science</source>
<volume>335</volume>
,
<fpage>716</fpage>
<lpage>719</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1216211</pub-id>
<pub-id pub-id-type="pmid">22223736</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marín</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ott</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors</article-title>
.
<source>Chem. Rev.</source>
<volume>114</volume>
,
<fpage>6912</fpage>
<lpage>6932</lpage>
.
<pub-id pub-id-type="doi">10.1021/cr400488d</pub-id>
<pub-id pub-id-type="pmid">24697726</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marín</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Uversky</surname>
<given-names>V. N.</given-names>
</name>
<name>
<surname>Ott</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race</article-title>
.
<source>Plant Cell</source>
<volume>25</volume>
,
<fpage>3153</fpage>
<lpage>3157</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.113.116319</pub-id>
<pub-id pub-id-type="pmid">24038649</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marois</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Van den Ackerveken</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bonas</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The
<italic>Xanthomonas</italic>
type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>15</volume>
,
<fpage>637</fpage>
<lpage>646</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.2002.15.7.637</pub-id>
<pub-id pub-id-type="pmid">12118879</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mathieu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Schwizer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity</article-title>
.
<source>PLoS Pathog.</source>
<volume>10</volume>
:
<fpage>e1004227</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004227</pub-id>
<pub-id pub-id-type="pmid">25058029</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mendes</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Lobo</surname>
<given-names>F. P.</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>T. S.</given-names>
</name>
<name>
<surname>Rodrigues-Luiz</surname>
<given-names>G. F.</given-names>
</name>
<name>
<surname>daRocha</surname>
<given-names>W. D.</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>R. T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Repeat-enriched proteins are related to host cell invasion and immune evasion in parasitic protozoa</article-title>
.
<source>Mol. Biol. Evol.</source>
<volume>30</volume>
,
<fpage>951</fpage>
<lpage>963</lpage>
.
<pub-id pub-id-type="doi">10.1093/molbev/mst001</pub-id>
<pub-id pub-id-type="pmid">23303306</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mesarich</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tremouilhac</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>McGillivray</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Dingley</surname>
<given-names>A. J.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Structure, dynamics and domain organization of the repeat protein Cin1 from the apple scab fungus</article-title>
.
<source>BBA Proteins Proteom.</source>
<volume>1824</volume>
,
<fpage>1118</fpage>
<lpage>1128</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbapap.2012.06.015</pub-id>
<pub-id pub-id-type="pmid">22771296</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitchum</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Hussey</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Baum</surname>
<given-names>T. J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Elling</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Wubben</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Nematode effector proteins: an emerging paradigm of parasitism</article-title>
.
<source>New Phytol.</source>
<volume>199</volume>
,
<fpage>879</fpage>
<lpage>894</lpage>
.
<pub-id pub-id-type="doi">10.1111/nph.12323</pub-id>
<pub-id pub-id-type="pmid">23691972</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moscou</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Bogdanove</surname>
<given-names>A. J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>A simple cipher governs DNA recognition by TAL effectors</article-title>
.
<source>Science</source>
<volume>326</volume>
,
<fpage>1501</fpage>
.
<pub-id pub-id-type="doi">10.1126/science.1178817</pub-id>
<pub-id pub-id-type="pmid">19933106</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mucyn</surname>
<given-names>T. S.</given-names>
</name>
<name>
<surname>Clemente</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Andriotis</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Balmuth</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Oldroyd</surname>
<given-names>G. E.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>The tomato NBARC-LRR protein Prf interacts with Pto kinase
<italic>in vivo</italic>
to regulate specific plant immunity</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
,
<fpage>2792</fpage>
<lpage>2806</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.106.044016</pub-id>
<pub-id pub-id-type="pmid">17028203</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mueller</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kahmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Trejo-Aguilar</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>de Vries</surname>
<given-names>R. P.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>The secretome of the maize pathogen
<italic>Ustilago maydis</italic>
</article-title>
.
<source>Fungal Genet. Biol.</source>
<volume>45</volume>
(
<issue>Suppl. 1</issue>
),
<fpage>S63</fpage>
<lpage>S70</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.fgb.2008.03.012</pub-id>
<pub-id pub-id-type="pmid">18456523</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mukaihara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Identification of novel
<italic>Ralstonia solanacearum</italic>
type III effector proteins through translocation analysis of
<italic>hrpB</italic>
-regulated gene products</article-title>
.
