Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000150 ( Pmc/Corpus ); précédent : 0000149; suivant : 0000151 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic analysis of apoplastic fluid of
<italic>Coffea arabica</italic>
leaves highlights novel biomarkers for resistance against
<italic>Hemileia vastatrix</italic>
</title>
<author>
<name sortKey="Guerra Guimaraes, Leonor" sort="Guerra Guimaraes, Leonor" uniqKey="Guerra Guimaraes L" first="Leonor" last="Guerra-Guimarães">Leonor Guerra-Guimarães</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa</institution>
<country>Lisboa, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tenente, Rita" sort="Tenente, Rita" uniqKey="Tenente R" first="Rita" last="Tenente">Rita Tenente</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinheiro, Carla" sort="Pinheiro, Carla" uniqKey="Pinheiro C" first="Carla" last="Pinheiro">Carla Pinheiro</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa</institution>
<country>Caparica, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chaves, Ines" sort="Chaves, Ines" uniqKey="Chaves I" first="Inês" last="Chaves">Inês Chaves</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>Instituto de Biologia Experimental e Tecnológica</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Silva, Maria Do Ceu" sort="Silva, Maria Do Ceu" uniqKey="Silva M" first="Maria Do Céu" last="Silva">Maria Do Céu Silva</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa</institution>
<country>Lisboa, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, Fernando M H" sort="Cardoso, Fernando M H" uniqKey="Cardoso F" first="Fernando M. H." last="Cardoso">Fernando M. H. Cardoso</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa</institution>
<country>Lisboa, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Planchon, Sebastien" sort="Planchon, Sebastien" uniqKey="Planchon S" first="Sébastien" last="Planchon">Sébastien Planchon</name>
<affiliation>
<nlm:aff id="aff7">
<institution>Luxembourg Institute of Science and Technology</institution>
<country>Belvaux, Luxembourg</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barros, Danielle R" sort="Barros, Danielle R" uniqKey="Barros D" first="Danielle R." last="Barros">Danielle R. Barros</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">
<institution>Department de Fitossanidade, Universidade Federal de Pelotas</institution>
<country>Pelotas, Brasil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
<affiliation>
<nlm:aff id="aff7">
<institution>Luxembourg Institute of Science and Technology</institution>
<country>Belvaux, Luxembourg</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ricardo, Candido P" sort="Ricardo, Candido P" uniqKey="Ricardo C" first="Cândido P." last="Ricardo">Cândido P. Ricardo</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26175744</idno>
<idno type="pmc">4484983</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484983</idno>
<idno type="RBID">PMC:4484983</idno>
<idno type="doi">10.3389/fpls.2015.00478</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000015</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000015</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Proteomic analysis of apoplastic fluid of
<italic>Coffea arabica</italic>
leaves highlights novel biomarkers for resistance against
<italic>Hemileia vastatrix</italic>
</title>
<author>
<name sortKey="Guerra Guimaraes, Leonor" sort="Guerra Guimaraes, Leonor" uniqKey="Guerra Guimaraes L" first="Leonor" last="Guerra-Guimarães">Leonor Guerra-Guimarães</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa</institution>
<country>Lisboa, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tenente, Rita" sort="Tenente, Rita" uniqKey="Tenente R" first="Rita" last="Tenente">Rita Tenente</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinheiro, Carla" sort="Pinheiro, Carla" uniqKey="Pinheiro C" first="Carla" last="Pinheiro">Carla Pinheiro</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa</institution>
<country>Caparica, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chaves, Ines" sort="Chaves, Ines" uniqKey="Chaves I" first="Inês" last="Chaves">Inês Chaves</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>Instituto de Biologia Experimental e Tecnológica</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Silva, Maria Do Ceu" sort="Silva, Maria Do Ceu" uniqKey="Silva M" first="Maria Do Céu" last="Silva">Maria Do Céu Silva</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa</institution>
<country>Lisboa, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, Fernando M H" sort="Cardoso, Fernando M H" uniqKey="Cardoso F" first="Fernando M. H." last="Cardoso">Fernando M. H. Cardoso</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa</institution>
<country>Lisboa, Portugal</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Planchon, Sebastien" sort="Planchon, Sebastien" uniqKey="Planchon S" first="Sébastien" last="Planchon">Sébastien Planchon</name>
<affiliation>
<nlm:aff id="aff7">
<institution>Luxembourg Institute of Science and Technology</institution>
<country>Belvaux, Luxembourg</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barros, Danielle R" sort="Barros, Danielle R" uniqKey="Barros D" first="Danielle R." last="Barros">Danielle R. Barros</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">
<institution>Department de Fitossanidade, Universidade Federal de Pelotas</institution>
<country>Pelotas, Brasil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
<affiliation>
<nlm:aff id="aff7">
<institution>Luxembourg Institute of Science and Technology</institution>
<country>Belvaux, Luxembourg</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ricardo, Candido P" sort="Ricardo, Candido P" uniqKey="Ricardo C" first="Cândido P." last="Ricardo">Cândido P. Ricardo</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A proteomic analysis of the apoplastic fluid (APF) of coffee leaves was conducted to investigate the cellular processes associated with incompatible (resistant) and compatible (susceptible)
<italic>Coffea arabica</italic>
-
<italic>Hemileia vastatrix</italic>
interactions, during the 24–96 hai period. The APF proteins were extracted by leaf vacuum infiltration and protein profiles were obtained by 2-DE. The comparative analysis of the gels revealed 210 polypeptide spots whose volume changed in abundance between samples (control, resistant and susceptible) during the 24–96 hai period. The proteins identified were involved mainly in protein degradation, cell wall metabolism and stress/defense responses, most of them being hydrolases (around 70%), particularly sugar hydrolases and peptidases/proteases. The changes in the APF proteome along the infection process revealed two distinct phases of defense responses, an initial/basal one (24–48 hai) and a late/specific one (72–96 hai). Compared to susceptibility, resistance was associated with a higher number of proteins, which was more evident in the late/specific phase. Proteins involved in the resistance response were mainly, glycohydrolases of the cell wall, serine proteases and pathogen related-like proteins (PR-proteins), suggesting that some of these proteins could be putative candidates for resistant markers of coffee to
<italic>H. vastatrix</italic>
. Antibodies were produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase and subtilase and by an immunodetection assay it was observed an increase of these proteins in the resistant sample. With this methodology we have identified proteins that are candidate markers of resistance and that will be useful in coffee breeding programs to assist in the selection of cultivars with resistance to
<italic>H. vastatrix</italic>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abril, N" uniqKey="Abril N">N. Abril</name>
</author>
<author>
<name sortKey="Gion, J M" uniqKey="Gion J">J.-M. Gion</name>
</author>
<author>
<name sortKey="Kerner, R" uniqKey="Kerner R">R. Kerner</name>
</author>
<author>
<name sortKey="Mueller Starck, G" uniqKey="Mueller Starck G">G. Mueller-Starck</name>
</author>
<author>
<name sortKey="Navarro Cerrillo, R M" uniqKey="Navarro Cerrillo R">R. M. Navarro Cerrillo</name>
</author>
<author>
<name sortKey="Plomion, C" uniqKey="Plomion C">C. Plomion</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, G K" uniqKey="Agrawal G">G. K. Agrawal</name>
</author>
<author>
<name sortKey="Jwa, N S" uniqKey="Jwa N">N.-S. Jwa</name>
</author>
<author>
<name sortKey="Lebrun, M H" uniqKey="Lebrun M">M.-H. Lebrun</name>
</author>
<author>
<name sortKey="Job, D" uniqKey="Job D">D. Job</name>
</author>
<author>
<name sortKey="Rakwal, R" uniqKey="Rakwal R">R. Rakwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alves, M" uniqKey="Alves M">M. Alves</name>
</author>
<author>
<name sortKey="Francisco, R" uniqKey="Francisco R">R. Francisco</name>
</author>
<author>
<name sortKey="Martins, I" uniqKey="Martins I">I. Martins</name>
</author>
<author>
<name sortKey="Ricardo, C P" uniqKey="Ricardo C">C. P. Ricardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avelino, J" uniqKey="Avelino J">J. Avelino</name>
</author>
<author>
<name sortKey="Cristancho, M" uniqKey="Cristancho M">M. Cristancho</name>
</author>
<author>
<name sortKey="Georgiou, S" uniqKey="Georgiou S">S. Georgiou</name>
</author>
<author>
<name sortKey="Imbach, P" uniqKey="Imbach P">P. Imbach</name>
</author>
<author>
<name sortKey="Aguilar, L" uniqKey="Aguilar L">L. Aguilar</name>
</author>
<author>
<name sortKey="Bornemann, G" uniqKey="Bornemann G">G. Bornemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bendtsen, J D" uniqKey="Bendtsen J">J. D. Bendtsen</name>
</author>
<author>
<name sortKey="Jensen, L J" uniqKey="Jensen L">L. J. Jensen</name>
</author>
<author>
<name sortKey="Blom, N" uniqKey="Blom N">N. Blom</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S. Brunak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bettencourt, A J" uniqKey="Bettencourt A">A. J. Bettencourt</name>
</author>
<author>
<name sortKey="Rodrigues, C J" uniqKey="Rodrigues C">C. J. Rodrigues</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bily, A C" uniqKey="Bily A">A. C. Bily</name>
</author>
<author>
<name sortKey="Reid, L M" uniqKey="Reid L">L. M. Reid</name>
</author>
<author>
<name sortKey="Taylor, J H" uniqKey="Taylor J">J. H. Taylor</name>
</author>
<author>
<name sortKey="Johnston, D" uniqKey="Johnston D">D. Johnston</name>
</author>
<author>
<name sortKey="Malouin, C" uniqKey="Malouin C">C. Malouin</name>
</author>
<author>
<name sortKey="Burt, A J" uniqKey="Burt A">A. J. Burt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradley, D J" uniqKey="Bradley D">D. J. Bradley</name>
</author>
<author>
<name sortKey="Kjellbom, P" uniqKey="Kjellbom P">P. Kjellbom</name>
</author>
<author>
<name sortKey="Lamb, C J" uniqKey="Lamb C">C. J. Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cantu, D" uniqKey="Cantu D">D. Cantu</name>
</author>
<author>
<name sortKey="Vicente, A R" uniqKey="Vicente A">A. R. Vicente</name>
</author>
<author>
<name sortKey="Carl Greve, L" uniqKey="Carl Greve L">L. Carl Greve</name>
</author>
<author>
<name sortKey="Labavitch, J M" uniqKey="Labavitch J">J. M. Labavitch</name>
</author>
<author>
<name sortKey="Powell, A L T" uniqKey="Powell A">A. L. T. Powell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chepyshko, H" uniqKey="Chepyshko H">H. Chepyshko</name>
</author>
<author>
<name sortKey="Lai, C P" uniqKey="Lai C">C.-P. Lai</name>
</author>
<author>
<name sortKey="Huang, L M" uniqKey="Huang L">L.-M. Huang</name>
</author>
<author>
<name sortKey="Liu, J H" uniqKey="Liu J">J.-H. Liu</name>
</author>
<author>
<name sortKey="Shaw, J F" uniqKey="Shaw J">J.-F. Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conesa, A" uniqKey="Conesa A">A. Conesa</name>
</author>
<author>
<name sortKey="Gotz, S" uniqKey="Gotz S">S. Gotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delanois, B" uniqKey="Delanois B">B. Delanois</name>
</author>
<author>
<name sortKey="Jeandet, P" uniqKey="Jeandet P">P. Jeandet</name>
</author>
<author>
<name sortKey="Clement, C" uniqKey="Clement C">C. Clément</name>
</author>
<author>
<name sortKey="Baillieul, F" uniqKey="Baillieul F">F. Baillieul</name>
</author>
<author>
<name sortKey="Dorey, S" uniqKey="Dorey S">S. Dorey</name>
</author>
<author>
<name sortKey="Cordelier, S" uniqKey="Cordelier S">S. Cordelier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diniz, I" uniqKey="Diniz I">I. Diniz</name>
</author>
<author>
<name sortKey="Talhinhas, P" uniqKey="Talhinhas P">P. Talhinhas</name>
</author>
<author>
<name sortKey="Azinheira, H G" uniqKey="Azinheira H">H. G. Azinheira</name>
</author>
<author>
<name sortKey="Varzea, V" uniqKey="Varzea V">V. Várzea</name>
</author>
<author>
<name sortKey="Medeira, C" uniqKey="Medeira C">C. Medeira</name>
</author>
<author>
<name sortKey="Maia, I" uniqKey="Maia I">I. Maia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doehlemann, G" uniqKey="Doehlemann G">G. Doehlemann</name>
</author>
<author>
<name sortKey="Hemetsberger, C" uniqKey="Hemetsberger C">C. Hemetsberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eisenhaber, B" uniqKey="Eisenhaber B">B. Eisenhaber</name>
</author>
<author>
<name sortKey="Wildpaner, M" uniqKey="Wildpaner M">M. Wildpaner</name>
</author>
<author>
<name sortKey="Schultz, C J" uniqKey="Schultz C">C. J. Schultz</name>
</author>
<author>
<name sortKey="Borner, G H H" uniqKey="Borner G">G. H. H. Borner</name>
</author>
<author>
<name sortKey="Dupree, P" uniqKey="Dupree P">P. Dupree</name>
</author>
<author>
<name sortKey="Eisenhaber, F" uniqKey="Eisenhaber F">F. Eisenhaber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emanuelsson, O" uniqKey="Emanuelsson O">O. Emanuelsson</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S. Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, D" uniqKey="Fernandez D">D. Fernandez</name>
</author>
<author>
<name sortKey="Santos, P" uniqKey="Santos P">P. Santos</name>
</author>
<author>
<name sortKey="Agostini, C" uniqKey="Agostini C">C. Agostini</name>
</author>
<author>
<name sortKey="Bon, M C" uniqKey="Bon M">M.-C. Bon</name>
</author>
<author>
<name sortKey="Petitot, A S" uniqKey="Petitot A">A.-S. Petitot</name>
</author>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, D" uniqKey="Fernandez D">D. Fernandez</name>
</author>
<author>
<name sortKey="Tisserant, E" uniqKey="Tisserant E">E. Tisserant</name>
</author>
<author>
<name sortKey="Talhinhas, P" uniqKey="Talhinhas P">P. Talhinhas</name>
</author>
<author>
<name sortKey="Azinheira, H G" uniqKey="Azinheira H">H. G. Azinheira</name>
</author>
<author>
<name sortKey="Vieira, A" uniqKey="Vieira A">A. Vieira</name>
</author>
<author>
<name sortKey="Loureiro, A" uniqKey="Loureiro A">A. Loureiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Figueiredo, A" uniqKey="Figueiredo A">A. Figueiredo</name>
</author>
<author>
<name sortKey="Monteiro, F" uniqKey="Monteiro F">F. Monteiro</name>
</author>
<author>
<name sortKey="Sebastiana, M" uniqKey="Sebastiana M">M. Sebastiana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Floerl, S" uniqKey="Floerl S">S. Floerl</name>
</author>
<author>
<name sortKey="Majcherczyk, A" uniqKey="Majcherczyk A">A. Majcherczyk</name>
</author>
<author>
<name sortKey="Possienke, M" uniqKey="Possienke M">M. Possienke</name>
</author>
<author>
<name sortKey="Feussner, K" uniqKey="Feussner K">K. Feussner</name>
</author>
<author>
<name sortKey="Tappe, H" uniqKey="Tappe H">H. Tappe</name>
</author>
<author>
<name sortKey="Gatz, C" uniqKey="Gatz C">C. Gatz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flor, H H" uniqKey="Flor H">H. H. Flor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganesh, D" uniqKey="Ganesh D">D. Ganesh</name>
</author>
<author>
<name sortKey="Petitot, A" uniqKey="Petitot A">A. Petitot</name>
</author>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Alary, R" uniqKey="Alary R">R. Alary</name>
</author>
<author>
<name sortKey="Lecouls, A C" uniqKey="Lecouls A">A. C. Lecouls</name>
</author>
<author>
<name sortKey="Fernandez, D" uniqKey="Fernandez D">D. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, T" uniqKey="Goldberg T">T. Goldberg</name>
</author>
<author>
<name sortKey="Hecht, M" uniqKey="Hecht M">M. Hecht</name>
</author>
<author>
<name sortKey="Hamp, T" uniqKey="Hamp T">T. Hamp</name>
</author>
<author>
<name sortKey="Karl, T" uniqKey="Karl T">T. Karl</name>
</author>
<author>
<name sortKey="Yachdav, G" uniqKey="Yachdav G">G. Yachdav</name>
</author>
<author>
<name sortKey="Ahmed, N" uniqKey="Ahmed N">N. Ahmed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grove, H" uniqKey="Grove H">H. Grove</name>
</author>
<author>
<name sortKey="Jorgensen, B M" uniqKey="Jorgensen B">B. M. Jorgensen</name>
</author>
