Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in Klebsiella pneumoniae.

Identifieur interne : 000240 ( Main/Exploration ); précédent : 000239; suivant : 000241

FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in Klebsiella pneumoniae.

Auteurs : Tien-Huang Lin [Taïwan] ; Chien-Chen Wu [Taïwan] ; Jong-Tar Kuo [Taïwan] ; Hsu-Feng Chu [Taïwan] ; Ding-Yu Lee [Taïwan] ; Ching-Ting Lin [Taïwan]

Source :

RBID : pubmed:31736888

Abstract

Fumarate nitrate reduction regulator (FNR) is a direct oxygen-responsive transcriptional regulator containing an iron-sulfur (Fe-S) cluster. During anaerobic growth, the [4Fe-4S] cluster in FNR (holo-FNR) binds specifically to DNA, whereas exposure to oxygen results in the loss of its DNA-binding activity via oxidation of the [4Fe-4S] cluster. In this study, we aimed to investigate the role of FNR in regulation of capsular polysaccharide (CPS) biosynthesis, serum resistance, and anti-phagocytosis of K. pneumoniae. We found that the CPS amount in K. pneumoniae increased in anaerobic conditions, compared to that in aerobic conditions. An fnr deletion mutant and a site-directed mutant (fnr3CA), with the three cysteines (C20, C23, and C29) replaced with alanines to mimic an FNR lacking the [4Fe-4S] cluster, showed marked increase in CPS amount under anaerobic conditions. A promoter-reporter assay and qRT-PCR confirmed that the transcription of the cps genes was repressed by holo-FNR. In addition, we found that holo-FNR could repress the transcription of rmpA and rmpA2, encoding cps transcriptional activators. Deletion of rmpA or rmpA2 in the Δfnr strain reduced CPS biosynthesis, suggesting that RmpA and RmpA2 participated in the holo-FNR-mediated repression of cps transcription, thereby regulating the CPS amount, serum resistance, and anti-phagocytosis. Taken together, our results provided evidence that RmpA and RmpA2 participated in the holo-FNR-mediated repression of CPS biosynthesis, and resistance to the host defense in response to oxygen availability.