<source>Microbiology</source>
<volume>155</volume>
,
<fpage>2235</fpage>
<lpage>2244</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.027763-0</pub-id>
<pub-id pub-id-type="pmid">19406897</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Müller</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Schreier</surname>
<given-names>P. H.</given-names>
</name>
<name>
<surname>Uhrig</surname>
<given-names>J. F.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Identification and characterization of secreted and pathogenesis-related proteins in
<italic>Ustilago maydis</italic>
</article-title>
.
<source>Mol. Genet. Genomics</source>
<volume>279</volume>
,
<fpage>27</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00438-007-0291-4</pub-id>
<pub-id pub-id-type="pmid">17917743</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilsson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Grahn</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>A. P. H.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Proteome-wide evidence for enhanced positive Darwinian selection within intrinsically disordered regions in proteins</article-title>
.
<source>Genome Biol.</source>
<volume>12</volume>
:
<fpage>R65</fpage>
.
<pub-id pub-id-type="doi">10.1186/gb-2011-12-7-r65</pub-id>
<pub-id pub-id-type="pmid">21771306</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nissan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Manulis-Sasson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chalupowicz</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Teper</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yeheskel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pasmanik-Chor</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>The type III effector HsvG of the gall-forming
<italic>Pantoea agglomerans</italic>
mediates expression of the host gene
<italic>HSVGT</italic>
</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>25</volume>
,
<fpage>231</fpage>
<lpage>240</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-06-11-0173</pub-id>
<pub-id pub-id-type="pmid">21995766</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nissan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Manulis-Sasson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Weinthal</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mor</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sessa</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Barash</surname>
<given-names>I.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The type III effectors HsvG and HsvB of gall-forming
<italic>Pantoea agglomerans</italic>
determine host specificity and function as transcriptional activators</article-title>
.
<source>Mol. Microbiol.</source>
<volume>61</volume>
,
<fpage>1118</fpage>
<lpage>1131</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2006.05301.x</pub-id>
<pub-id pub-id-type="pmid">16879413</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>An importin α homolog, MOS6, plays an important role in plant innate immunity</article-title>
.
<source>Curr. Biol.</source>
<volume>15</volume>
,
<fpage>1129</fpage>
<lpage>1135</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2005.05.022</pub-id>
<pub-id pub-id-type="pmid">15964279</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peeters</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Carrère</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Anisimova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Plener</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cazalé</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Genin</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Repertoire, unified nomenclature and evolution of the Type III effector gene set in the
<italic>Ralstonia solanacearum</italic>
species complex</article-title>
.
<source>BMC Genomics</source>
<volume>14</volume>
:
<fpage>859</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-14-859</pub-id>
<pub-id pub-id-type="pmid">24314259</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petre</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lorrain</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>D. G. O.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sklenar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Duplessis</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015a</year>
).
<article-title>Rust fungal effectors mimic host transit peptides to translocate into chloroplasts</article-title>
.
<source>Cell. Microbiol.</source>
. [Epub ahead of print].
<pub-id pub-id-type="doi">10.1111/cmi.12530</pub-id>
<pub-id pub-id-type="pmid">26426202</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petre</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Sklenar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lorrain</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Duplessis</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015b</year>
).
<article-title>Candidate effector proteins of the rust pathogen
<italic>Melampsora larici-populina</italic>
target diverse plant cell compartments</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>28</volume>
,
<fpage>689</fpage>
<lpage>700</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-01-15-0003-R</pub-id>
<pub-id pub-id-type="pmid">25650830</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pitino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Maffei</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Ridout</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Hogenhout</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Silencing of aphid genes by dsRNA feeding from plants</article-title>
.