<author>
<name sortKey="Jessen, F" uniqKey="Jessen F">F. Jessen</name>
</author>
<author>
<name sortKey="Sondergaard, I" uniqKey="Sondergaard I">I. Sondergaard</name>
</author>
<author>
<name sortKey="Jacobsen, S" uniqKey="Jacobsen S">S. Jacobsen</name>
</author>
<author>
<name sortKey="Hollung, K" uniqKey="Hollung K">K. Hollung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Cardoso, S" uniqKey="Cardoso S">S. Cardoso</name>
</author>
<author>
<name sortKey="Martins, I" uniqKey="Martins I">I. Martins</name>
</author>
<author>
<name sortKey="Loureiro, A" uniqKey="Loureiro A">A. Loureiro</name>
</author>
<author>
<name sortKey="Bernardes, A S" uniqKey="Bernardes A">A. S. Bernardes</name>
</author>
<author>
<name sortKey="Varzea, V" uniqKey="Varzea V">V. Varzea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Struck, C" uniqKey="Struck C">C. Struck</name>
</author>
<author>
<name sortKey="Loureiro, A" uniqKey="Loureiro A">A. Loureiro</name>
</author>
<author>
<name sortKey="Nicole, M" uniqKey="Nicole M">M. Nicole</name>
</author>
<author>
<name sortKey="Rodrigues, C J" uniqKey="Rodrigues C">C. J. Rodrigues</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Vieira, A" uniqKey="Vieira A">A. Vieira</name>
</author>
<author>
<name sortKey="Chaves, I" uniqKey="Chaves I">I. Chaves</name>
</author>
<author>
<name sortKey="Pinheiro, C" uniqKey="Pinheiro C">C. Pinheiro</name>
</author>
<author>
<name sortKey="Queiroz, V" uniqKey="Queiroz V">V. Queiroz</name>
</author>
<author>
<name sortKey="Renaut, J" uniqKey="Renaut J">J. Renaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Vieira, A" uniqKey="Vieira A">A. Vieira</name>
</author>
<author>
<name sortKey="Chaves, I" uniqKey="Chaves I">I. Chaves</name>
</author>
<author>
<name sortKey="Queiroz, V" uniqKey="Queiroz V">V. Queiroz</name>
</author>
<author>
<name sortKey="Pinheiro, C" uniqKey="Pinheiro C">C. Pinheiro</name>
</author>
<author>
<name sortKey="Renaut, J" uniqKey="Renaut J">J. Renaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heath, M C" uniqKey="Heath M">M. C. Heath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heath, M C" uniqKey="Heath M">M. C. Heath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermanson, G T" uniqKey="Hermanson G">G. T. Hermanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jamet, E" uniqKey="Jamet E">E. Jamet</name>
</author>
<author>
<name sortKey="Albenne, C" uniqKey="Albenne C">C. Albenne</name>
</author>
<author>
<name sortKey="Boudart, G" uniqKey="Boudart G">G. Boudart</name>
</author>
<author>
<name sortKey="Irshad, M" uniqKey="Irshad M">M. Irshad</name>
</author>
<author>
<name sortKey="Canut, H" uniqKey="Canut H">H. Canut</name>
</author>
<author>
<name sortKey="Pont Lezica, R" uniqKey="Pont Lezica R">R. Pont-Lezica</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, J D" uniqKey="Jones J">J. D. Jones</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorrin Novo, J V" uniqKey="Jorrin Novo J">J. V. Jorrín-Novo</name>
</author>
<author>
<name sortKey="Pascual, J" uniqKey="Pascual J">J. Pascual</name>
</author>
<author>
<name sortKey="Sanchez Lucas, R" uniqKey="Sanchez Lucas R">R. Sánchez-Lucas</name>
</author>
<author>
<name sortKey="Romero Rodriguez, M C" uniqKey="Romero Rodriguez M">M. C. Romero-Rodríguez</name>
</author>
<author>
<name sortKey="Rodriguez Ortega, M J" uniqKey="Rodriguez Ortega M">M. J. Rodríguez-Ortega</name>
</author>
<author>
<name sortKey="Lenz, C" uniqKey="Lenz C">C. Lenz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaffarnik, F A" uniqKey="Kaffarnik F">F. A. Kaffarnik</name>
</author>
<author>
<name sortKey="Jones, A M" uniqKey="Jones A">A. M. Jones</name>
</author>
<author>
<name sortKey="Rathjen, J P" uniqKey="Rathjen J">J. P. Rathjen</name>
</author>
<author>
<name sortKey="Peck, S C" uniqKey="Peck S">S. C. Peck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krogh, A" uniqKey="Krogh A">A. Krogh</name>
</author>
<author>
<name sortKey="Larsson, B" uniqKey="Larsson B">B. Larsson</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
<author>
<name sortKey="Sonnhammer, E L L" uniqKey="Sonnhammer E">E. L. L. Sonnhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kudla, J" uniqKey="Kudla J">J. Kudla</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q. Xu</name>
</author>
<author>
<name sortKey="Harter, K" uniqKey="Harter K">K. Harter</name>
</author>
<author>
<name sortKey="Gruissem, W" uniqKey="Gruissem W">W. Gruissem</name>
</author>
<author>
<name sortKey="Luan, S" uniqKey="Luan S">S. Luan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamanda, A" uniqKey="Lamanda A">A. Lamanda</name>
</author>
<author>
<name sortKey="Zahn, A" uniqKey="Zahn A">A. Zahn</name>
</author>
<author>
<name sortKey="Roder, D" uniqKey="Roder D">D. Roder</name>
</author>
<author>
<name sortKey="Langen, H" uniqKey="Langen H">H. Langen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leah, R" uniqKey="Leah R">R. Leah</name>
</author>
<author>
<name sortKey="Tommerup, H" uniqKey="Tommerup H">H. Tommerup</name>
</author>
<author>
<name sortKey="Svendsen, I" uniqKey="Svendsen I">I. Svendsen</name>
</author>
<author>
<name sortKey="Mundy, J" uniqKey="Mundy J">J. Mundy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Feng, J" uniqKey="Feng J">J. Feng</name>
</author>
<author>
<name sortKey="Campbell, K B" uniqKey="Campbell K">K. B. Campbell</name>
</author>
<author>
<name sortKey="Scheffler, B E" uniqKey="Scheffler B">B. E. Scheffler</name>
</author>
<author>
<name sortKey="Garrett, W M" uniqKey="Garrett W">W. M. Garrett</name>
</author>
<author>
<name sortKey="Thibivilliers, S" uniqKey="Thibivilliers S">S. Thibivilliers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leitao, S" uniqKey="Leitao S">S. Leitão</name>
</author>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Bronze, M R" uniqKey="Bronze M">M. R. Bronze</name>
</author>
<author>
<name sortKey="Vilas Boas, L" uniqKey="Vilas Boas L">L. Vilas-Boas</name>
</author>
<author>
<name sortKey="Sa, M" uniqKey="Sa M">M. Sá</name>
</author>
<author>
<name sortKey="Almeida, M H" uniqKey="Almeida M">M. H. Almeida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lionetti, V" uniqKey="Lionetti V">V. Lionetti</name>
</author>
<author>
<name sortKey="Cervone, F" uniqKey="Cervone F">F. Cervone</name>
</author>
<author>
<name sortKey="Bellincampi, D" uniqKey="Bellincampi D">D. Bellincampi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lohse, M" uniqKey="Lohse M">M. Lohse</name>
</author>
<author>
<name sortKey="Nagel, A" uniqKey="Nagel A">A. Nagel</name>
</author>
<author>
<name sortKey="Herter, T" uniqKey="Herter T">T. Herter</name>
</author>
<author>
<name sortKey="May, P" uniqKey="May P">P. May</name>
</author>
<author>
<name sortKey="Schroda, M" uniqKey="Schroda M">M. Schroda</name>
</author>
<author>
<name sortKey="Zrenner, R" uniqKey="Zrenner R">R. Zrenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lombard, V" uniqKey="Lombard V">V. Lombard</name>
</author>
<author>
<name sortKey="Golaconda Ramulu, H" uniqKey="Golaconda Ramulu H">H. Golaconda Ramulu</name>
</author>
<author>
<name sortKey="Drula, E" uniqKey="Drula E">E. Drula</name>
</author>
<author>
<name sortKey="Coutinho, P M" uniqKey="Coutinho P">P. M. Coutinho</name>
</author>
<author>
<name sortKey="Henrissat, B" uniqKey="Henrissat B">B. Henrissat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luan, S" uniqKey="Luan S">S. Luan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, C" uniqKey="Martinez C">C. Martinez</name>
</author>
<author>
<name sortKey="Montillet, J L" uniqKey="Montillet J">J. L. Montillet</name>
</author>
<author>
<name sortKey="Bresson, E" uniqKey="Bresson E">E. Bresson</name>
</author>
<author>
<name sortKey="Agnel, J P" uniqKey="Agnel J">J. P. Agnel</name>
</author>
<author>
<name sortKey="Dai, G H" uniqKey="Dai G">G. H. Dai</name>
</author>
<author>
<name sortKey="Daniel, J F" uniqKey="Daniel J">J. F. Daniel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mauch, F" uniqKey="Mauch F">F. Mauch</name>
</author>
<author>
<name sortKey="Mauch Mani, B" uniqKey="Mauch Mani B">B. Mauch-Mani</name>
</author>
<author>
<name sortKey="Boller, T" uniqKey="Boller T">T. Boller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maxemiuc Naccache, V" uniqKey="Maxemiuc Naccache V">V. Maxemiuc-Naccache</name>
</author>
<author>
<name sortKey="Braga, M R" uniqKey="Braga M">M. R. Braga</name>
</author>
<author>
<name sortKey="Dietrich, S M C" uniqKey="Dietrich S">S. M. C. Dietrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mika, A" uniqKey="Mika A">A. Mika</name>
</author>
<author>
<name sortKey="Minibayeva, F" uniqKey="Minibayeva F">F. Minibayeva</name>
</author>
<author>
<name sortKey="Beckett, R" uniqKey="Beckett R">R. Beckett</name>
</author>
<author>
<name sortKey="Luthje, S" uniqKey="Luthje S">S. Luthje</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monteiro, F" uniqKey="Monteiro F">F. Monteiro</name>
</author>
<author>
<name sortKey="Sebastiana, M" uniqKey="Sebastiana M">M. Sebastiana</name>
</author>
<author>
<name sortKey="Pais, M S" uniqKey="Pais M">M. S. Pais</name>
</author>
<author>
<name sortKey="Figueiredo, A" uniqKey="Figueiredo A">A. Figueiredo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ndimba, B K" uniqKey="Ndimba B">B. K. Ndimba</name>
</author>
<author>
<name sortKey="Chivasa, S" uniqKey="Chivasa S">S. Chivasa</name>
</author>
<author>
<name sortKey="Hamilton, J M" uniqKey="Hamilton J">J. M. Hamilton</name>
</author>
<author>
<name sortKey="Simon, W J" uniqKey="Simon W">W. J. Simon</name>
</author>
<author>
<name sortKey="Slabas, A R" uniqKey="Slabas A">A. R. Slabas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neuhoff, V" uniqKey="Neuhoff V">V. Neuhoff</name>
</author>
<author>
<name sortKey="Stamm, R" uniqKey="Stamm R">R. Stamm</name>
</author>
<author>
<name sortKey="Eibl, H" uniqKey="Eibl H">H. Eibl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, I S" uniqKey="Oh I">I. S. Oh</name>
</author>
<author>
<name sortKey="Park, A R" uniqKey="Park A">A. R. Park</name>
</author>
<author>
<name sortKey="Bae, M S" uniqKey="Bae M">M. S. Bae</name>
</author>
<author>
<name sortKey="Kwon, S J" uniqKey="Kwon S">S. J. Kwon</name>
</author>
<author>
<name sortKey="Kim, Y S" uniqKey="Kim Y">Y. S. Kim</name>
</author>
<author>
<name sortKey="Lee, J E" uniqKey="Lee J">J. E. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, T N" uniqKey="Petersen T">T. N. Petersen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S. Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pierleoni, A" uniqKey="Pierleoni A">A. Pierleoni</name>
</author>
<author>
<name sortKey="Martelli, P L" uniqKey="Martelli P">P. L. Martelli</name>
</author>
<author>
<name sortKey="Casadio, R" uniqKey="Casadio R">R. Casadio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinheiro, C" uniqKey="Pinheiro C">C. Pinheiro</name>
</author>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="David, T S" uniqKey="David T">T. S. David</name>
</author>
<author>
<name sortKey="Vieira, A" uniqKey="Vieira A">A. Vieira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramagli, L S" uniqKey="Ramagli L">L. S. Ramagli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramirez, V" uniqKey="Ramirez V">V. Ramirez</name>
</author>
<author>
<name sortKey="Lopez, A" uniqKey="Lopez A">A. Lopez</name>
</author>
<author>
<name sortKey="Mauch Mani, B" uniqKey="Mauch Mani B">B. Mauch-Mani</name>
</author>
<author>
<name sortKey="Gil, M" uniqKey="Gil M">M. Gil</name>
</author>
<author>
<name sortKey="Vera, P" uniqKey="Vera P">P. Vera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravichandran, S" uniqKey="Ravichandran S">S. Ravichandran</name>
</author>
<author>
<name sortKey="Stone, S L" uniqKey="Stone S">S. L. Stone</name>
</author>
<author>
<name sortKey="Benkel, B" uniqKey="Benkel B">B. Benkel</name>
</author>
<author>
<name sortKey="Prithiviraj, B" uniqKey="Prithiviraj B">B. Prithiviraj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rijo, L" uniqKey="Rijo L">L. Rijo</name>
</author>
<author>
<name sortKey="Rodrigues, C J" uniqKey="Rodrigues C">C. J. Rodrigues</name>
</author>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Vasconcelos, M I" uniqKey="Vasconcelos M">M. I. Vasconcelos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodrigues, C" uniqKey="Rodrigues C">C. Rodrigues</name>
</author>
<author>
<name sortKey="Bettencourt, A" uniqKey="Bettencourt A">A. Bettencourt</name>
</author>
<author>
<name sortKey="Rijo, L" uniqKey="Rijo L">L. Rijo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rojas, M L" uniqKey="Rojas M">M. L. Rojas</name>
</author>
<author>
<name sortKey="Montes De G Mez, V" uniqKey="Montes De G Mez V">V. Montes de Gómez</name>
</author>
<author>
<name sortKey="Ocampo, C A" uniqKey="Ocampo C">C. A. Ocampo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sa, M" uniqKey="Sa M">M. Sá</name>
</author>
<author>
<name sortKey="Ferreira, J P" uniqKey="Ferreira J">J. P. Ferreira</name>
</author>
<author>
<name sortKey="Queiroz, V T" uniqKey="Queiroz V">V. T. Queiroz</name>
</author>
<author>
<name sortKey="Vilas Boas, L" uniqKey="Vilas Boas L">L. Vilas Boas</name>
</author>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Almeida, M H" uniqKey="Almeida M">M. H. Almeida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saha, B C" uniqKey="Saha B">B. C. Saha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze Lefert, P" uniqKey="Schulze Lefert P">P. Schulze-Lefert</name>
</author>
<author>
<name sortKey="Panstruga, R" uniqKey="Panstruga R">R. Panstruga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Loureiro, A" uniqKey="Loureiro A">A. Loureiro</name>
</author>
<author>
<name sortKey="Nicole, M R" uniqKey="Nicole M">M. R. Nicole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Nicole, M" uniqKey="Nicole M">M. Nicole</name>
</author>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Rodrigues, C J" uniqKey="Rodrigues C">C. J. Rodrigues</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Nicole, M" uniqKey="Nicole M">M. Nicole</name>
</author>
<author>
<name sortKey="Rijo, L" uniqKey="Rijo L">L. Rijo</name>
</author>
<author>
<name sortKey="Geiger, J P" uniqKey="Geiger J">J. P. Geiger</name>
</author>
<author>
<name sortKey="Rodrigues, C J" uniqKey="Rodrigues C">C. J. Rodrigues</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, M C" uniqKey="Silva M">M. C. Silva</name>
</author>
<author>
<name sortKey="Varzea, V M" uniqKey="Varzea V">V. M. Várzea</name>
</author>
<author>
<name sortKey="Guerra Guimaraes, L" uniqKey="Guerra Guimaraes L">L. Guerra-Guimarães</name>
</author>
<author>
<name sortKey="Azinheira, H" uniqKey="Azinheira H">H. Azinheira</name>
</author>
<author>
<name sortKey="Fernandez, D" uniqKey="Fernandez D">D. Fernandez</name>
</author>
<author>
<name sortKey="Petitot, A S" uniqKey="Petitot A">A. S. Petitot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vartapetian, A" uniqKey="Vartapetian A">A. Vartapetian</name>
</author>
<author>
<name sortKey="Tuzhikov, A" uniqKey="Tuzhikov A">A. Tuzhikov</name>
</author>
<author>
<name sortKey="Chichkova, N" uniqKey="Chichkova N">N. Chichkova</name>
</author>
<author>
<name sortKey="Taliansky, M" uniqKey="Taliansky M">M. Taliansky</name>
</author>
<author>
<name sortKey="Wolpert, T" uniqKey="Wolpert T">T. Wolpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varzea, V M P" uniqKey="Varzea V">V. M. P. Várzea</name>
</author>
<author>
<name sortKey="Marques, D V" uniqKey="Marques D">D. V. Marques</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voegele, R T" uniqKey="Voegele R">R. T. Voegele</name>
</author>
<author>
<name sortKey="Mendgen, K" uniqKey="Mendgen K">K. Mendgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q. Zhu</name>
</author>
<author>
<name sortKey="Maher, E A" uniqKey="Maher E">E. A. Maher</name>
</author>
<author>
<name sortKey="Masoud, S" uniqKey="Masoud S">S. Masoud</name>
</author>
<author>
<name sortKey="Dixon, R A" uniqKey="Dixon R">R. A. Dixon</name>
</author>
<author>
<name sortKey="Lamb, C J" uniqKey="Lamb C">C. J. Lamb</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26175744</article-id>
<article-id pub-id-type="pmc">4484983</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2015.00478</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Proteomic analysis of apoplastic fluid of
<italic>Coffea arabica</italic>
leaves highlights novel biomarkers for resistance against
<italic>Hemileia vastatrix</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Guerra-Guimarães</surname>
<given-names>Leonor</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/186839/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tenente</surname>
<given-names>Rita</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/240393/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pinheiro</surname>