<source>PLoS ONE</source>
<volume>6</volume>
:
<fpage>e25709</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0025709</pub-id>
<pub-id pub-id-type="pmid">21998682</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pitino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hogenhout</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Aphid protein effectors promote aphid colonization in a plant species-specific manner</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>26</volume>
,
<fpage>130</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-07-12-0172-FI</pub-id>
<pub-id pub-id-type="pmid">23035913</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pradhan</surname>
<given-names>B. B.</given-names>
</name>
<name>
<surname>Ranjan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chatterjee</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>XadM, a novel adhesin of
<italic>Xanthomonas oryzae</italic>
pv. oryzae, exhibits similarity to Rhs family proteins and is required for optimum attachment, biofilm formation, and virulence</article-title>
.
<source>Mol. Plant Microbe Interact</source>
.
<volume>25</volume>
,
<fpage>1157</fpage>
<lpage>1170</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-02-12-0049-R</pub-id>
<pub-id pub-id-type="pmid">22571817</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raffaele</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of
<italic>Phytophthora infestans</italic>
</article-title>
.
<source>BMC Genomics</source>
<volume>11</volume>
:
<fpage>637</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-11-637</pub-id>
<pub-id pub-id-type="pmid">21080964</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>P. H. P.</given-names>
</name>
<name>
<surname>Ravensdale</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D. A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen</article-title>
.
<source>Plant Cell</source>
<volume>22</volume>
,
<fpage>2017</fpage>
<lpage>2032</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.109.072983</pub-id>
<pub-id pub-id-type="pmid">20525849</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jelonek</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Akum</surname>
<given-names>N. F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kogel</surname>
<given-names>K.-H.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Effector candidates in the secretome of
<italic>Piriformospora indica</italic>
, a ubiquitous plant-associated fungus</article-title>
.
<source>Front. Plant Sci.</source>
<volume>4</volume>
:
<issue>228</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2013.00228</pub-id>
<pub-id pub-id-type="pmid">23874344</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rehmany</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>L. E.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Armstrong</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Whisson</surname>
<given-names>S. C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2005</year>
).
<article-title>Differential recognition of highly divergent downy mildew avirulence gene alleles by
<italic>RPP1</italic>
resistance genes from two
<italic>Arabidopsis</italic>
lines</article-title>
.
<source>Plant Cell</source>
<volume>17</volume>
,
<fpage>1839</fpage>
<lpage>1850</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.105.031807</pub-id>
<pub-id pub-id-type="pmid">15894715</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remigi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Anisimova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guidot</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Genin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Peeters</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Functional diversification of the GALA type III effector family contributes to
<italic>Ralstonia solanacearum</italic>
adaptation on different plant hosts</article-title>
.
<source>New Phytol.</source>
<volume>192</volume>
,
<fpage>976</fpage>
<lpage>987</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2011.03854.x</pub-id>
<pub-id pub-id-type="pmid">21902695</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richard</surname>
<given-names>G.-F.</given-names>
</name>
<name>
<surname>Pâques</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Mini- and microsatellite expansions: the recombination connection</article-title>
.
<source>EMBO Rep.</source>
<volume>1</volume>
,
<fpage>122</fpage>
<lpage>126</lpage>
.
<pub-id pub-id-type="doi">10.1093/embo-reports/kvd031</pub-id>
<pub-id pub-id-type="pmid">11265750</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Römer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Strauss</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bonas</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Lahaye</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Plant pathogen recognition mediated by promoter activation of the pepper
<italic>Bs3</italic>
resistance gene</article-title>
.
<source>Science</source>
<volume>318</volume>
,
<fpage>645</fpage>
<lpage>648</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1144958</pub-id>
<pub-id pub-id-type="pmid">17962564</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Römer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Strauss</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Scholze</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Morbitzer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Grau</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper
<italic>Bs3</italic>
alleles</article-title>
.
<source>Plant Physiol.</source>
<volume>150</volume>
,
<fpage>1697</fpage>
<lpage>1712</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.109.139931</pub-id>
<pub-id pub-id-type="pmid">19448036</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robold</surname>
<given-names>A. V.</given-names>
</name>
<name>
<surname>Hardham</surname>
<given-names>A. R.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>During attachment
<italic>Phytophthora</italic>
spores secrete proteins containing thrombospondin type 1 repeats</article-title>
.
<source>Curr. Genet.</source>
<volume>47</volume>
,
<fpage>307</fpage>
<lpage>315</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00294-004-0559-8</pub-id>
<pub-id pub-id-type="pmid">15815927</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roden</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Belt</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Tachibana</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mudgett</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>A genetic screen to isolate type III effectors translocated into pepper cells during
<italic>Xanthomonas</italic>
infection</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>101</volume>
,
<fpage>16624</fpage>
<lpage>16629</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0407383101</pub-id>
<pub-id pub-id-type="pmid">15545602</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosebrock</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Brady</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Abramovitch</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity</article-title>
.
<source>Nature</source>
<volume>448</volume>
,
<fpage>370</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature05966</pub-id>
<pub-id pub-id-type="pmid">17637671</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rudd</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Antoniw</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Motteram</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fraaije</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hammond-Kosack</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Identification and characterisation of
<italic>Mycosphaerella graminicola</italic>
secreted or surface-associated proteins with variable intragenic coding repeats</article-title>
.
<source>Fungal Genet. Biol.</source>
<volume>47</volume>
,
<fpage>19</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.fgb.2009.10.009</pub-id>
<pub-id pub-id-type="pmid">19887112</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rutter</surname>
<given-names>W. B.</given-names>
</name>
<name>
<surname>Hewezi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Mitchum</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Hussey</surname>
<given-names>R. S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Members of the
<italic>Meloidogyne</italic>
avirulence protein family contain multiple plant ligand-like motifs</article-title>
.
<source>Phytopathology</source>
<volume>104</volume>
,
<fpage>879</fpage>
<lpage>885</lpage>
.
<pub-id pub-id-type="doi">10.1094/PHYTO-11-13-0326-R</pub-id>
<pub-id pub-id-type="pmid">25014776</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sánchez-Vallet</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Saleem-Batcha</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kombrink</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Valkenburg</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Thomma</surname>
<given-names>B. P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization</article-title>
.
<source>Elife</source>
<volume>2</volume>
:
<fpage>e00790</fpage>
.
<pub-id pub-id-type="doi">10.7554/eLife.00790</pub-id>
<pub-id pub-id-type="pmid">23840930</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Raffaele</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e29847</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0029847</pub-id>
<pub-id pub-id-type="pmid">22238666</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Séjalon-Delmas</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mateos</surname>
<given-names>F. V.</given-names>
</name>
<name>
<surname>Bottin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rickauer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dargent</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Esquerre-Tugaye</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Purification, elicitor activity, and cell wall localization of a glycoprotein from
<italic>Phytophthora parasitica</italic>
var. nicotianae, a fungal pathogen of tobacco</article-title>
.
<source>Phytopathology</source>
<volume>87</volume>
,
<fpage>899</fpage>
<lpage>909</lpage>
.
<pub-id pub-id-type="doi">10.1094/PHYTO.1997.87.9.899</pub-id>
<pub-id pub-id-type="pmid">18945060</pub-id>
</mixed-citation>
</ref>
<ref id="B124">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semblat</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Rosso</surname>
<given-names>M. N.</given-names>
</name>
<name>
<surname>Hussey</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Abad</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Castagnone-Sereno</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode
<italic>Meloidogyne incognita</italic>
</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>14</volume>
,
<fpage>72</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.2001.14.1.72</pub-id>
<pub-id pub-id-type="pmid">11194874</pub-id>
</mixed-citation>
</ref>
<ref id="B125">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Heese</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Peck</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Nürnberger</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity</article-title>
.
<source>Cell Host Microbe</source>
<volume>4</volume>
,
<fpage>17</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chom.2008.05.017</pub-id>
<pub-id pub-id-type="pmid">18621007</pub-id>
</mixed-citation>
</ref>
<ref id="B126">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singer</surname>
<given-names>A. U.</given-names>
</name>
<name>
<surname>Schulze</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Skarina</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Eschen-Lippold</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>A pathogen type III effector with a novel E3 ubiquitin ligase architecture</article-title>
.