<given-names>Carla</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/75193/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chaves</surname>
<given-names>Inês</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Silva</surname>
<given-names>Maria do Céu</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/140389/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cardoso</surname>
<given-names>Fernando M. H.</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/246827/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Planchon</surname>
<given-names>Sébastien</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barros</surname>
<given-names>Danielle R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/246971/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Renaut</surname>
<given-names>Jenny</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/43032/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ricardo</surname>
<given-names>Cândido P.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/246819/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Centro de Investigação das Ferrugens do Cafeeiro, Instituto de Investigação Científica Tropical</institution>
<country>Oeiras, Portugal</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa</institution>
<country>Lisboa, Portugal</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (UNL)</institution>
<country>Oeiras, Portugal</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa</institution>
<country>Caparica, Portugal</country>
</aff>
<aff id="aff5">
<sup>5</sup>
<institution>Instituto de Biologia Experimental e Tecnológica</institution>
<country>Oeiras, Portugal</country>
</aff>
<aff id="aff6">
<sup>6</sup>
<institution>Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa</institution>
<country>Lisboa, Portugal</country>
</aff>
<aff id="aff7">
<sup>7</sup>
<institution>Luxembourg Institute of Science and Technology</institution>
<country>Belvaux, Luxembourg</country>
</aff>
<aff id="aff8">
<sup>8</sup>
<institution>Department de Fitossanidade, Universidade Federal de Pelotas</institution>
<country>Pelotas, Brasil</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Silvia Mazzuca, Università della Calabria, Italy</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Martin Hajduch, Slovak Academy of Sciences, Slovakia; Letizia Bernardo, Università Cattolica del Sacro Cuore, Italy</p>
</fn>
<corresp id="fn001">*Correspondence: Leonor Guerra-Guimarães, Centro de Investigação das Ferrugens do Cafeeiro/BioTrop, Instituto de Investigação Científica Tropical, Quinta do Marquês, 2784-505 Oeiras, Portugal
<email xlink:type="simple">leonorguima@gmail.com</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Plant Proteomics, a section of the journal Frontiers in Plant Science</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>6</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>6</volume>
<elocation-id>478</elocation-id>
<history>
<date date-type="received">
<day>16</day>
<month>4</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>15</day>
<month>6</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 Guerra-Guimarães, Tenente, Pinheiro, Chaves, Silva, Cardoso, Planchon, Barros, Renaut and Ricardo.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Guerra-Guimarães, Tenente, Pinheiro, Chaves, Silva, Cardoso, Planchon, Barros, Renaut and Ricardo</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>A proteomic analysis of the apoplastic fluid (APF) of coffee leaves was conducted to investigate the cellular processes associated with incompatible (resistant) and compatible (susceptible)
<italic>Coffea arabica</italic>
-
<italic>Hemileia vastatrix</italic>
interactions, during the 24–96 hai period. The APF proteins were extracted by leaf vacuum infiltration and protein profiles were obtained by 2-DE. The comparative analysis of the gels revealed 210 polypeptide spots whose volume changed in abundance between samples (control, resistant and susceptible) during the 24–96 hai period. The proteins identified were involved mainly in protein degradation, cell wall metabolism and stress/defense responses, most of them being hydrolases (around 70%), particularly sugar hydrolases and peptidases/proteases. The changes in the APF proteome along the infection process revealed two distinct phases of defense responses, an initial/basal one (24–48 hai) and a late/specific one (72–96 hai). Compared to susceptibility, resistance was associated with a higher number of proteins, which was more evident in the late/specific phase. Proteins involved in the resistance response were mainly, glycohydrolases of the cell wall, serine proteases and pathogen related-like proteins (PR-proteins), suggesting that some of these proteins could be putative candidates for resistant markers of coffee to
<italic>H. vastatrix</italic>
. Antibodies were produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase and subtilase and by an immunodetection assay it was observed an increase of these proteins in the resistant sample. With this methodology we have identified proteins that are candidate markers of resistance and that will be useful in coffee breeding programs to assist in the selection of cultivars with resistance to
<italic>H. vastatrix</italic>
.</p>
</abstract>
<kwd-group>
<kwd>coffee leaf rust (CLR)</kwd>
<kwd>cytology</kwd>
<kwd>MALDI-TOF/TOF MS</kwd>
<kwd>2-DE</kwd>
<kwd>antibody production</kwd>
<kwd>ELISA assay</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia)</funding-source>
<award-id rid="cn001">PTDC/AGR-GPL/109990/2009 (at CIFC/IICT, ITQB/UNL, and IHMT/UNL)</award-id>
<award-id rid="cn001">PEst-OE/EQB/LA0004/2011 (at ITQB/UNL)</award-id>
<award-id rid="cn001">GHTM – UID/Multi/04413/2013 (at IHMT/UNL)</award-id>
</award-group>
<award-group>
<funding-source id="cn002">COST action</funding-source>
<award-id rid="cn002">FA1306</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="1"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="73"></ref-count>
<page-count count="16"></page-count>
<word-count count="10666"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="introduction" id="s1">
<title>Introduction</title>
<p>Coffee leaf rust (CLR), caused by the fungus
<italic>Hemileia vastatrix</italic>
Berkeley and Broome, is the most important disease of
<italic>Coffea arabica</italic>
L. Since the first reported outbreak of CLR in 1867, that caused the eradication of coffee cultivation in Sri-Lanka, the disease has spread to all the coffee growing regions (Bettencourt and Rodrigues,
<xref rid="B6" ref-type="bibr">1988</xref>
; Várzea and Marques,
<xref rid="B71" ref-type="bibr">2005</xref>
). The current highly intense epidemic of CLR in Colombia and Central America has considerably affected coffee production with yield losses estimated as several 100 million dollars (Avelino et al.,
<xref rid="B4" ref-type="bibr">2015</xref>
). Although application of fungicides can provide adequate control, the use of coffee resistant varieties has been the most appropriate and sustainable strategy against this disease (Várzea and Marques,
<xref rid="B71" ref-type="bibr">2005</xref>
).</p>
<p>
<italic>H. vastatrix</italic>
, like other rust fungi, is a biotrophic fungus entirely dependent on plant living cells for growth and reproduction. Rust fungi interact intimately with the plant host cells (by means of haustoria, highly specialized intracellular hyphae) modifying plant metabolism to serve the fungus nutrient needs for completion of its life cycle. This mode of interaction involves a prolonged and effective suppression of the host immune system and, at the same time, the induction of specific host genes for establishing biotrophy (Schulze-Lefert and Panstruga,
<xref rid="B65" ref-type="bibr">2003</xref>
; Voegele and Mendgen,
<xref rid="B72" ref-type="bibr">2003</xref>
).
<italic>H. vastatrix</italic>
starts to colonize the plant surface and after developing appressoria penetrates the host tissues through stomata, growing initially in the intercellular space before the formation of the first haustoria inside the subsidiary stomatal cells (Silva et al.,
<xref rid="B68" ref-type="bibr">1999</xref>
). The apoplast (the extracellular space that comprises cell walls and the intercellular fluid) is a metabolically very active cellular compartment, since it serves transport, environmental sensing and defense, as well as the construction and maintenance of cell walls. It is in the apoplast where the pathogen and plant first contact, and the primary defenses are activated (Agrawal et al.,
<xref rid="B2" ref-type="bibr">2010</xref>
; Floerl et al.,
<xref rid="B21" ref-type="bibr">2012</xref>
; Delanois et al.,
<xref rid="B12" ref-type="bibr">2014</xref>
; Guerra-Guimarães et al.,
<xref rid="B28" ref-type="bibr">2014</xref>
).</p>
<p>Plants respond to pathogen infection using a multilayer immune system, consisting of both constitutive and inducible mechanisms. The plant's ability to discriminate between its own molecules and those of the other organisms represents the first essential line of defense of any immune system (Doehlemann and Hemetsberger,
<xref rid="B15" ref-type="bibr">2013</xref>
). The eliciting pathogen molecules (pathogen-associated molecular patterns - PAMPs) trigger in plants the first level of induced defenses or PAMP-trigger immunity (PTI). Successful pathogens deliver effectors that interfere with PTI, enabling pathogen nutrition and dispersal, and resulting in effector–triggered susceptibility (ETS). As a second defense layer, plants use resistance (R) genes to activate effector-triggered immunity (ETI) upon detection of effectors. ETI is associated with more sustained and robust immune responses including cell death by hypersensitive reaction (HR) (Jones and Dangl,
<xref rid="B34" ref-type="bibr">2006</xref>
; Doehlemann and Hemetsberger,
<xref rid="B15" ref-type="bibr">2013</xref>
; Delanois et al.,
<xref rid="B12" ref-type="bibr">2014</xref>
).</p>
<p>Coffee—
<italic>H. vastatrix</italic>
rust interactions are governed by the gene-for-gene relationship (Flor,
<xref rid="B22" ref-type="bibr">1942</xref>
). The resistance of coffee plant is conditioned by nine major dominant genes (S
<sub>H</sub>
1–S
<sub>H</sub>
9) that have the corresponding virulence genes (
<italic>v
<sub>1</sub>
–v
<sub>9</sub>
</italic>
) in the pathogen (Rodrigues et al.,
<xref rid="B62" ref-type="bibr">1975</xref>
; Bettencourt and Rodrigues,
<xref rid="B6" ref-type="bibr">1988</xref>
; Várzea and Marques,
<xref rid="B71" ref-type="bibr">2005</xref>
). There is no evidence of constitutive defenses in coffee against
<italic>H. vastatrix</italic>
, but several resistance mechanisms are induced upon fungus infection (Silva et al.,
<xref rid="B69" ref-type="bibr">2006</xref>
and references therein). Previous cytological studies have shown that for a number of coffee genotypes, the first signs of incompatibility (resistance) to
<italic>H. vastatrix</italic>
correspond to HR (Rijo et al.,
<xref rid="B61" ref-type="bibr">1991</xref>
; Silva et al.,
<xref rid="B67" ref-type="bibr">2002</xref>
,
<xref rid="B66" ref-type="bibr">2008</xref>
). During the last decade, information on the molecular processes of the coffee-CLR interactions have been gathered using different approaches (e.g., suppression subtractive hybridization method, 454pyrosequencing and qRT-PCR) what allowed the identification of several genes putatively involved in host resistance (Fernandez et al.,
<xref rid="B18" ref-type="bibr">2004</xref>
,
<xref rid="B19" ref-type="bibr">2012</xref>
; Ganesh et al.,
<xref rid="B23" ref-type="bibr">2006</xref>
; Diniz et al.,
<xref rid="B14" ref-type="bibr">2012</xref>
). It was thus found that more than one-quarter of the predicted proteins of the expressed sequence tags (ESTs) are disease resistance proteins, stress- and defense-proteins and components of signal transduction pathways (e.g., chitinases, beta-1,3-glucanases, PR10, lipoxygenase, AP2-type, WRKY transcription factors). Activity of oxidative enzymes (lipoxygenase, peroxidase, superoxide dismutase, and germin-like protein), phenylalanine ammonia-lyase, chitinases, and glucanases were detected in the resistance reaction. In the susceptible reaction some of these enzymes are also expressed but later (or slower) in the infection process and, therefore, are ineffective to arrest the pathogen (Maxemiuc-Naccache et al.,
<xref rid="B49" ref-type="bibr">1992</xref>
; Rojas et al.,
<xref rid="B63" ref-type="bibr">1993</xref>
; Silva et al.,
<xref rid="B67" ref-type="bibr">2002</xref>
,
<xref rid="B66" ref-type="bibr">2008</xref>
; Guerra-Guimarães et al.,
<xref rid="B26" ref-type="bibr">2009a</xref>
,
<xref rid="B27" ref-type="bibr">b</xref>
,
<xref rid="B29" ref-type="bibr">2013</xref>
).</p>
<p>Proteomics is a valuable analysis when aiming for an overview of the biochemical pathways involved in the defense response. In fact, it is an untargeted approach that provides insight into protein localization, protein-protein interactions, enzymatic complexes, or post-translational modifications (PTMs) that are essential for a better understanding of plant-pathogen interactions (Abril et al.,
<xref rid="B1" ref-type="bibr">2011</xref>
; Delanois et al.,
<xref rid="B12" ref-type="bibr">2014</xref>
; Pinheiro et al.,
<xref rid="B57" ref-type="bibr">2014</xref>
; Jorrín-Novo et al.,
<xref rid="B35" ref-type="bibr">2015</xref>
).</p>
<p>Based on a cytological characterized study, we conducted a 2-DE proteomic analysis of incompatible (resistant) and compatible (susceptible)
<italic>C. arabica</italic>
-
<italic>H. vastatrix</italic>
interactions with the main objectives of: further our understanding of proteins that are present in the leaf apoplast, investigate the dynamic nature of the proteins in relation to coffee-fungus interactions and link these proteins with the resistant/susceptible response pathways on the basis of their physiological role. Proteins identified by MS and that were associated with the pathogen resistance response, namely, glycohydrolases, proteases, and PR-proteins, were chosen for antibody (Ab) production. To validate these proteins as potential biomarkers of resistance, the Abs were used in an immunodetection assay. With this methodology we have identified proteins that are potential candidate markers of resistance that will be useful to assist in the selection of coffee cultivars with resistance to
<italic>H. vastatrix</italic>
.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<sec>
<title>Biological material</title>
<p>Five-year-old
<italic>Coffea arabica</italic>
S4 Agaro, genotype S
<sub>H</sub>
4S
<sub>H</sub>
5, that resulted from clonally propagated stem cuttings, were grown in 50 L pots in a mixture of soil:peat:sand (1:1:1) under greenhouse conditions as previously stated (Guerra-Guimarães et al.,
<xref rid="B28" ref-type="bibr">2014</xref>
). Two races of the fungus
<italic>Hemileia vastatrix</italic>
were used in this study, one that establish a compatible interaction characterized by fungus growth and plant disease (susceptible reaction) and another one that establish an incompatible interaction characterized by a resistance response of the plant that leads to fungus death (Várzea and Marques,
<xref rid="B71" ref-type="bibr">2005</xref>
). So, when race XV (v
<sub>4,5</sub>
) was inoculated the plant showed disease symptoms indicating it was susceptible to this fungal race and it is said that a compatible plant-fungus interaction was established. Inoculation with
<italic>H. vastatrix</italic>
race II (v
<sub>5</sub>
) showed resistant symptoms to this fungal race and it is said that an incompatible plant-fungus interaction occurred (Várzea and Marques,
<xref rid="B71" ref-type="bibr">2005</xref>
). Fresh uredospores of
<italic>H. vastatrix</italic>
(1 mg/pair of leaves) were spread over the lower surface of young coffee leaves, as previously described (Silva et al.,
<xref rid="B67" ref-type="bibr">2002</xref>
). Healthy leaves sprayed with water and kept in the same conditions as inoculated leaves were used as control. For each coffee—rust interaction, inoculations were performed during September/October on at least three separate occasions, using different batches of spores. Leaves were collected 24, 48, 72, and 96 h after inoculation (hai) for experimental purpose.</p>
</sec>
<sec>
<title>Light microscopy</title>
<p>Cross sections of infected leaf fragments made with a freezing microtome (Leica CM1850) were stained and mounted in cotton blue lactophenol to evaluate fungal growth stages (Silva et al.,
<xref rid="B67" ref-type="bibr">2002</xref>
). To detect autofluorescent cells, cross sections of infected leaf fragments were placed in 0.07 M pH 8.9 phosphate solution (K
<sub>2</sub>
HPO
<sub>4</sub>