<source>PLoS Pathog.</source>
<volume>9</volume>
:
<fpage>e1003121</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1003121</pub-id>
<pub-id pub-id-type="pmid">23359647</pub-id>
</mixed-citation>
</ref>
<ref id="B127">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sohn</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nemri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Plant Cell</source>
<volume>19</volume>
,
<fpage>4077</fpage>
<lpage>4090</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.107.054262</pub-id>
<pub-id pub-id-type="pmid">18165328</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steinbrenner</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Goritschnig</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Recognition and activation domains contribute to allele-specific responses of an
<italic>Arabidopsis</italic>
NLR receptor to an oomycete effector protein</article-title>
.
<source>PLoS Pathog.</source>
<volume>11</volume>
:
<fpage>e1004665</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004665</pub-id>
<pub-id pub-id-type="pmid">25671309</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stergiopoulos</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>De Kock</surname>
<given-names>M. J. D.</given-names>
</name>
<name>
<surname>Lindhout</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>De Wit</surname>
<given-names>P. J.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Allelic variation in the effector genes of the tomato pathogen
<italic>Cladosporium fulvum</italic>
reveals different modes of adaptive evolution</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>20</volume>
,
<fpage>1271</fpage>
<lpage>1283</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-20-10-1271</pub-id>
<pub-id pub-id-type="pmid">17918629</pub-id>
</mixed-citation>
</ref>
<ref id="B130">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.-G.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>X. B.</given-names>
</name>
<name>
<surname>Aakre</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Roden</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>C. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate
<italic>Xanthomonas</italic>
virulence</article-title>
.
<source>PLoS Pathog.</source>
<volume>8</volume>
:
<fpage>e1002768</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002768</pub-id>
<pub-id pub-id-type="pmid">22719257</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teertstra</surname>
<given-names>W. R.</given-names>
</name>
<name>
<surname>Deelstra</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Vranes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bohlmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kahmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kämper</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in
<italic>Ustilago maydis</italic>
</article-title>
.
<source>Microbiology</source>
<volume>152</volume>
,
<fpage>3607</fpage>
<lpage>3612</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.29034-0</pub-id>
<pub-id pub-id-type="pmid">17159213</pub-id>
</mixed-citation>
</ref>
<ref id="B132">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teertstra</surname>
<given-names>W. R.</given-names>
</name>
<name>
<surname>van der Velden</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>de Jong</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Kruijtzer</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Liskamp</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Kroon-Batenburg</surname>
<given-names>L. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>The filament-specific Rep1-1 repellent of the phytopathogen
<italic>Ustilago maydis</italic>
forms functional surface-active amyloid-like fibrils</article-title>
.
<source>J. Biol. Chem.</source>
<volume>284</volume>
,
<fpage>9153</fpage>
<lpage>9159</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M900095200</pub-id>
<pub-id pub-id-type="pmid">19164282</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomma</surname>
<given-names>B. P. H. J.</given-names>
</name>
<name>
<surname>Nürnberger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Joosten</surname>
<given-names>M. H. A. J.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Of PAMPs and effectors: the blurred PTI-ETI dichotomy</article-title>
.
<source>Plant Cell</source>
<volume>23</volume>
,
<fpage>4</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.110.082602</pub-id>
<pub-id pub-id-type="pmid">21278123</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valinsky</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Manulis</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nizan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ezra</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Barash</surname>
<given-names>I.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>A pathogenicity gene isolated from the pPATH plasmid of
<italic>Erwinia herbicola</italic>
pv. gypsophilae determines host specificity</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>11</volume>
,
<fpage>753</fpage>
<lpage>762</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.1998.11.8.753</pub-id>
<pub-id pub-id-type="pmid">9675891</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ve</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Catanzariti</surname>
<given-names>A.-M.</given-names>
</name>
<name>
<surname>Rafiqi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J. G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>110</volume>
,
<fpage>17594</fpage>
<lpage>17599</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1307614110</pub-id>
<pub-id pub-id-type="pmid">24101475</pub-id>
</mixed-citation>
</ref>
<ref id="B136">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verstrepen</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Fink</surname>
<given-names>G. R.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi</article-title>
.
<source>Ann. Rev. Genet.</source>
<volume>43</volume>
,
<fpage>1</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-genet-102108-134156</pub-id>
<pub-id pub-id-type="pmid">19640229</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vieira</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Danchin</surname>
<given-names>E. G. J.</given-names>
</name>
<name>
<surname>Neveu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Crozat</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jaubert</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hussey</surname>
<given-names>R. S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>The plant apoplasm is an important recipient compartment for nematode secreted proteins</article-title>
.
<source>J. Exp. Bot.</source>
<volume>62</volume>
,
<fpage>1241</fpage>
<lpage>1253</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erq352</pub-id>
<pub-id pub-id-type="pmid">21115667</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Villalba Mateos</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rickauer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Esquerré-Tugayé</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Cloning and characterization of a cDNA encoding an elicitor of
<italic>Phytophthora parasitica</italic>
var. nicotianae that shows cellulose-binding and lectin-like activities</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>10</volume>
,
<fpage>1045</fpage>
<lpage>1053</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.1997.10.9.1045</pub-id>
<pub-id pub-id-type="pmid">9390419</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Guy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015b</year>
).
<article-title>The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants</article-title>
.
<source>Cell Host Microbe</source>
<volume>18</volume>
,
<fpage>285</fpage>
<lpage>295</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chom.2015.08.004</pub-id>
<pub-id pub-id-type="pmid">26355215</pub-id>
</mixed-citation>
</ref>
<ref id="B140">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Remigi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Anisimova</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lonjon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kars</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kajava</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015a</year>
).
<article-title>Functional assignment to positively selected sites in the core type III effector RipG7 from
<italic>Ralstonia solanacearum</italic>
</article-title>
.
<source>Mol.Plant Pathol.</source>
. [Epub ahead of print].
<pub-id pub-id-type="doi">10.1111/mpp.12302</pub-id>
<pub-id pub-id-type="pmid">26300048</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.-S.</given-names>
</name>
<name>
<surname>Pi</surname>
<given-names>L.-Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chakrabarty</surname>
<given-names>P. K.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>De Leon</surname>
<given-names>A. L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Rice XA21 binding protein 3 is a ubiquitin ligase required for full
<italic>Xa21</italic>
-mediated disease resistance</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
,
<fpage>3635</fpage>
<lpage>3646</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.106.046730</pub-id>
<pub-id pub-id-type="pmid">17172358</pub-id>
</mixed-citation>
</ref>
<ref id="B142">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>F. F.</given-names>
</name>
<name>
<surname>Potnis</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Koebnik</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>The type III effectors of
<italic>Xanthomonas</italic>
</article-title>
.
<source>Mol. Plant Pathol.</source>
<volume>10</volume>
,
<fpage>749</fpage>
<lpage>766</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2009.00590.x</pub-id>
<pub-id pub-id-type="pmid">19849782</pub-id>
</mixed-citation>
</ref>
<ref id="B143">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chaparro-Garcia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Belhaj</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012a</year>
).
<article-title>Effector biology of plant-associated organisms: concepts and perspectives</article-title>
.
<source>Cold Spring Harb. Symp. Quant. Biol.</source>
<volume>77</volume>
,
<fpage>235</fpage>
<lpage>247</lpage>
.
<pub-id pub-id-type="doi">10.1101/sqb.2012.77.015933</pub-id>
<pub-id pub-id-type="pmid">23223409</pub-id>
</mixed-citation>
</ref>
<ref id="B144">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Krasileva</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shirasu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Banfield</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
(
<year>2012b</year>
).
<article-title>Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species</article-title>
.
<source>PLoS Pathog.</source>
<volume>8</volume>
:
<fpage>e1002400</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002400</pub-id>
<pub-id pub-id-type="pmid">22253591</pub-id>
</mixed-citation>
</ref>
<ref id="B145">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Win</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bos</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Krasileva</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Chaparro-Garcia</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes</article-title>
.
<source>Plant Cell</source>
<volume>19</volume>
,
<fpage>2349</fpage>
<lpage>2369</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.107.051037</pub-id>
<pub-id pub-id-type="pmid">17675403</pub-id>
</mixed-citation>
</ref>
<ref id="B146">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wösten</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Bohlmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eckerskorn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lottspeich</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bolker</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kahmann</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in
<italic>Ustilago maydis</italic>
</article-title>
.
<source>EMBO J.</source>
<volume>15</volume>
,
<fpage>4274</fpage>
<lpage>4281</lpage>
.