) for 5 min, and mounted in the same solution (Silva et al.,
<xref rid="B67" ref-type="bibr">2002</xref>
). Autofluorescence and/or browning of cell contents, under blue light epifluorescence are thought to indicate plant cell death (Heath,
<xref rid="B31" ref-type="bibr">1998</xref>
). Autofluorescence can also be used as an indicator of fungal death (Heath,
<xref rid="B30" ref-type="bibr">1984</xref>
). Observations were made with a Leica DM-2500 microscope equipped with a mercury bulb HB 100W, blue light (excitation filter BP 450–490; barrier filter LP 515). Data were recorded from 75 to 100 infection sites/coffee-rust interaction/observation time/experiment. Since no significant differences were observed between different sets of experiments, data for each coffee-rust interaction were pooled. Arcsine-transformed percentages and Student
<italic>t</italic>
-test for statistical analysis were used.</p>
</sec>
<sec>
<title>Plant protein extraction</title>
<p>The apoplastic fluid (APF) of the leaves was obtained from samples that represent a pool of 8 pairs of leaves (10 ± 2.5 g fresh weight) from 3 to 4 different plants. The leaves were vacuum infiltrated as previously described (Guerra-Guimarães et al.,
<xref rid="B27" ref-type="bibr">2009b</xref>
). Briefly, square sections of about 2 cm
<sup>2</sup>
of leaves were vacuum infiltrated, in 100 mM Tris-HCl buffer (pH 7.6) solution, containing 50 mM L-ascorbic acid, 500 mM KCl and 25 mM 2-mercaptoethanol (at 4°C). The blotted sections were centrifuged at 5000 g, during 15 min at 4°C, and the collected APF frozen. This fraction was subsequently desalted, concentrated and purified (Guerra-Guimarães et al.,
<xref rid="B28" ref-type="bibr">2014</xref>
). APF protein quantification was made using a modified Bradford assay method (Ramagli,
<xref rid="B58" ref-type="bibr">1999</xref>
). The purity of the APF was evaluated, prior to protein denaturing, by measuring the relative activity of malate-dehydrogenase, used as a cytosolic marker (Alves et al.,
<xref rid="B3" ref-type="bibr">2006</xref>
; Guerra-Guimarães et al.,
<xref rid="B27" ref-type="bibr">2009b</xref>
).</p>
</sec>
<sec>
<title>2D electrophoresis</title>
<p>As previously described (Guerra-Guimarães et al.,
<xref rid="B28" ref-type="bibr">2014</xref>
) IEF was performed in IPG strips with slight alterations. One hundred microgram of protein was loaded to 13 cm IPG strips (linear pH gradient of 4–7; GE Healthcare). The Ettan IPGphor (GE Healthcare) was used under the following conditions: a total of 33,000Vh at 20°C; Step-n-hold 100V-2h; Step-n-hold 30V-10h; Step-n-hold 250V-250Vh; Step-n-hold 500V-750Vh; Step-n-hold 1000V-1500Vh; Step-n-hold 2500V-2500Vh; Gradient 8000V-4h; Step-n-hold 8000V-40000Vh; maximum current setting of 50 μA per strip. After IEF, the proteins in the IPG strip were equilibrated for 15 min on a buffer (100 mM Tris–HCl pH 8.8, 6 M urea, 2% SDS, 30% glycerol, and 0.2 mg/mL bromophenol blue) containing 5 mg/mL DTT (to reduce proteins), followed by another 15 min equilibration in the same buffer but containing 25 mg/mL iodoacetamide (to alkylate proteins) instead of DTT.</p>
<p>The second dimension SDS-PAGE was performed at 20°C with 12% resolving gels using the Hoefer SE 600 Ruby apparatus (GE Healthcare) at 10 mA per gel, for the first 15 min, and 20 mA per gel for the next 4 h, or until the bromophenol blue dye front had run off the gel. Precision Plus Protein All Blue Standards (Bio-Rad, Hercules, CA) were used for molecular mass determinations.</p>
</sec>
<sec>
<title>Gel staining and image analysis</title>
<p>For informatics analysis gels were first stained with Ruthenium II Tris (bathophenantroline disulfonate) (RuBP) according to Lamanda et al. (
<xref rid="B39" ref-type="bibr">2004</xref>
) and the images acquired in the FLA-5100 Fluorescent Image Analyzer (FujiFilm), with the LPFR filter and at 550 V and 50 μm resolution. For spot picking, the same gels were subsequently stained in Colloidal Coomassie Blue (Neuhoff et al.,
<xref rid="B53" ref-type="bibr">1985</xref>
). The image gel analysis was carried out using the Progenesis SameSpots 2D software v. 4.5 (Nonlinear Dynamics Ltd). The spot volumes were normalized using the mean value of the replicates (Grove et al.,
<xref rid="B25" ref-type="bibr">2008</xref>
) (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). One-Way ANOVA was performed between the 3 samples analyzed (resistant, susceptible, and control) using a
<italic>p</italic>
-value of 0.05. For the proteins with statistically significant changes (and a fold change >1.5) a principal component analysis (PCA) was carried out and a hierarchical clustering was performed applying a Pearson correlation using the MeV 4.9 (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S2</xref>
).</p>
</sec>
<sec>
<title>MS-based spot identification</title>
<p>Polypeptide spots (
<italic>n</italic>
= 169) whose abundance changed significantly between samples (
<italic>p</italic>
-value of 0.05 and fold change > 1.5) and were visually detected in Colloidal Coomassie Blue stained gels were excised from the gels and processed using the Tecan freedom EVO200 (Tecan, Männedorf, CH). Briefly, each sample was washed initially in a 50 mM ammonium bicarbonate solution containing 50% (v/v) methanol and dehydrated using a 75% (v/v) acetonitrile (ACN) solution and dried at 37°C. Proteins were then digested in 8 μL of trypsin Gold (Promega), 5 ng/μL trypsin in 20 mM ammonium bicarbonate. After extraction with 50% (v/v) ACN containing 0.1% (v/v) trifluoroacetic acid (TFA), the peptides were dried at 50°C and spotted on MALDI-TOF target plates. A volume of 0.7 μL of 7 mg/mL α-cyano-4-hydroxycinnamic acid in 50% (v/v) ACN containing 0.1% (v/v) TFA was added. A MALDI peptide mass spectrum was acquired using the AB Sciex 5800 TOF/TOF (AB Sciex, Foster City, CA, USA), and the 10 most abundant peaks, excluding known contaminants, were selected and fragmented.</p>
<p>The ProteinPilot™ software 4.0.8085 was used for database searches with an in-house MASCOT platform (version 2.3, Matrix Science,
<ext-link ext-link-type="uri" xlink:href="http://www.matrixscience.com">www.matrixscience.com</ext-link>
, London, UK). All proteins were identified by search against 2 databases: an EST database of coffee containing 1527276 sequences and downloaded on September 29, 2014; a NCBInr database with the taxonomy
<italic>Viridiplantae</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</ext-link>
) containing 40910947 sequences and downloaded on October 30, 2014. All searches (combined MS and 10 MS/MS spectra) were carried out using a mass window of 100 ppm for the precursor and 0.5 Da for the fragments. During the different searches the following parameters were defined: two missed cleavages, fixed carbamidomethylation of cysteine, variable oxidation of methionine or tryptophan, and tryptophan to kynurenine or double oxidation to N-formylkynurenine. The proteins identified without clear annotation have been used for BLAST analysis and the protein with the highest homology (when significant) added in Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S3</xref>
.</p>
<p>All identifications were manually validated and extra precursors were selected for fragmentation if the obtained data were judged as insufficient. When high quality spectra were not matched to sequences, a sequence was determined manually and in the current data set could be linked to the identified protein by allowing for more missed cleavages, semitryptic peptides, or specific modifications. Only spots considered for discussion were the ones that have an unique and significant protein identification. The spots which contained more than one protein were not considered in the study, since we don't know which protein increased/decreased.</p>
</sec>
<sec>
<title>Further data processing</title>
<p>For the polypeptide spots that only gave one identified protein a subsequent bioinformatic analysis was performed. The basic information was obtained using the InterProt, UniProt, and NCBI databases. The conserved domains of each protein as well as the superfamily were determined using the NCBI tools (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</ext-link>
). The subcellular location assignment of the proteins were performed using TargetP 1.1, SignalP 4.1 and SecretomeP 2.0 servers (
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/">http://www.cbs.dtu.dk/services/</ext-link>
), and the LocTree3 (
<ext-link ext-link-type="uri" xlink:href="https://rostlab.org/services/loctree2/">https://rostlab.org/services/loctree2/</ext-link>
) (Emanuelsson et al.,
<xref rid="B17" ref-type="bibr">2007</xref>
; Bendtsen et al.,
<xref rid="B5" ref-type="bibr">2004</xref>
; Petersen et al.,
<xref rid="B55" ref-type="bibr">2011</xref>
; Goldberg et al.,
<xref rid="B24" ref-type="bibr">2014</xref>
). The evaluation of the Transmembrane domains was carried out using Transmembrane Hidden Markov Model analysis on TMHMM server v2.0 (
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/TMHMM-2.0/">http://www.cbs.dtu.dk/services/TMHMM-2.0/</ext-link>
) and the presence of a glycosylphosphatidylinositol (GPI)-anchor was carried out using GPI-anchor Predictor (
<ext-link ext-link-type="uri" xlink:href="http://gpcr.biocomp.unibo.it/predgpi/pred.htm">http://gpcr.biocomp.unibo.it/predgpi/pred.htm</ext-link>
) and big-PI Plant Predictor (
<ext-link ext-link-type="uri" xlink:href="http://mendel.imp.ac.at/gpi/plant_server.html">http://mendel.imp.ac.at/gpi/plant_server.html</ext-link>
) (Krogh et al.,
<xref rid="B37" ref-type="bibr">2001</xref>
; Eisenhaber et al.,
<xref rid="B16" ref-type="bibr">2003</xref>
; Pierleoni et al.,
<xref rid="B56" ref-type="bibr">2008</xref>
). Assignment for functional annotation of the identified proteins was based on MapMan “Bin” ontology (
<ext-link ext-link-type="uri" xlink:href="http://mapman.gabipd.org/web/guest/mapman">http://mapman.gabipd.org/web/guest/mapman</ext-link>
) using Mercator Automated Sequence Annotation Pipeline (
<ext-link ext-link-type="uri" xlink:href="http://mapman.gabipd.org/web/guest/app/mercator">http://mapman.gabipd.org/web/guest/app/mercator</ext-link>
) (Lohse et al.,
<xref rid="B44" ref-type="bibr">2014</xref>
) and Gene Ontology Annotation (GO;
<ext-link ext-link-type="uri" xlink:href="http://www.geneontology.org">http://www.geneontology.org</ext-link>
) using Blast2GO software (version 2.8.2,
<ext-link ext-link-type="uri" xlink:href="http://www.blast2go.de/">http://www.blast2go.de/</ext-link>
) (Conesa and Gotz,
<xref rid="B11" ref-type="bibr">2008</xref>
). The default parameters were used for all the programs.</p>
</sec>
<sec>
<title>Immunodetection assays</title>
<sec>
<title>Peptide selection</title>
<p>In order to produce antisera against the coffee apoplastic protein sequences, peptides with minimal homology (to reduce the chance of non-specific antibody binding) were selected after BLASTp search. With the overall aim to identify protein regions that are most likely accessible on its surface, the hydrophobic status was determined by the software BioEdiT. A hydrophilicity plot (calculated using the Kyte-Doolittle or the Hopp-Woods algorithm) indicates which parts of the protein are probably exposed. Structure predictions were done with Chou-Fasman plots. We selected two potential peptide candidates with typical lengths from 12 to 13 amino acids for each protein (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S4</xref>
). Peptides were purchased from Thermo Fisher Scientific Inc. (NYSE: TMO).</p>
</sec>
<sec>
<title>Peptide conjugation</title>
<p>To increase the immunogenicity of the peptides they were carrier conjugated to ovalbumin (OVA) or bovine serum albumin (BSA). Coupling was performed using one step glutaraldehyde conjugation (Hermanson,
<xref rid="B32" ref-type="bibr">2013</xref>
), using a 5:1 ratio peptide/protein. The BSA-peptide conjugates were used in the immunization protocol and the OVA-peptide conjugates were used in the ELISA assay.</p>
</sec>
<sec>
<title>Animals</title>
<p>CD1 male mice were obtained from the Breeding Laboratory of IHMT/UNL and were housed in cages and fed autoclaved chow and water
<italic>ad libitum</italic>
.</p>
</sec>
<sec>
<title>Immunization protocol</title>
<p>The pre-immune serum was collected by sub-mandibular bleeding and then the mice were immunized with five doses. Doses were administered via the intra-peritoneal (doses 1 and 2), intra-dermal and subcutaneous (doses 3–5) with 10 to 15 days intervals between doses. Complete Freund's adjuvant was used in dose 1 and incomplete Freund's adjuvant plus peptide adjuvant (MDP, muramyl dipeptide, 10 μg per mice) and synthetic dsRNA (Double-stranded homopolymer Poly (I:C), 10 μg per mice, Sigma-Aldrich), was used in the other doses. No adjuvant was used in the fifth dose.</p>
</sec>
<sec>
<title>Elisa procedure</title>
<p>Wells of microtiter plates (Greiner) were coated with plant extract samples (10–100 μg/ml) in 50μl of extraction buffer (0.1 M Tris-HCl, 0.5 M KCl, 0.1 mM PMSF, and 0.1% sodium sulphite, pH 7.4) or with peptides conjugated with OVA (10 μg/ml) for 1 h at 37°C. The plates were then blocked with 100 μl blocking buffer (PBS with 1% PVA, pH 7.4) for 1 h at room temperature (22°C). Polyclonal antibodies in gelatin buffer (PBS, pH 7.4, containing 0.1% gelatin) were then added at 1:500 concentration, and plates were incubated for 1 h. Secondary antibodies (anti-mouse IgM or IgG Alkaline phosphate conjugated, Sigma-Aldrich) in washing buffer [PBS, pH 7.4, containing tween 0.05% (v/v)] were added at a dilution of 1:10000 and incubated for 1 h at room temperature (22°C). The plates were incubated with chromogen/substrate [nitrophenyl phosphate (4-NPP), in 10 mM ethanolamine buffer, pH 9.6, containing 0.5 mM MgCl
<sub>2</sub>
]. The absorbance at 405 nm was checked with an ELISA microplate reader. The volume was 50 μl/well except for the blocking buffer (100 μl/well). For each antigen, the cut-off value, which differentiates positive from negative results, was set by defining the cut-off as the mean value of the normal serum group plus three standard deviations.</p>
</sec>
<sec>
<title>Ethics statement</title>
<p>Animal studies were carried out in strict accordance with the Guidelines for Proper Conduct of Animal Experiments by DGAV (Portugal) and approved (ref 0421/000/000/2013). The animal experiments were conducted in strict compliance with animal husbandry and welfare regulations. Regular veterinary care and monitoring, balanced nutrition, and environmental enrichment were provided by the IHMT-UNL.</p>
</sec>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec>
<title>Fungal growth and hypersensitive host cell death</title>
<p>During
<italic>H. vastatrix</italic>
growth, after the differentiation of germ tubes and appressoria over stomata, the fungus infected both susceptible and resistant leaf tissues in a similar way, reaching in succession the stages of penetration hypha, anchor, and haustorial mother cell (HMC). The stomatal subsidiary cells were the first plant cells to be invaded by the haustoria. These specialized intracellular hyphae (responsible for fungus nutrients absorption) started to be formed between 24 and 48 hai. In the leaves of the resistant samples, the penetration hypha (Figure
<xref ref-type="fig" rid="F1">1A</xref>
) was the fungal growth stage observed with higher frequency during the all time-course of the experiment reaching about 55% at 24 hai and 50% at 96 hai, while HMC with haustorium (HMC/h) only reached 15% of infection sites at 72 hai, and did not exceed 22% at 96 hai (Figure
<xref ref-type="fig" rid="F1">1D</xref>
); at this stage the fungus stop growth and died. In the leaves of the susceptible samples, the penetration hypha was also the most representative stage at 24 hai (61%) and 48 hai (41%) but, later on, the HMC/h greatly increased in frequency (40% at 72 hai and 44% at 96 hai), being responsible for the successful fungal growth (Figures
<xref ref-type="fig" rid="F1">1B,D</xref>
). The death of the fungus was experimentally assessed by the autofluorescence of the fungal structures that, at 96 hai, reached 100% in the resistant samples and only 45% in the susceptible samples (data not shown).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Light micrographs of</bold>
<italic>
<bold>H. vastatrix</bold>
</italic>
<bold>infection sites at 72 hai</bold>
.
<bold>(A)</bold>
Appressorium (Ap) over the stomata and a penetration hypha (PH) in the resistant sample leaves, stained with cotton blue lactophenol.
<bold>(B)</bold>
Ap and intercellular hyphae (large arrow) in the susceptible sample leaves, stained with cotton blue lactophenol, being visible an haustorial mother cell (HMC) (small arrow) with a haustorium (h) in the stomatal subsidiary cell.
<bold>(C)</bold>
Autofluorescence, by blue light epifluorescence test, of guard cells (arrows) associated with a PH in the resistant sample leaves. Note that the fungal structures are also autofluorescent. (bars = 10 μm).
<bold>(D)</bold>
Percentage of infection sites with different fungal growth stages (Ap, PH, anchor - Anc, and HMC/h) in resistant (R) and susceptible (S) sample leaves at 24, 48, 72, and 96 hai.
<sup>*</sup>
= mode value. The weighted averages of the different fungal growth stages (Ap, PH, Anc, and HMC/h) were significantly higher in the S than in the R sample leaves at 24 hai (
<italic>t</italic>
= 4.08;
<italic>P</italic>
≤ 0.001), 48 hai (
<italic>t</italic>
= 4.47;
<italic>P</italic>
≤ 0.001), 72 hai (
<italic>t</italic>
= 6.77;
<italic>P</italic>
≤ 0.001) and 96 hai (
<italic>t</italic>
= 6.91;
<italic>P</italic>
≤ 0.001). (
<bold>E)</bold>
Percentage of infection sites with autofluorescent and/or browning cells (HR-like cell death) in R and S leaves, at 24, 48, 72, and 96 hai. The average percentages were significantly higher in the R than in the S leaves, at 24 hai (
<italic>t</italic>
= 3.71;
<italic>P</italic>
≤ 0.001), 48 hai (
<italic>t</italic>
= 5.49;
<italic>P</italic>
≤ 0.001), 72 hai (
<italic>t</italic>
= 12.40;
<italic>P</italic>
≤ 0.001), and 96 hai (
<italic>t</italic>
= 8.83;
<italic>P</italic>
≤ 0.001).</p>
</caption>
<graphic xlink:href="fpls-06-00478-g0001"></graphic>
</fig>
<p>The first cytological response induced by the fungus in the resistant and susceptible samples is the hypersensitive-like reaction (HR) observed initially in the stomata guard and subsidiary cells and later in mesophyll cells. At 24 hai, HR occurred for both resistant and susceptible samples reaching, respectively, 33 and 20% of infection sites, where the fungus stopped growth (at the stages of appressorium or penetration hypha). HR was always significantly higher in the resistant than in the susceptible samples at all time-points (Figures
<xref ref-type="fig" rid="F1">1C,E</xref>
). Only in the resistant samples was the HR observed in subsidiary stomatal cells and mesophyll cells invaded by haustoria, from 72 hai (65%) onwards (71% at 96 h).</p>
</sec>
<sec>
<title>APF protein expression upon infection</title>
<p>The APF was obtained from resistant, susceptible and control leaves (mock-inoculated) along the
<italic>H. vastatrix</italic>
infection process (24–96 hai). Proteins were separated by 2-DE and statistical analysis of the gel patterns was performed to reveal the polypeptide spots whose volume significantly changed in abundance (
<italic>p</italic>
-value ≤ 0.05 and fold change > 1.5) between samples for each of the time-points. The number of spots that changed were 35, 37, 84, and 54, respectively, at 24, 48, 72, and 96 hai. MALDI—TOF/TOF MS analysis of the excised polypeptide spots (
<italic>n</italic>
= 169) revealed 116 spots that have only one protein identification (Figure
<xref ref-type="fig" rid="F2">2</xref>
, Table
<xref ref-type="table" rid="T1">1</xref>
and Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S3</xref>
). According to their conserved domains (NCBI database), these proteins belong to 23 diverse superfamilies (Table
<xref ref-type="table" rid="T1">1</xref>
). Bioinformatic tools suitable for predicting secreted proteins were used in order to confirm the extracellular localization of the identified proteins. No trans-membrane domain (TMD) (TMHMM2.0) or glycosylphosphatidylinositol (GPI)-anchor (GPI-anchor Predictor and big-PI Plant Predictor) were detected in the sequences of the 116 proteins analyzed. Making use of a set of several secrete protein predictor programs (SignalP4.1, TargetP1.1, LocTree3, and SecretomeP) all the 116 proteins were indicated to be of secreted nature; from which 110 proteins had the N-terminal signal peptide typical of the classical secretory pathway (SignalP4.0 and/or TargetP1.1) and the remaining 6 proteins (that lack the classical terminal signal peptide) were recognized as leaderless secretory proteins (SecretomeP program) (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S5</xref>
). Overall, the results confirm the high quality of the APF samples, since no or little cytoplasmic contamination was detected (APF activity of malate dehydrogenase was always less than 5% of the activity of total leaf homogenates). The functional categorization of the identified proteins was performed, gathering information from different annotation tools (GO ontology and MapMan “Bin”). Annotation revealed that the identified proteins were involved in: protein degradation (36%), cell wall metabolism (23%), stress/defense (23%), miscellaneous enzyme families (11%), minor carbohydrates (CHO) metabolism (4%), secondary metabolism (2%), and redox (1%) (Table
<xref ref-type="table" rid="T1">1</xref>
and Figure
<xref ref-type="fig" rid="F3">3A</xref>
). Seventy three percent of these proteins have EC numbers (Blast2GO analysis) which mainly represent hydrolases, particularly sugar hydrolases and peptidases/proteases (Figure
<xref ref-type="fig" rid="F3">3B</xref>
). Analyzing the changes along the infection process it is more evident that the % of proteins involved in proteolysis decreased after an initial increase (53% at 24 hai and 12% at 96 hai) while the % of proteins involved in stress/defense increased along the infection process (9% at 24 hai and 40% at 96 hai). A few proteins are present at all time-points, namely, xylosidases, mannosidases, chitinases, subtilases, and aspartic proteases.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Representative 2DE gels of coffee leaf APF proteins</bold>
. Circled spots changed significantly in abundance between samples (control, resistant, and susceptible) at 24, 48, 72, and 96 hai, and the proteins were successfully identified by MALDI-TOF/TOF-MS (see detailed information in Table
<xref ref-type="table" rid="T1">1</xref>
). Gels were stained with Ruthenium II Tris.</p>
</caption>
<graphic xlink:href="fpls-06-00478-g0002"></graphic>
</fig>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Annotation of the coffee leaf apoplastic proteins that changed in abundance along the infection process</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Biological process
<xref ref-type="table-fn" rid="TN1">
<sup>a</sup>
</xref>
</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>Spot no.
<xref ref-type="table-fn" rid="TN2">
<sup>b</sup>
</xref>
</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>Protein identity [species]
<xref ref-type="table-fn" rid="TN3">
<sup>c</sup>
</xref>
</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>GI acc. no.
<xref ref-type="table-fn" rid="TN4">
<sup>d</sup>
</xref>
</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>Superfamily
<xref ref-type="table-fn" rid="TN5">
<sup>e</sup>
</xref>
</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>hai
<xref ref-type="table-fn" rid="TN6">
<sup>f</sup>
</xref>
</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>Change relatively to control
<xref ref-type="table-fn" rid="TN7">
<sup>g</sup>
</xref>
</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Cell wall.biosynthesis</td>
<td align="left" rowspan="1" colspan="1">498</td>
<td align="left" rowspan="1" colspan="1">beta-D-galactosidase [
<italic>Pyrus pyrifolia</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="61162203">61162203</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH35</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">492</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: beta-galactosidase 8-like isoform 1 [
<italic>Glycine max</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="356543464">356543464</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH35</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cell wall.degradation</td>
<td align="left" rowspan="1" colspan="1">604</td>
<td align="left" rowspan="1" colspan="1">beta-D-xylosidase 1 precursor [
<italic>Solanum lycopersicum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="350534908">350534908</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH3</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">3035</td>
<td align="left" rowspan="1" colspan="1">beta-D-xylosidase 1 precursor [
<italic>Solanum lycopersicum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="350534908">350534908</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH3</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1006, 1822, 6603, 6615, 6794, 6928, 6994, 7005</td>
<td align="left" rowspan="1" colspan="1">beta-D-xylosidase 1 precursor [
<italic>Solanum lycopersicum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="350534908">350534908</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH3</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">269, 323, 377, 421, 1070, 1110, 1463</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: beta-xylosidase/alpha-L-arabinofuranosidase 2-like [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698512394">698512394</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH3</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1105</td>
<td align="left" rowspan="1" colspan="1">Lysosomal beta glucosidase [
<italic>Morus notabilis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="587840624">587840624</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH3</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">543</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: beta-xylosidase/alpha-L-arabinofuranosidase 2-like [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698512394">698512394</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH3</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">486</td>
<td align="left" rowspan="1" colspan="1">Alpha-L-fucosidase 1 [
<italic>Theobroma cacao</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="590672071">590672071</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Alpha-amylase</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1966</td>
<td align="left" rowspan="1" colspan="1">
<italic>Alpha-L-fucosidase [Medicago truncatula]</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="357444199">357444199</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Alpha-amylase</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">497</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: alpha-L-fucosidase 1-like [
<italic>Vitis vinifera</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="359490232">359490232</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Alpha-amylase</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cell wall</td>
<td align="left" rowspan="1" colspan="1">367</td>
<td align="left" rowspan="1" colspan="1">pectin methylesterase [
<italic>Coffea arabica</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="384597517">384597517</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Pectinesterase</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1068</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: pectinesterase-like [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698444078">698444078</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Pectinesterase</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1838</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: L-ascorbate oxidase homolog [
<italic>Brassica rapa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="685338488">685338488</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cupredoxin</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Minor CHO metabolism</td>
<td align="left" rowspan="1" colspan="1">972</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: aldose 1-epimerase-like isoform X8 [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698588431">698588431</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Aldose_epim</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1152, 1323</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: aldose 1-epimerase-like [
<italic>Citrus sinensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="568858025">568858025</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Aldose_epim</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2168</td>
<td align="left" rowspan="1" colspan="1">non-cell-autonomous protein pathway1 [
<italic>Nicotiana tabacum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="15824565">15824565</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Aldose_epim</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Miscellaneous enzymes. acid and other phosphatases</td>
<td align="left" rowspan="1" colspan="1">1658</td>
<td align="left" rowspan="1" colspan="1">calcineurin-like phosphoesterase [
<italic>Manihot esculenta</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="496474724">496474724</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Metallophosphatases</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">741</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: purple acid phosphatase 15 [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698476727">698476727</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Metallophosphatases</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Miscellaneous enzymes. GDSL-motif lipase</td>
<td align="left" rowspan="1" colspan="1">3136</td>
<td align="left" rowspan="1" colspan="1">GDSL-motif lipase/hydrolase family protein [
<italic>Populus trichocarpa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="566199057">566199057</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">SGNH_hydrolase</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Miscellaneous enzymes.</td>
<td align="left" rowspan="1" colspan="1">1142</td>
<td align="left" rowspan="1" colspan="1">beta-galactosidase [
<italic>Camellia sinensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="575456452">575456452</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH35</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">gluco-, galacto- and</td>
<td align="left" rowspan="1" colspan="1">763</td>
<td align="left" rowspan="1" colspan="1">alpha-mannosidase precursor [
<italic>Solanum lycopersicum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="350538359">350538359</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH38</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">mannosidases.alpha-galactosidase</td>
<td align="left" rowspan="1" colspan="1">1244</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: lysosomal alpha-mannosidase-like [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698450172">698450172</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH38</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">300, 503</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: lysosomal alpha-mannosidase-like [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698450172">698450172</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH38</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">254, 286</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: lysosomal alpha-mannosidase-like [
<italic>Glycine max</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="356508869">356508869</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH38</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">681, 688</td>
<td align="left" rowspan="1" colspan="1">beta-galactosidase [
<italic>Camellia sinensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="575456452">575456452</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH35</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">182</td>
<td align="left" rowspan="1" colspan="1">Alpha-xylosidase 1 [
<italic>Theobroma cacao</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="590700766">590700766</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH31</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Protein.degradation. aspartate protease</td>
<td align="left" rowspan="1" colspan="1">1141</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: protein ASPARTIC PROTEASE IN GUARD CELL 1-like [
<italic>Solanum tuberosum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="565349288">565349288</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1657</td>
<td align="left" rowspan="1" colspan="1">unnamed protein product [
<italic>Coffea canephora</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="661898488">661898488</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">6773, 7424</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: protein ASPARTIC PROTEASE IN GUARD CELL 1-like [
<italic>Solanum tuberosum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="565349288">565349288</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2005, 2025, 2112, 6789, 6790, 6865</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: protein ASPARTIC PROTEASE IN GUARD CELL 1-like [
<italic>Solanum tuberosum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="565349288">565349288</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">275</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: basic 7S globulin [
<italic>Vitis vinifera</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="225436984">225436984</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">504</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: aspartic proteinase nepenthesin-1-like [
<italic>Nelumbo nucifera</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="720054046">720054046</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">527</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: aspartic proteinase nepenthesin-1-like [
<italic>Solanum tuberosum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="565341835">565341835</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">667, 2211</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: protein ASPARTIC PROTEASE IN GUARD CELL 1-like [
<italic>Solanum tuberosum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="565349288">565349288</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">pepsin_retropepsin</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Protein.degradation. cysteine protease</td>
<td align="left" rowspan="1" colspan="1">2942</td>
<td align="left" rowspan="1" colspan="1">cysteine proteinase aleuran type [
<italic>Nicotiana benthamiana</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="71482942">71482942</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidase_C1</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Protein.degradation. serine protease</td>
<td align="left" rowspan="1" colspan="1">466</td>
<td align="left" rowspan="1" colspan="1">serine carboxypeptidase, putative [
<italic>Ricinus communis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="255553418">255553418</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidase_S10</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">650, 984</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: serine carboxypeptidase-like 40-like [
<italic>Citrus sinensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="568858842">568858842</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidase_S10</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1268</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: serine carboxypeptidase-like 40 isoform X1 [
<italic>Vitis vinifera</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="225449979">225449979</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidase_S10</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Protein.degradation. Subtilases</td>
<td align="left" rowspan="1" colspan="1">489</td>
<td align="left" rowspan="1" colspan="1">subtilisin-like protease preproenzyme [
<italic>Nicotiana tabacum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="253740260">253740260</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">504</td>
<td align="left" rowspan="1" colspan="1">subtilisin-like protease preproenzyme [
<italic>Nicotiana tabacum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="253740260">253740260</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidase_S8_S53</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1011</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Nicotiana tomentosiformis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="697119321">697119321</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2060, 2966, 2967</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Nicotiana tomentosiformis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="697119321">697119321</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">3255</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Solanum lycopersicum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="723696627">723696627</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">440</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Solanum lycopersicum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="723695307">723695307</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2622, 6805</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Vitis vinifera</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="225458653">225458653</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">R and S ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">473</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Nicotiana tomentosiformis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="697119321">697119321</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">477</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Nicotiana tomentosiformis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="697119321">697119321</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">470, 602, 672, 1272, 1291, 1292</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Nicotiana tomentosiformis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="697119321">697119321</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1011</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [Nicotiana sylvestris]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698522359">698522359</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">117, 303</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: subtilisin-like protease [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698557660">698557660</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">S ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2277</td>
<td align="left" rowspan="1" colspan="1">subtilisin-like protease preproenzyme [
<italic>Nicotiana tabacum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="253740260">253740260</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Peptidases_S8_S53</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Redox</td>
<td align="left" rowspan="1" colspan="1">5527</td>
<td align="left" rowspan="1" colspan="1">copper-zinc superoxide dismutase 4, partial [
<italic>Diospyros oleifera</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="383386153">383386153</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cu-Zn_SOD</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Secondary metabolism</td>
<td align="left" rowspan="1" colspan="1">2618</td>
<td align="left" rowspan="1" colspan="1">berberine bridge enzyme [
<italic>Hevea brasiliensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="341819340">341819340</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">FAD_binding</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1176</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: reticuline oxidase-like protein [
<italic>Prunus mume</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="645238406">645238406</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">FAD_binding</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Stress/Defense</td>
<td align="left" rowspan="1" colspan="1">3029</td>
<td align="left" rowspan="1" colspan="1">osmotin [
<italic>Piper colubrinum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="161375756">161375756</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH64-Thaumatin-like</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2651</td>
<td align="left" rowspan="1" colspan="1">germin-like protein, partial [
<italic>Genlisea aurea</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="527204558">527204558</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cupin</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2955</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: cysteine-rich repeat secretory protein 55-like [
<italic>Citrus sinensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="568862722">568862722</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Stress-antifungal</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">3047</td>
<td align="left" rowspan="1" colspan="1">chitinase 1 [
<italic>Theobroma cacao</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="590589913">590589913</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">6624</td>
<td align="left" rowspan="1" colspan="1">chitinase family protein [
<italic>Populus trichocarpa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="566206109">566206109</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">S ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">3937, 6813, 6815</td>
<td align="left" rowspan="1" colspan="1">chitinase family protein [
<italic>Populus trichocarpa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="566206109">566206109</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">R and S ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">3292</td>
<td align="left" rowspan="1" colspan="1">chitinase family protein [
<italic>Populus trichocarpa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="566253335">566253335</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">R and S ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">767</td>
<td align="left" rowspan="1" colspan="1">chitinase family protein [
<italic>Populus trichocarpa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="550305695">550305695</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">S ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1277</td>
<td align="left" rowspan="1" colspan="1">germin-like protein 10 [Arabidopsis thaliana]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="42572763">42572763</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cupin</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1058</td>
<td align="left" rowspan="1" colspan="1">germin-like protein [
<italic>Camellia sinensis</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="344221931">344221931</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cupin</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">229, 531, 901, 1255</td>
<td align="left" rowspan="1" colspan="1">germin-like protein, partial [
<italic>Genlisea aurea</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="527204558">527204558</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cupin</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1299</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: pathogenesis-related protein 5-like [
<italic>Nicotiana sylvestris</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="698527087">698527087</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH64-Thaumatin-like</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1284</td>
<td align="left" rowspan="1" colspan="1">putative NtPRp27-like protein [
<italic>Atropa belladonna</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="14329814">14329814</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GluZincin</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">982</td>
<td align="left" rowspan="1" colspan="1">chitinase 1 [
<italic>Theobroma cacao</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="590589913">590589913</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">985</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: chitinase 2-like [
<italic>Prunus mume</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="645217067">645217067</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH18_chitinase-like</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1968</td>
<td align="left" rowspan="1" colspan="1">pathogenesis-related 1 protein [
<italic>Coffea canephora</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="485993076">485993076</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">SCP_PR-1_like</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2115</td>
<td align="left" rowspan="1" colspan="1">pathogenesis-related 1 protein [
<italic>Coffea canephora</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="485993076">485993076</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">SCP_PR-1_like</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↓</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">682</td>
<td align="left" rowspan="1" colspan="1">germin-like protein, partial [
<italic>Genlisea aurea</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="527204558">527204558</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">Cupin</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">1218</td>
<td align="left" rowspan="1" colspan="1">thaumatin-like protein [
<italic>Actinidia deliciosa</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="190358875">190358875</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH64-Thaumatin-like</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">800, 2005</td>
<td align="left" rowspan="1" colspan="1">beta-1,3-glucanase, basic [
<italic>Coffea arabica x Coffea canephora</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="37223498">37223498</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH17</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">2034</td>
<td align="left" rowspan="1" colspan="1">osmotin [
<italic>Piper colubrinum</italic>
]</td>
<td align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="161375756">161375756</ext-link>
</td>
<td align="left" rowspan="1" colspan="1">GH64-Thaumatin-like</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">R and S ↑</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN1">
<label>a</label>
<p>Functional characterization of the proteins based on MapMan “Bin” and GO ontology.</p>
</fn>
<fn id="TN2">
<label>b</label>
<p>The number that identified protein spots on 2-D apoplastic gel.</p>
</fn>
<fn id="TN3">
<label>c</label>
<p>The peptide identification based on homology to proteins characterized in different species by BLASTp. search on NCBI Viridiplantae and ESTcoffee databases.</p>
</fn>
<fn id="TN4">
<label>d</label>
<p>The accession number from GenBank assigned to the polypeptide after MS/MS analysis.</p>
</fn>
<fn id="TN5">
<label>e</label>
<p>Superfamily according to NCBI classification. GH, Glycoside Hydrolase; SGNH_hydrolase, diverse family of lipases and esterases; FAD_binding, flavodoxin binding oxiredutase; GluZincin, thermolysin-like peptidases including several zinc-dependent metallopeptidases.</p>
</fn>
<fn id="TN6">
<label>f</label>
<p>hours after inoculation with H. vastatrix.</p>
</fn>
<fn id="TN7">
<label>g</label>
<p>Samples R (resistant), S (susceptible) that change in abundance relatively to control, ↑ (increase), ↓ (decrease).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Functional categorization of the identified coffee leaf APF proteins, based on MapMan “Bin” and GO ontology</bold>
.