<pub-id pub-id-type="pmid">8861956</pub-id>
</mixed-citation>
</ref>
<ref id="B147">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Abramovitch</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>L. K.</given-names>
</name>
<name>
<surname>Sheen</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>The N-terminal region of
<italic>Pseudomonas</italic>
type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants</article-title>
.
<source>Plant J.</source>
<volume>52</volume>
,
<fpage>595</fpage>
<lpage>614</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2007.03259.x</pub-id>
<pub-id pub-id-type="pmid">17764515</pub-id>
</mixed-citation>
</ref>
<ref id="B148">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>R.-Q.</given-names>
</name>
<name>
<surname>Blanvillain</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>J.-X.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>B.-L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.-Z.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>H.-Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>AvrAC
<sub>
<italic>Xcc</italic>
8004</sub>
, a type III effector with a leucine-rich repeat domain from
<italic>Xanthomonas campestris</italic>
pathovar
<italic>campestris</italic>
confers avirulence in vascular tissues of
<italic>Arabidopsis thaliana</italic>
ecotype Col-0</article-title>
.
<source>J. Bacteriol.</source>
<volume>190</volume>
,
<fpage>343</fpage>
<lpage>355</lpage>
.
<pub-id pub-id-type="doi">10.1128/JB.00978-07</pub-id>
<pub-id pub-id-type="pmid">17951377</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sugio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>F. F.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of
<italic>Xanthomonas oryzae</italic>
pv. oryzae</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>18</volume>
,
<fpage>142</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI-18-0142</pub-id>
<pub-id pub-id-type="pmid">15720083</pub-id>
</mixed-citation>
</ref>
<ref id="B150">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sugio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>F. F.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>
<italic>Os8N3</italic>
is a host disease-susceptibility gene for bacterial blight of rice</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>103</volume>
,
<fpage>10503</fpage>
<lpage>10508</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0604088103</pub-id>
<pub-id pub-id-type="pmid">16798873</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>F. F.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice</article-title>
.
<source>Mol. Plant Microbe Interact.</source>
<volume>17</volume>
,
<fpage>1192</fpage>
<lpage>1200</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.2004.17.11.1192</pub-id>
<pub-id pub-id-type="pmid">15553245</pub-id>
</mixed-citation>
</ref>
<ref id="B152">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gabriel</surname>
<given-names>D. W.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities</article-title>
.
<source>J. Bacteriol.</source>
<volume>177</volume>
,
<fpage>4963</fpage>
<lpage>4968</lpage>
.
<pub-id pub-id-type="pmid">7665472</pub-id>
</mixed-citation>
</ref>
<ref id="B153">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Bioinformatics analysis reveals abundant short alpha-helices as a common structural feature of oomycete RxLR effector proteins</article-title>
.
<source>PLoS ONE</source>
<volume>10</volume>
:
<fpage>e0135240</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0135240</pub-id>
<pub-id pub-id-type="pmid">26252511</pub-id>
</mixed-citation>
</ref>
<ref id="B154">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene
<italic>xa13</italic>
in rice</article-title>
.
<source>Plant Cell Phys.</source>
<volume>50</volume>
,
<fpage>947</fpage>
<lpage>955</lpage>
.
<pub-id pub-id-type="doi">10.1093/pcp/pcp046</pub-id>
<pub-id pub-id-type="pmid">19318375</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Velásquez</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Munkvold</surname>
<given-names>K. R.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB</article-title>
.
<source>Plant J.</source>
<volume>69</volume>
,
<fpage>92</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2011.04773.x</pub-id>
<pub-id pub-id-type="pmid">21880077</pub-id>
</mixed-citation>
</ref>
<ref id="B156">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Escalante</surname>
<given-names>L. N.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Benatti</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chellapilla</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015</year>
).
<article-title>A massive expansion of effector genes underlies gall-formation in the wheat pest
<italic>Mayetiola destructor</italic>
</article-title>
.
<source>Curr. Biol.</source>
<volume>25</volume>
,
<fpage>613</fpage>
<lpage>620</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cub.2014.12.057</pub-id>
<pub-id pub-id-type="pmid">25660540</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000039  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000039  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020