<bold>(A)</bold>
Biological process;
<bold>(B)</bold>
Enzyme Commission number (EC number) of the enzymes.</p>
</caption>
<graphic xlink:href="fpls-06-00478-g0003"></graphic>
</fig>
</sec>
<sec>
<title>APF proteins associated with resistance and susceptibility</title>
<p>A Principal Component Analysis (PCA) was performed for the spots whose volume significantly changed in abundance during the infection. This analysis revealed a clear separation of the three samples (resistant, susceptible, and control) for each of the four time-points, the two first axes always representing more than 70% of the total variance (Figure
<xref ref-type="fig" rid="F4">4</xref>
and Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S2</xref>
). To visualize the relative accumulation of the spots in the resistant (R) and the susceptible (S) samples, a hierarchical cluster analysis was performed (Figure
<xref ref-type="fig" rid="F5">5</xref>
). At 24 hai, the protein patterns for the two infected samples showed differences mainly concerning an increase in proteolysis and in stress/defense in the R samples (e.g., cysteine proteinases, subtilases, berberine bridge enzyme, cysteine-rich repeat secretory protein, osmotin, and chitinase). Changes in a calcineurin-like phosphoesterase and a GDSL-motif lipase/hydrolase (miscellaneous enzyme families) are also of significance. At 48 hai, it is remarkable that the two infected samples did not markedly differ from each other, both showing a strong decrease in abundance for the same proteins, e.g., beta-D-xylosidase, chitinases, and aspartic proteases. It is at 72 hai, that the main differences between R and S samples started to be evident. Most of the proteins that increase in the R sample at 72 hai are involved in proteolysis (e.g., subtilases and serine carboxypeptidases) and in cell wall degradation/modification (e.g., beta-xylosidase/alpha-arabinofuranosidases, chitinase, glucanase and pectin methylesterase, purple acid phosphatase, reticuline oxidase). However, a strong increase in stress/defense proteins (e.g., PR-1, osmotin, chitinases, thaumatin-like, NtPRp27 protein, and beta-1,3-glucanase) and beta-galactosidases were observed mostly in the S sample, at 96 hai. There is a noticeable increase in alpha-L-fucosidase proteins in the R sample at 96 hai.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Principal Component Analysis (PCA) performed for the spots whose volume significantly changed in abundance (</bold>
<italic>
<bold>p</bold>
</italic>
<bold>-value < 0.05), for each time-point of the infection (24–96 hai)</bold>
. Distinct groups were obtained per sample: control (C), resistant (R), and susceptible (S).</p>
</caption>
<graphic xlink:href="fpls-06-00478-g0004"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Hierarchical cluster analysis of the proteins that significantly changed in abundance (</bold>
<italic>
<bold>p</bold>
</italic>
<bold>-value < 0.05) between control (C), resistant (R), and susceptible (S) samples, for each time-point of the infection (24–96 hai)</bold>
. The signals are shown in a red-green color scale, from a gradient of red (higher expression) to green (lower expression).</p>
</caption>
<graphic xlink:href="fpls-06-00478-g0005"></graphic>
</fig>
</sec>
<sec>
<title>Immunodetection assay</title>
<p>Some of the identified proteins, referred above, were selected as antigen for the production of antibodies, such as, chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase, and subtilase. Peptides corresponding to these proteins were synthesized and after conjugation with BSA and OVA allowed the production of specific antibodies. The results obtained show a higher level of detection of those proteins in the R than in the S or control samples (Figure
<xref ref-type="fig" rid="F6">6</xref>
).</p>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold>ELISA assay using the antibodies produced against different proteins: chitinases (Chit), pectin methylesterase (PM), serine carboxypeptidase (SerC), reticuline oxidase (Rt), and subtilases (Subt)</bold>
. Antigen samples were control, resistant, and susceptible coffee leaf extracts with 72 hai with
<italic>H. vastatrix</italic>
(100 μg/ml).</p>
</caption>
<graphic xlink:href="fpls-06-00478-g0006"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<p>We have been studying the APF coffee leaf proteins in response to
<italic>H. vastatrix</italic>
infection (Guerra-Guimarães et al.,
<xref rid="B27" ref-type="bibr">2009b</xref>
,
<xref rid="B29" ref-type="bibr">2013</xref>
), and recently, we have characterized the proteome of APF healthy coffee leaves (Guerra-Guimarães et al.,
<xref rid="B28" ref-type="bibr">2014</xref>
). With the present study we complement the knowledge on the importance of the proteins present in this sub-cellular compartment, particularly in relation to pathogen defense. In addition to the proteins previously found, a further seven protein superfamilies were now identified in the APF of coffee leaves (control sample), making a total of 29 protein superfamilies. The new identified protein superfamilies are mainly PR proteins, phosphatases and oxi-reductases, highlighting the existence of an important constitutive defense mechanism in
<italic>C. arabica</italic>
leaves against pathogens. We further studied the
<italic>C. arabica-H. vastatrix</italic>
pathosystem aiming to discover changes in the leaf APF proteome during the evolution of the infection process (24 hai-96 hai) in both incompatible and compatible interactions (R and S samples). The results obtained support the existence of two phases of defense responses, an initial/basal response and a later/specific response. The number of proteins involved in the initial/basal phase (24–48 hai), is half of the number involved in the late/specific phase (72–96 hai), grouped in 23 protein superfamilies of which four are present only in the initial phase, nine in the late phase and the remaining 10 in both phases.</p>
<sec>
<title>Initial/basal defense responses</title>
<p>The identification of GDSL-motif lipase/hydrolase (spot #3136) and calcineurin-like phosphoesterase (spot #1658) at 24 hai, suggests the potential involvement of these proteins in pathogen perception and signal transduction cascades. GDSL esterases/lipases are proteins with multifunctional properties, described as having a role in the regulation of plant development, morphogenesis, synthesis of secondary metabolites, and defense response (Chepyshko et al.,
<xref rid="B10" ref-type="bibr">2012</xref>
). In
<italic>Arabidopsis thaliana</italic>
a GDSL LIPASE1 protein seems to protect plants from
<italic>Alternaria brassicicola</italic>
attack in two distinct ways: by directly disrupting fungal spore integrity, and by activating defense signaling in the plants (Oh et al.,
<xref rid="B54" ref-type="bibr">2005</xref>
). In our study we have detected a decrease in the accumulation of the protein GDSL-motif lipase/hydrolase at 24 hai, in both infected tissues. According to Lee et al. (
<xref rid="B41" ref-type="bibr">2009</xref>
) such a decrease can be either a negative regulation of proteins to inhibit fungal infection/growth or, in addition, the effect of fungal interacting with the plant cell (by means of effector proteins) by suppressing the host immune system. On the other hand, the increased accumulation of calcineurin-like phosphoesterase (a calcium–dependent phosphatase) can be important in the regulation of various cellular processes with emphasizes in signal transduction as has already been shown (Kudla et al.,
<xref rid="B38" ref-type="bibr">1999</xref>
; Luan,
<xref rid="B46" ref-type="bibr">2003</xref>
). It is known that upon perception of microbial signals, kinases and phosphatases target specific proteins, often modifying complex signaling cascades that allow for rapid defense responses (Delanois et al.,
<xref rid="B12" ref-type="bibr">2014</xref>
). The presence of phosphatases in the extracellular proteome of
<italic>Arabidopsis</italic>
infected with
<italic>Pseudomonas syringae</italic>
suggests that potential phosphorylation/dephosphorylation reversible regulation could occur in the apoplast (Kaffarnik et al.,
<xref rid="B36" ref-type="bibr">2009</xref>
). Moreover, Ndimba et al. (
<xref rid="B52" ref-type="bibr">2003</xref>
) have shown that chitosan treatment of
<italic>Arabidopsis</italic>
cell-suspentions induced phosphorylation of a receptor-like kinase, and other proteins like chitinases and glucanases (proteins that we have also found to be accumulated at 24 h, particularly in the R samples).</p>
<p>The increased accumulation of PR proteins (chitinases, osmotin and a cysteine-rich repeat secretory protein) in both infected tissues (more markedly in the R samples) also indicates the induction of the basal defense responses, possibly salicylic acid (SA) regulated. Molecular studies on
<italic>Coffea</italic>
spp.—
<italic>H. vastatrix</italic>
incompatible interaction did show the activation of genes (
<italic>ex.pr1b</italic>
and
<italic>gt</italic>
) known to be involved in the SA mediating signaling pathway around 21–24 hai (Diniz et al.,
<xref rid="B14" ref-type="bibr">2012</xref>
). Furthermore, SA quantification by HPLC/ESI-MS/MS showed an increase in this signaling compound at 24 hai in
<italic>Coffea</italic>
spp.—
<italic>H. vastatrix</italic>
incompatible interaction, suggesting again the involvement of an SA-dependent pathway in coffee resistance to CLR (Sá et al.,
<xref rid="B13" ref-type="bibr">2014</xref>
).</p>
<p>The accumulation of berberine bridge enzyme (a reticuline-like oxidase) in the R sample at 24 hai and a copper-zinc superoxide dismutase (SOD) in S sample at 48 hai, suggests that these “PR-like” proteins may co-regulate basal defenses. Extracellular oxidases have been suggested to catalyze the generation of reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide during the “oxidative burst” (Martinez et al.,
<xref rid="B47" ref-type="bibr">1998</xref>
; Mika et al.,
<xref rid="B50" ref-type="bibr">2004</xref>
). Indeed, previous cytochemical data in an incompatible
<italic>C. arabica—H. vastatrix</italic>
interaction, revealed hydrogen peroxide in the interface between the cuticle and the fungal pre-penetration structures at the infection sites (Silva et al.,
<xref rid="B66" ref-type="bibr">2008</xref>
). Furthermore, the increase in the activity of peroxidases, SOD and oxalate oxidases (germin–like proteins) have already been reported during the resistant response of coffee to CRL (Silva et al.,
<xref rid="B69" ref-type="bibr">2006</xref>
,
<xref rid="B66" ref-type="bibr">2008</xref>
; Guerra-Guimarães et al.,
<xref rid="B26" ref-type="bibr">2009a</xref>
,
<xref rid="B29" ref-type="bibr">2013</xref>
). The oxi-reductase activity observed during infection by pathogens indicates that plants were either initiating the production of ROS to fight directly the pathogen or responding to oxidative intermediates produced as a result of cell wall or membrane damage leading to cell death during HR response (Lee et al.,
<xref rid="B41" ref-type="bibr">2009</xref>
).</p>
</sec>
<sec>
<title>Late/specific defense responses</title>
<p>Although the HR was already observed at 24 hai, it continued to increase with time and at 72 hai it was much higher in the R than in the S samples. Simultaneously, in the R sample the number of proteins changing in volume increased dramatically, suggesting their contribution to a second and stronger line of defense responses. On the contrary, in the S sample the fungus continued growing with no apparent inhibition, the HR stabilized and protein levels did not change much more than in the control. Most of the proteins that increased in the R sample at 72 hai have hydrolytic activity, being either involved in the cell wall metabolism (beta-xylosidase/alpha-arabinofuranosidases, chitinases and glucanase, pectin methylesterase, purple acid phosphatase, and reticuline oxidase) or in proteolysis (subtilases and serine carboxypeptidases).</p>
<p>It is known that plant glycohydrolases (GH) can play various important functions such as, cell wall expansion, modification during development, defense, and signaling. Since plant cell wall polysaccharides are very heterogeneous and complex polymers, GH activities must be very diverse (Jamet et al.,
<xref rid="B33" ref-type="bibr">2008</xref>
) and with our proteomic approach we identified in the apoplast a total of eight GHs superfamilies (3, 17, 18, 20, 31, 35, 38, 64). According to the carbohydrate-active enzymes database (CAZy;
<ext-link ext-link-type="uri" xlink:href="http://www.cazy.org">www.cazy.org</ext-link>
) (Lombard et al.,
<xref rid="B45" ref-type="bibr">2014</xref>
), the GHs families GH3, GH31 and GH35 comprise enzymes that are mainly involved in the reorganization of cell wall carbohydrates. The other GHs families seem to be involved in glycoprotein post-translational modifications (PTMs), such as alpha-L-arabinofuranosidases (GH3), chitinases (GH18), beta-D-galactosidases (GH35), and alpha-D-mannosidases (GH38) (Jamet et al.,
<xref rid="B33" ref-type="bibr">2008</xref>
).</p>
<p>Alpha-L-arabinofuranosidases are particularly interesting since they accumulate only in the R sample at 72 hai. They are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers (Saha,
<xref rid="B64" ref-type="bibr">2000</xref>
), functioning as a candidate for a role in softening-related depolymerization of the cell wall during the HR response (Cantu et al.,
<xref rid="B9" ref-type="bibr">2007</xref>
). Several other apoplastic proteins identified, are also GHs, and appear to contribute to plant defense. Chitinases (GH18) and beta-1,3-glucanases (GH17) that are PR proteins possess antifungal activity limiting pathogen progression, and their expression is often triggered by pathogen infection (Silva et al.,
<xref rid="B69" ref-type="bibr">2006</xref>
; Guerra-Guimarães et al.,
<xref rid="B27" ref-type="bibr">2009b</xref>
). Leah et al. (
<xref rid="B40" ref-type="bibr">1991</xref>
) and Mauch et al. (
<xref rid="B48" ref-type="bibr">1988</xref>
) showed that the antifungal proprieties of plant chitinases are enhanced when beta-1,3-glucanases were added in combination with them. In transgenic tobacco plants, susceptibility to fungal attack decreased when chitinase and glucanase genes were both over-expressed (Zhu et al.,
<xref rid="B73" ref-type="bibr">1994</xref>
). Other PR-proteins such as PR-1 and PR-5 also increased in the resistant sample from 72 hai onwards.</p>
<p>Also relevant was the detection of pectin methylesterases (PMEs) and purple acid phosphatases (PAP) exclusively at 72 hai in the resistant sample. The activities of PMEs from both plants and pathogens and the degree and pattern of pectin methyl esterification are critical for the outcome of plant–pathogen infections. The cell walls containing highly methyl esterified pectin are somehow protected against the action of pathogens (Lionetti et al.,
<xref rid="B43" ref-type="bibr">2012</xref>
). Concerning the PAP, it was shown that a PAP5 is required for maintaining basal resistance against
<italic>Pseudomonas syringae</italic>
in
<italic>Arabidopsis</italic>
, suggesting a role for PAP5 in pathogen triggered immunity (Ravichandran et al.,
<xref rid="B60" ref-type="bibr">2013</xref>
).</p>
<p>Proteolytic enzymes that are thought to be involved in maturation of enzymes, signaling, protein turnover, and defense against pathogens (Jamet et al.,
<xref rid="B33" ref-type="bibr">2008</xref>
) were the proteins that mostly changed in abundance between the R and S samples, at 72 hai. They represent 36% of the total proteins identified and belong to 4 different superfamilies; subtilisin-like protease, serine carboxypeptidase, aspartic protease, and cysteine proteinase. Serine proteases (subtilases and serine carboxypeptidases) were the most relevant as they increased abundantly in the resistant sample, particularly at 72 hai. Several subtilases are specifically induced following pathogen infection and an
<italic>Arabidopsis</italic>
subtilase (SBT3.3) was very recently hypothesized to function as a receptor located in the plasma membrane that activates downstream immune signaling processes (Ramirez et al.,
<xref rid="B59" ref-type="bibr">2013</xref>
). When comparing grapevine genotypes resistant and susceptible to
<italic>Plasmopara viticola</italic>
, a subtilisin-like protein sharing sequence similarity with the tomato P69 (a PR protein specifically induced following pathogen infection) was shown to be constitutively expressed in the resistant genotype; and its expression was induced after pathogen infection (Vartapetian et al.,
<xref rid="B70" ref-type="bibr">2011</xref>
; Monteiro et al.,
<xref rid="B51" ref-type="bibr">2013</xref>
; Figueiredo et al.,
<xref rid="B20" ref-type="bibr">2014</xref>
).</p>
<p>In addition to the already referred functions of oxidases in the defense responses, it should be discussed the later increase in reticulin oxidase and germin-like proteins (oxalate oxidase-like) at 96 hai. These proteins can have a role in the oxidative cross-linking of cell wall proteins around the site of infection (Bradley et al.,
<xref rid="B8" ref-type="bibr">1992</xref>
; Silva et al.,
<xref rid="B66" ref-type="bibr">2008</xref>
). Crosslinks between phenolic compounds, the plant cell wall polysaccharides and proteins enhance the protection of the cell wall to digestion by microbial degrading enzymes and, thus, increase the global resistance to fungi (Bily et al.,
<xref rid="B7" ref-type="bibr">2003</xref>
). Deposition of chlorogenic acids and lignin has, indeed, been associated with the resistance of coffee to
<italic>H. vastatrix</italic>
(Silva et al.,
<xref rid="B67" ref-type="bibr">2002</xref>
,
<xref rid="B69" ref-type="bibr">2006</xref>
; Leitão et al.,
<xref rid="B42" ref-type="bibr">2011</xref>
).</p>
<p>Overall, the protein changes occurring in the APF of coffee leaves upon
<italic>H. vastatrix</italic>
infection indicate that cell wall reorganization, accumulation of PR proteins and excretion of hydrolytic enzymes are likely to be important defense mechanisms of coffee. The use of antibodies produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase, and subtilase showed an increased detection of these proteins in the incompatible interaction what strengthens their involvement in the resistant response of coffee against
<italic>H. vastatix</italic>
.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="s5">
<title>Conclusions</title>
<p>Important constitutive defense proteins were revealed in the APF of
<italic>C. arabica</italic>
leaves. Upon infection by
<italic>H. vastatrix</italic>
, APF proteins were modulated establishing two distinct phases of defense responses, an initial/basal one (at 24–48 hai) and a late/specific one (at 72–96 hai). The number of proteins detected for the initial/basal phase is essentially half of the number of the proteins for the late/specific phase. When comparing the susceptible and resistant sample it was found that the increase in proteins was always greater in the resistant samples and more markedly in the late/specific phase. The resistant response involves the participation of several important groups of proteins, namely: GH of the cell wall, serine proteases (subtilases and carboxypeptidases) and PR proteins. The GHs confer great plasticity to cell wall polysaccharides, the proteases (together with phosphatases) lead to a complex regulation of cell wall proteins through PTMs and PR proteins are directly involved in antifungal activity. These results suggest that some glycohydrolases, proteases, and PR-proteins are putative candidates for resistant markers of coffee to CLR. The production of antibodies against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase, and subtilase enabled the validation of the importance of these proteins in the coffee resistance response by immunodetection assay. Reliability of these putative resistant markers will be subsequently tested in several well-known coffee cultivars with commercial value. The genes corresponding to the protein biomarkers can be integrated in marker-assisted breeding programs aiming to assist in the selection of appropriate coffee genotypes with resistance to
<italic>H. vastatrix</italic>
.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>This work was supported by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia), under the project PTDC/AGR-GPL/109990/2009 (at CIFC/IICT, ITQB/UNL, and IHMT/UNL) and PEst-OE/EQB/LA0004/2011 (at ITQB/UNL) and GHTM – UID/Multi/04413/2013 (at IHMT/UNL). DRB was on a postdoctoral grant from CNPq (Brazil) and RT received a STSM grant from COST action FA1306. The authors wish to thank Doctor Colin E. McVey (Principal Investigator and Head of Structural Virology Lab, ITQB/UNL) for critically reviewing the manuscript.</p>
</ack>
<sec sec-type="supplementary-material" id="s6">
<title>Supplementary material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fpls.2015.00478">http://journal.frontiersin.org/article/10.3389/fpls.2015.00478</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="DataSheet1.ZIP">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abril</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gion</surname>
<given-names>J.-M.</given-names>
</name>
<name>
<surname>Kerner</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mueller-Starck</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Navarro Cerrillo</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Plomion</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Proteomics research on forest trees, the most recalcitrant and orphan plant species</article-title>
.
<source>Phytochemistry</source>
<volume>72</volume>
,
<fpage>1219</fpage>
<lpage>1242</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.phytochem.2011.01.005</pub-id>
<pub-id pub-id-type="pmid">21353265</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>G. K.</given-names>
</name>
<name>
<surname>Jwa</surname>
<given-names>N.-S.</given-names>
</name>
<name>
<surname>Lebrun</surname>
<given-names>M.-H.</given-names>
</name>
<name>
<surname>Job</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rakwal</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Plant secretome: unlocking secrets of the secreted proteins</article-title>
.
<source>Proteomics</source>
<volume>10</volume>
,
<fpage>799</fpage>
<lpage>827</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200900514</pub-id>
<pub-id pub-id-type="pmid">19953550</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alves</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Francisco</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Martins</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ricardo</surname>
<given-names>C. P.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Analysis of Lupinus albus leaf apoplastic proteins in response to boron deficiency</article-title>
.
<source>Plant Soil</source>
<volume>279</volume>
,
<fpage>1</fpage>
<lpage>11</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11104-005-3154-y</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Avelino</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cristancho</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Georgiou</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Imbach</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bornemann</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions</article-title>
.
<source>Food Sec</source>
.
<volume>7</volume>
,
<fpage>303</fpage>
<lpage>321</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12571-015-0446-9</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bendtsen</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Feature-based prediction of non-classical and leaderless protein secretion</article-title>
.
<source>Protein Eng. Des. Sel</source>
.
<volume>17</volume>
,
<fpage>349</fpage>
<lpage>356</lpage>
.
<pub-id pub-id-type="doi">10.1093/protein/gzh037</pub-id>
<pub-id pub-id-type="pmid">15115854</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bettencourt</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>C. J.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
(
<year>1988</year>
).
<article-title>Principles and practice of coffee breeding for resistance to rust and other diseases</article-title>
, in
<source>Coffee Agronomy</source>
,
<volume>Vol. 4</volume>
, eds
<person-group person-group-type="editor">
<name>
<surname>Clarke</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Macrae</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<publisher-loc>London; New York</publisher-loc>
:
<publisher-name>Elsevier Applied Science Publishers LTD</publisher-name>
),
<fpage>199</fpage>
<lpage>234</lpage>
.</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bily</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Malouin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Burt</surname>
<given-names>A. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2003</year>
).
<article-title>Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to
<italic>Fusarium graminearum</italic>
</article-title>
.
<source>Phytopathology</source>
<volume>93</volume>
,
<fpage>712</fpage>
<lpage>719</lpage>
.
<pub-id pub-id-type="doi">10.1094/PHYTO.2003.93.6.712</pub-id>
<pub-id pub-id-type="pmid">18943058</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradley</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Kjellbom</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>C. J.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Elicitor- and wound-induced oxidative crosslinking of a plant cell wall proline-rich protein: a novel rapid defense response</article-title>
.
<source>Cell</source>
<volume>70</volume>
,
<fpage>21</fpage>
<lpage>30</lpage>
.
<pub-id pub-id-type="doi">10.1016/0092-8674(92)90530-P</pub-id>
<pub-id pub-id-type="pmid">1623521</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cantu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vicente</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Carl Greve</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Labavitch</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>A. L. T.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Genetic determinants of textural modifications in fruits and role of cell wall polysaccharides and defense proteins in the protection against pathogens</article-title>
.
<source>Fresh Produce</source>
<volume>1</volume>
,
<fpage>101</fpage>
<lpage>110</lpage>
.</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chepyshko</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>C.-P.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.-M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.-H.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>J.-F.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (
<italic>Oryza sativa</italic>
L.
<italic>japonica</italic>
) genome: new insights from bioinformatics analysis</article-title>
.
<source>BMC Genomics</source>
<volume>13</volume>
:
<fpage>309</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2164-13-309</pub-id>
<pub-id pub-id-type="pmid">22793791</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conesa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gotz</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Blast2GO: a comprehensive suite for functional analysis in plant genomics</article-title>
.
<source>Int. J. Plant Genomics</source>
<volume>2008</volume>
:
<fpage>619832</fpage>
.
<pub-id pub-id-type="doi">10.1155/2008/619832</pub-id>
<pub-id pub-id-type="pmid">18483572</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delanois</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Jeandet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Clément</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Baillieul</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Dorey</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cordelier</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Uncovering plant-pathogen crosstalk through apoplastic proteomic studies</article-title>
.
<source>Front. Plant Sci</source>
.
<volume>5</volume>
:
<issue>249</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2014.00249</pub-id>
<pub-id pub-id-type="pmid">24917874</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diniz</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Talhinhas</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Azinheira</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Várzea</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Medeira</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Maia</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Cellular and molecular analyses of coffee resistance to
<italic>Hemileia vastatrix</italic>
and nonhost resistance to
<italic>Uromyces vignae</italic>
in the resistance-donor genotype HDT832/2</article-title>
.
<source>Eur. J. Plant Pathol</source>
.
<volume>133</volume>
,
<fpage>141</fpage>
<lpage>157</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10658-011-9925-9</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doehlemann</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hemetsberger</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Apoplastic immunity and its suppression by filamentous plant pathogens</article-title>
.
<source>New Phytol</source>
.
<volume>198</volume>
,
<fpage>1001</fpage>
<lpage>1016</lpage>
.
<pub-id pub-id-type="doi">10.1111/nph.12277</pub-id>
<pub-id pub-id-type="pmid">23594392</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisenhaber</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wildpaner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Borner</surname>
<given-names>G. H. H.</given-names>
</name>
<name>
<surname>Dupree</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Eisenhaber</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice</article-title>
.
<source>Plant Physiol</source>
.
<volume>133</volume>
,
<fpage>1691</fpage>
<lpage>1701</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.103.023580</pub-id>
<pub-id pub-id-type="pmid">14681532</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emanuelsson</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Locating proteins in the cell using TargetP, SignalP and related tools</article-title>
.
<source>Nat. Protoc</source>
.
<volume>2</volume>
,
<fpage>953</fpage>
<lpage>971</lpage>
.
<pub-id pub-id-type="doi">10.1038/nprot.2007.131</pub-id>
<pub-id pub-id-type="pmid">17446895</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Agostini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bon</surname>
<given-names>M.-C.</given-names>
</name>
<name>
<surname>Petitot</surname>
<given-names>A.-S.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Coffee (
<italic>Coffea arabica</italic>
L.) genes early expressed during infection by the rust fungus (
<italic>Hemileia vastatrix</italic>
)</article-title>
.
<source>Mol. Plant Pathol</source>
.
<volume>5</volume>
,
<fpage>527</fpage>
<lpage>536</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2004.00250.x</pub-id>
<pub-id pub-id-type="pmid">20565627</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tisserant</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Talhinhas</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Azinheira</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Loureiro</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>454-pyrosequencing of
<italic>Coffea arabica</italic>
leaves infected by the rust fungus
<italic>Hemileia vastatrix</italic>
reveals
<italic>in planta</italic>
expressed pathogen secreted proteins and plant functions expressed in a late compatible plant-rust interaction</article-title>
.
<source>Mol. Plant Pathol</source>
.
<volume>13</volume>
,
<fpage>17</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2011.00723.x</pub-id>
<pub-id pub-id-type="pmid">21726390</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Figueiredo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Monteiro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sebastiana</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Subtilisin-like proteases in plant–pathogen recognition and immune priming: a perspective</article-title>
.
<source>Front. Plant Sci</source>
.
<volume>5</volume>
:
<issue>739</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2014.00739</pub-id>
<pub-id pub-id-type="pmid">25566306</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Floerl</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Majcherczyk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Possienke</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Feussner</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tappe</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gatz</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>
<italic>Verticillium longisporum</italic>
infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e31435</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0031435</pub-id>
<pub-id pub-id-type="pmid">22363647</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flor</surname>
<given-names>H. H.</given-names>
</name>
</person-group>
(
<year>1942</year>
).
<article-title>Inheritance of pathogenicity in
<italic>Melampsora lini</italic>
</article-title>
.
<source>Phytopathology</source>
<volume>32</volume>
,
<fpage>653</fpage>
<lpage>669</lpage>
.</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ganesh</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Petitot</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Alary</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lecouls</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Monitoring of the early molecular resistance responses of coffee (
<italic>Coffea arabica</italic>
L.) to the rust fungus (
<italic>Hemileia vastatrix</italic>
) using real-time quantitative RT-PCR</article-title>
.
<source>Plant Sci</source>
.
<volume>170</volume>
,
<fpage>1045</fpage>
<lpage>1051</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plantsci.2005.12.009</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldberg</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hecht</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hamp</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Karl</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yachdav</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>LocTree3 prediction of localization</article-title>
.
<source>Nucl. Acids Res</source>
.
<volume>42</volume>
,
<fpage>W350</fpage>
<lpage>W355</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gku396</pub-id>
<pub-id pub-id-type="pmid">24848019</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grove</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jorgensen</surname>
<given-names>B. M.</given-names>
</name>
<name>
<surname>Jessen</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sondergaard</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hollung</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Combination of statistical approaches for analysis of 2-DE data gives complementary results</article-title>
.
<source>J. Proteome Res</source>
.
<volume>7</volume>
,
<fpage>5119</fpage>
<lpage>5124</lpage>
.
<pub-id pub-id-type="doi">10.1021/pr800424c</pub-id>
<pub-id pub-id-type="pmid">19367717</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cardoso</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Martins</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Loureiro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bernardes</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Varzea</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2009a</year>
).
<article-title>Differential induction of superoxide dismutase in
<italic>Coffea arabica–Hemileia vastatrix</italic>
interactions</article-title>
, in
<source>Proceedings of the 22th International Conference on Coffee Science (ASIC2008)</source>
(Campinas).</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Struck</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Loureiro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nicole</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>C. J.</given-names>
<suffix>Jr.</suffix>
</name>
<etal></etal>
</person-group>
(
<year>2009b</year>
).
<article-title>Chitinases of
<italic>Coffea arabica</italic>
genotypes resistant to orange rust
<italic>Hemileia vastatrix</italic>
</article-title>
.
<source>Biol. Plant</source>
.
<volume>53</volume>
,
<fpage>702</fpage>
<lpage>706</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10535-009-0126-8</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chaves</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pinheiro</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Queiroz</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Renaut</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Effect of greenhouse conditions on the leaf apoplastic proteome of
<italic>Coffea arabica</italic>
plants</article-title>
.
<source>J. Proteomics</source>
<volume>104</volume>
,
<fpage>128</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jprot.2014.03.024</pub-id>
<pub-id pub-id-type="pmid">24698662</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chaves</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Queiroz</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pinheiro</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Renaut</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Integrated cytological and proteomic analysis of
<italic>Coffea arabica</italic>
-
<italic>Hemileia vastatrix</italic>
interactions</article-title>
, in
<source>Proceedings of the 24th International Conference on Coffee Science (ASIC2012)</source>
(San José).</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heath</surname>
<given-names>M. C.</given-names>
</name>
</person-group>
(
<year>1984</year>
).
<article-title>Relationship between heat-induced fungal death and plant necrosis in compatible and incompatible interactions involving the bean and cowpea rust fungi</article-title>
.
<source>Phytopathology</source>
<volume>74</volume>
,
<fpage>1370</fpage>
<lpage>1376</lpage>
.</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heath</surname>
<given-names>M. C.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Involvement of reactive oxygen species in the response of resistant (hypersensitive) or susceptible cowpeas to the cowpea rust fungus</article-title>
.
<source>New Phytol</source>
.
<volume>138</volume>
,
<fpage>251</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1469-8137.1998.00897.x</pub-id>
<pub-id pub-id-type="pmid">11199391</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hermanson</surname>
<given-names>G. T.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Antibody modification and conjugation, Chapter 20</article-title>
, in
<source>Bioconjugate Techniques</source>
,
<edition>3rd Edn</edition>
, (Academic Press),
<fpage>880</fpage>
.</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jamet</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Albenne</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Boudart</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Irshad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Canut</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pont-Lezica</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Recent advances in plant cell wall proteomics</article-title>
.
<source>Proteomics</source>
<volume>8</volume>
,
<fpage>893</fpage>
<lpage>908</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200700938</pub-id>
<pub-id pub-id-type="pmid">18210371</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The plant immune system</article-title>
.
<source>Nature</source>
<volume>444</volume>
,
<fpage>323</fpage>
<lpage>329</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature05286</pub-id>
<pub-id pub-id-type="pmid">17108957</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jorrín-Novo</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Pascual</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sánchez-Lucas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Romero-Rodríguez</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Rodríguez-Ortega</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015</year>
).
<article-title>Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms</article-title>
.
<source>Proteomics</source>
<volume>15</volume>
,
<fpage>1089</fpage>
<lpage>1112</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.201400349</pub-id>
<pub-id pub-id-type="pmid">25487722</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaffarnik</surname>
<given-names>F. A.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Rathjen</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Peck</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Effector proteins of the bacterial pathogen
<italic>Pseudomonas syringae</italic>
alter the extracellular proteome of the host plant,
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Mol. Cell. Proteomics</source>
<volume>8</volume>
,
<fpage>145</fpage>
<lpage>156</lpage>
.
<pub-id pub-id-type="doi">10.1074/mcp.M800043-MCP200</pub-id>
<pub-id pub-id-type="pmid">18716313</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krogh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Larsson</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sonnhammer</surname>
<given-names>E. L. L.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes</article-title>
.
<source>J. Mol. Biol</source>
.
<volume>305</volume>
,
<fpage>567</fpage>
<lpage>580</lpage>
.
<pub-id pub-id-type="doi">10.1006/jmbi.2000.4315</pub-id>
<pub-id pub-id-type="pmid">11152613</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kudla</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Harter</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gruissem</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Luan</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Genes for calcineurin B-like proteins in
<italic>Arabidopsis</italic>
are differentially regulated by stress signals</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A</source>
.
<volume>96</volume>
,
<fpage>4718</fpage>
<lpage>4723</lpage>
.
<pub-id pub-id-type="pmid">10200328</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamanda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zahn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Roder</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Langen</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Improved Ruthenium II tris (bathophenantroline disulfonate) staining and distaining protocol for a better signal-to-background ratio and improved baseline resolution</article-title>
.
<source>Proteomics</source>
<volume>4</volume>
,
<fpage>599</fpage>
<lpage>608</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200300587</pub-id>
<pub-id pub-id-type="pmid">14997483</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tommerup</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Svendsen</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Mundy</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Biochemical and molecular characterization of three barley seed proteins with antifungal properties</article-title>
.
<source>J. Biol. Chem</source>
.
<volume>266</volume>
,
<fpage>1564</fpage>
<lpage>1573</lpage>
.
<pub-id pub-id-type="pmid">1899089</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>K. B.</given-names>
</name>
<name>
<surname>Scheffler</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Garrett</surname>
<given-names>W. M.</given-names>
</name>
<name>
<surname>Thibivilliers</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus</article-title>
.
<source>Mol. Cell. Proteomics</source>
<volume>8</volume>
,
<fpage>19</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1074/mcp.M800156-MCP200</pub-id>
<pub-id pub-id-type="pmid">18755735</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Leitão</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bronze</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Vilas-Boas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname></surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>M. H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>Chlorogenic acid content in coffee leaves: possible role in coffee leaf rust resistance</article-title>
, in
<source>Proceedings of the 24th International Conference on Coffee Science (ASIC2010)</source>
(Bali).</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lionetti</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cervone</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bellincampi</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases</article-title>
.
<source>J. Plant Physiol</source>
.
<volume>169</volume>
,
<fpage>1623</fpage>
<lpage>1630</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2012.05.006</pub-id>
<pub-id pub-id-type="pmid">22717136</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lohse</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Herter</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>May</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Schroda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zrenner</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data</article-title>
.
<source>Plant Cell Environ</source>
.
<volume>37</volume>
,
<fpage>1250</fpage>
<lpage>1258</lpage>
.
<pub-id pub-id-type="doi">10.1111/pce.12231</pub-id>
<pub-id pub-id-type="pmid">24237261</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lombard</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Golaconda Ramulu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Drula</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Coutinho</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Henrissat</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>The Carbohydrate-active enzymes database (CAZy) in 2013</article-title>
.
<source>Nucleic Acids Res</source>
.
<volume>42</volume>
,
<fpage>D490</fpage>
<lpage>D495</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkt1178</pub-id>
<pub-id pub-id-type="pmid">24270786</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luan</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Protein phosphatases in plants</article-title>
.
<source>Annu. Rev. Plant Biol</source>
.
<volume>54</volume>
,
<fpage>63</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.arplant.54.031902.134743</pub-id>
<pub-id pub-id-type="pmid">14502985</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Montillet</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Bresson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Agnel</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Daniel</surname>
<given-names>J. F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1998</year>
).
<article-title>Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to
<italic>Xanthomonas campestris</italic>
pv.
<italic>Malvacearum</italic>
Race 18</article-title>
.
<source>Mol. Plant Microbe Interact</source>
.
<volume>11</volume>
,
<fpage>1038</fpage>
<lpage>1047</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.1998.11.11.1038</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mauch</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mauch-Mani</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Boller</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>1988</year>
).
<article-title>Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase</article-title>
.
<source>Plant Physiol</source>
.
<volume>88</volume>
,
<fpage>936</fpage>
<lpage>942</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.88.3.936</pub-id>
<pub-id pub-id-type="pmid">16666407</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maxemiuc-Naccache</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Braga</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Dietrich</surname>
<given-names>S. M. C.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Chitinase and β-1,3-glucanase changes in compatible and incompatible combinations between coffee leaf disks and coffee rust (
<italic>Hemileia vastatrix</italic>
)</article-title>
.
<source>Rev. Bras Bot</source>
.
<volume>15</volume>
,
<fpage>145</fpage>
<lpage>150</lpage>
.</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mika</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Minibayeva</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Beckett</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Luthje</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species</article-title>
.
<source>Phytochem. Rev</source>
.
<volume>3</volume>
,
<fpage>173</fpage>
<lpage>193</lpage>
.
<pub-id pub-id-type="doi">10.1023/B:PHYT.0000047806.21626.49</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monteiro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sebastiana</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pais</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Figueiredo</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Reference genes election and validation for the early responses to downy mildew infection in susceptible and resistant
<italic>Vitis vinifera</italic>
cultivars</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>e72998</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0072998</pub-id>
<pub-id pub-id-type="pmid">24023800</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ndimba</surname>
<given-names>B. K.</given-names>
</name>
<name>
<surname>Chivasa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Slabas</surname>
<given-names>A. R.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Proteomic analysis of changes in the extracellular matrix of
<italic>Arabidopsis</italic>
cell suspension cultures induced by fungal elicitors</article-title>
.
<source>Proteomics</source>
<volume>3</volume>
,
<fpage>1047</fpage>
<lpage>1059</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200300413</pub-id>
<pub-id pub-id-type="pmid">12833529</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neuhoff</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Stamm</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eibl</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1985</year>
).
<article-title>Clear background and highly sensitive protein staining with Coomassie blue dyes in polyacrylamide gels - a systematic analysis</article-title>
.
<source>Electrophoresis</source>
<volume>6</volume>
,
<fpage>427</fpage>
<lpage>448</lpage>
.
<pub-id pub-id-type="doi">10.1002/elps.1150060905</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y. S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J. E.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2005</year>
).
<article-title>Secretome analysis reveals an
<italic>Arabidopsis</italic>
lipase involved in defence against
<italic>Alternaria brassicicola</italic>
</article-title>
.
<source>Plant Cell</source>
<volume>17</volume>
,
<fpage>2832</fpage>
<lpage>2847</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.105.034819</pub-id>
<pub-id pub-id-type="pmid">16126835</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>T. N.</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>SignalP 4.0: discriminating signal peptides from transmembrane regions</article-title>
.
<source>Nat. Methods</source>
<volume>8</volume>
,
<fpage>785</fpage>
<lpage>786</lpage>
.
<pub-id pub-id-type="doi">10.1038/nmeth.1701</pub-id>
<pub-id pub-id-type="pmid">21959131</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pierleoni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Martelli</surname>
<given-names>P. L.</given-names>
</name>
<name>
<surname>Casadio</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>PredGPI: a GPI anchor predictor</article-title>
.
<source>BMC Bioinformatics</source>
<volume>9</volume>
:
<fpage>392</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2105-9-392</pub-id>
<pub-id pub-id-type="pmid">18811934</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinheiro</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>David</surname>
<given-names>T. S.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Proteomics: state of the art to study Mediterranean woody species under stress</article-title>
.
<source>Environ. Exp. Bot</source>
.
<volume>103</volume>
,
<fpage>117</fpage>
<lpage>127</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envexpbot.2014.01.010</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramagli</surname>
<given-names>L. S.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Quantifying protein in 2-D PAGE solubilization buffers. 2-D Proteome Analysis Protocols</article-title>
.
<source>Methods Mol. Biol</source>
.
<volume>112</volume>
,
<fpage>99</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1385/1-59259-584-7:99</pub-id>
<pub-id pub-id-type="pmid">10027233</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramirez</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mauch-Mani</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gil</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vera</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>An extra-cellular subtilase switch for immune priming in
<italic>Arabidopsis</italic>
</article-title>
.
<source>PLoS Pathog</source>
.
<volume>9</volume>
:
<fpage>e1003445</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.ppat.1003445</pub-id>
<pub-id pub-id-type="pmid">23818851</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ravichandran</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>S. L.</given-names>
</name>
<name>
<surname>Benkel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Prithiviraj</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Purple acid phosphatase5 is required for maintaining basal resistance against
<italic>Pseudomonas syringae</italic>
in
<italic>Arabidopsis</italic>
</article-title>
.
<source>BMC Plant Biol</source>
.
<volume>13</volume>
:
<fpage>107</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2229-13-107</pub-id>
<pub-id pub-id-type="pmid">23890153</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rijo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>C. J.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Vasconcelos</surname>
<given-names>M. I.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Does gene SH
<sub>5</sub>
confer to certain coffee-rust associations a reaction near immunity? A histopathological study</article-title>
.
<source>Café Cacao Thé</source>
<volume>XXXV</volume>
,
<fpage>167</fpage>
<lpage>176</lpage>
.</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodrigues</surname>
<given-names>C.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Bettencourt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rijo</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>1975</year>
).
<article-title>Races of the pathogen and resistance to coffee rust</article-title>
.
<source>Annu. Rev. Phytopathol</source>
.
<volume>13</volume>
,
<fpage>49</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.py.13.090175.000405</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rojas</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Montes de Gómez</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Ocampo</surname>
<given-names>C. A.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Stimulation of lipoxygenase activity in cotyledonary leaves of coffee reacting hypersensitively to the coffee leaf rust</article-title>
.
<source>Physiol. Mol. Plant Pathol</source>
.
<volume>43</volume>
,
<fpage>209</fpage>
<lpage>219</lpage>
.
<pub-id pub-id-type="doi">10.1006/pmpp.1993.1051</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname></surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Queiroz</surname>
<given-names>V. T.</given-names>
</name>
<name>
<surname>Vilas Boas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>M. H.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>A liquid chromatography-electrospray tandem mass spectrometry method for the simultaneous quantification of salicylic, jasmonic, and abscisic acid in
<italic>Coffea arabica</italic>
leaves</article-title>
.
<source>J. Sci. Food Agric</source>
.
<volume>94</volume>
,
<fpage>529</fpage>
<lpage>536</lpage>
.
<pub-id pub-id-type="doi">10.1002/jsfa.6288</pub-id>
<pub-id pub-id-type="pmid">23801071</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saha</surname>
<given-names>B. C.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology</article-title>
.
<source>Biotechnol. Adv</source>
.
<volume>18</volume>
,
<fpage>403</fpage>
<lpage>423</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0734-9750(00)00044-6</pub-id>
<pub-id pub-id-type="pmid">14538102</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schulze-Lefert</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Panstruga</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance</article-title>
.
<source>Annu. Rev. Phytopathol</source>
.
<volume>41</volume>
,
<fpage>641</fpage>
<lpage>667</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.phyto.41.061002.083300</pub-id>
<pub-id pub-id-type="pmid">14527335</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Loureiro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nicole</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Involvement of peroxidases in the coffee resistance to orange rust (
<italic>Hemileia vastatrix</italic>
)</article-title>
.
<source>Physiol. Mol. Plant Pathol</source>
.
<volume>72</volume>
,
<fpage>29</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pmpp.2008.04.004</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Nicole</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>C. J.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Hypersensitive cell death and post-haustorial defence responses arrest the orange rust (
<italic>Hemileia vastatrix</italic>
) growth in resistant coffee leaves</article-title>
.
<source>Physiol. Mol. Plant Pathol</source>
.
<volume>60</volume>
,
<fpage>169</fpage>
<lpage>183</lpage>
.
<pub-id pub-id-type="doi">10.1006/pmpp.2002.0389</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Nicole</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rijo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Geiger</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>C. J.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Cytochemistry of plant-rust fungus interface during the compatible interaction
<italic>Coffea arabica</italic>
(cv.
<italic>Caturra)-Hemileia vastatrix</italic>
(race III)</article-title>
.
<source>Int. J. Plant Sci</source>
.
<volume>160</volume>
,
<fpage>79</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.1086/314113</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Várzea</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Guerra-Guimarães</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Azinheira</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Petitot</surname>
<given-names>A. S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Coffee resistance to the main diseases: leaf rust and coffee berry disease</article-title>
.
<source>Braz. J. Plant Physiol</source>
.
<volume>18</volume>
,
<fpage>119</fpage>
<lpage>147</lpage>
.
<pub-id pub-id-type="doi">10.1590/S1677-04202006000100010</pub-id>
<pub-id pub-id-type="pmid">22611856</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vartapetian</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tuzhikov</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chichkova</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Taliansky</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wolpert</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>A plant alternative to animal caspases: subtilisin-like proteases</article-title>
.
<source>Cell Death Differ</source>
.
<volume>18</volume>
,
<fpage>1289</fpage>
<lpage>1297</lpage>
.
<pub-id pub-id-type="doi">10.1038/cdd.2011.49</pub-id>
<pub-id pub-id-type="pmid">21546909</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Várzea</surname>
<given-names>V. M. P.</given-names>
</name>
<name>
<surname>Marques</surname>
<given-names>D. V.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Population variability of
<italic>Hemileia vastatrix</italic>
vs coffee durable resistance</article-title>
, in
<source>Durable Resistance to Coffee Leaf Rust</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Zambolim</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zambolim</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Várzea</surname>
<given-names>V. M. P.</given-names>
</name>
</person-group>
(
<publisher-loc>Viçosa</publisher-loc>
:
<publisher-name>Universidade Federal de Viçosa</publisher-name>
),
<fpage>53</fpage>
<lpage>74</lpage>
.</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voegele</surname>
<given-names>R. T.</given-names>
</name>
<name>
<surname>Mendgen</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Rust haustoria: nutrient uptake and beyond</article-title>
.
<source>New Phytol</source>
.
<volume>159</volume>
,
<fpage>93</fpage>
<lpage>100</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1469-8137.2003.00761.x</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Masoud</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>C. J.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco</article-title>
.
<source>Nat. Biotechnol</source>
.
<volume>12</volume>
,
<fpage>807</fpage>
<lpage>812</lpage>
.
<pub-id pub-id-type="doi">10.1038/nbt0894-807</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020