DOI: 10.3389/fmicb.2019.02436
PubMed: 31736888
PubMed Central: PMC6828653


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in
<i>Klebsiella pneumoniae</i>
.</title>
<author>
<name sortKey="Lin, Tien Huang" sort="Lin, Tien Huang" uniqKey="Lin T" first="Tien-Huang" last="Lin">Tien-Huang Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung</wicri:regionArea>
<wicri:noRegion>Taichung</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien</wicri:regionArea>
<wicri:noRegion>Hualien</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Chien Chen" sort="Wu, Chien Chen" uniqKey="Wu C" first="Chien-Chen" last="Wu">Chien-Chen Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Jong Tar" sort="Kuo, Jong Tar" uniqKey="Kuo J" first="Jong-Tar" last="Kuo">Jong-Tar Kuo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Biological Science and Technology, China University of Science and Technology, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, Hsu Feng" sort="Chu, Hsu Feng" uniqKey="Chu H" first="Hsu-Feng" last="Chu">Hsu-Feng Chu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Ding Yu" sort="Lee, Ding Yu" uniqKey="Lee D" first="Ding-Yu" last="Lee">Ding-Yu Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Biological Science and Technology, China University of Science and Technology, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Ching Ting" sort="Lin, Ching Ting" uniqKey="Lin C" first="Ching-Ting" last="Lin">Ching-Ting Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chinese Medicine, China Medical University, Taichung, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>School of Chinese Medicine, China Medical University, Taichung</wicri:regionArea>
<wicri:noRegion>Taichung</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31736888</idno>
<idno type="pmid">31736888</idno>
<idno type="doi">10.3389/fmicb.2019.02436</idno>
<idno type="pmc">PMC6828653</idno>
<idno type="wicri:Area/Main/Corpus">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000194</idno>
<idno type="wicri:Area/Main/Curation">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000194</idno>
<idno type="wicri:Area/Main/Exploration">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in
<i>Klebsiella pneumoniae</i>
.</title>
<author>
<name sortKey="Lin, Tien Huang" sort="Lin, Tien Huang" uniqKey="Lin T" first="Tien-Huang" last="Lin">Tien-Huang Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung</wicri:regionArea>
<wicri:noRegion>Taichung</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien</wicri:regionArea>
<wicri:noRegion>Hualien</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Chien Chen" sort="Wu, Chien Chen" uniqKey="Wu C" first="Chien-Chen" last="Wu">Chien-Chen Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Jong Tar" sort="Kuo, Jong Tar" uniqKey="Kuo J" first="Jong-Tar" last="Kuo">Jong-Tar Kuo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Biological Science and Technology, China University of Science and Technology, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, Hsu Feng" sort="Chu, Hsu Feng" uniqKey="Chu H" first="Hsu-Feng" last="Chu">Hsu-Feng Chu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Ding Yu" sort="Lee, Ding Yu" uniqKey="Lee D" first="Ding-Yu" last="Lee">Ding-Yu Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Biological Science and Technology, China University of Science and Technology, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Ching Ting" sort="Lin, Ching Ting" uniqKey="Lin C" first="Ching-Ting" last="Lin">Ching-Ting Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chinese Medicine, China Medical University, Taichung, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>School of Chinese Medicine, China Medical University, Taichung</wicri:regionArea>
<wicri:noRegion>Taichung</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fumarate nitrate reduction regulator (FNR) is a direct oxygen-responsive transcriptional regulator containing an iron-sulfur (Fe-S) cluster. During anaerobic growth, the [4Fe-4S] cluster in FNR (holo-FNR) binds specifically to DNA, whereas exposure to oxygen results in the loss of its DNA-binding activity via oxidation of the [4Fe-4S] cluster. In this study, we aimed to investigate the role of FNR in regulation of capsular polysaccharide (CPS) biosynthesis, serum resistance, and anti-phagocytosis of
<i>K. pneumoniae</i>
. We found that the CPS amount in
<i>K. pneumoniae</i>
increased in anaerobic conditions, compared to that in aerobic conditions. An
<i>fnr</i>
deletion mutant and a site-directed mutant (
<i>fnr</i>
<sub>3</sub>
<sub>CA</sub>
), with the three cysteines (C20, C23, and C29) replaced with alanines to mimic an FNR lacking the [4Fe-4S] cluster, showed marked increase in CPS amount under anaerobic conditions. A promoter-reporter assay and qRT-PCR confirmed that the transcription of the
<i>cps</i>
genes was repressed by holo-FNR. In addition, we found that holo-FNR could repress the transcription of
<i>rmpA</i>
and
<i>rmpA2</i>
, encoding
<i>cps</i>
transcriptional activators. Deletion of
<i>rmpA</i>
or
<i>rmpA2</i>
in the Δ
<i>fnr</i>
strain reduced CPS biosynthesis, suggesting that RmpA and RmpA2 participated in the holo-FNR-mediated repression of
<i>cps</i>
transcription, thereby regulating the CPS amount, serum resistance, and anti-phagocytosis. Taken together, our results provided evidence that RmpA and RmpA2 participated in the holo-FNR-mediated repression of CPS biosynthesis, and resistance to the host defense in response to oxygen availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31736888</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in
<i>Klebsiella pneumoniae</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>2436</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2019.02436</ELocationID>
<Abstract>
<AbstractText>Fumarate nitrate reduction regulator (FNR) is a direct oxygen-responsive transcriptional regulator containing an iron-sulfur (Fe-S) cluster. During anaerobic growth, the [4Fe-4S] cluster in FNR (holo-FNR) binds specifically to DNA, whereas exposure to oxygen results in the loss of its DNA-binding activity via oxidation of the [4Fe-4S] cluster. In this study, we aimed to investigate the role of FNR in regulation of capsular polysaccharide (CPS) biosynthesis, serum resistance, and anti-phagocytosis of
<i>K. pneumoniae</i>
. We found that the CPS amount in
<i>K. pneumoniae</i>
increased in anaerobic conditions, compared to that in aerobic conditions. An
<i>fnr</i>
deletion mutant and a site-directed mutant (
<i>fnr</i>
<sub>3</sub>
<sub>CA</sub>
), with the three cysteines (C20, C23, and C29) replaced with alanines to mimic an FNR lacking the [4Fe-4S] cluster, showed marked increase in CPS amount under anaerobic conditions. A promoter-reporter assay and qRT-PCR confirmed that the transcription of the
<i>cps</i>
genes was repressed by holo-FNR. In addition, we found that holo-FNR could repress the transcription of
<i>rmpA</i>
and
<i>rmpA2</i>
, encoding
<i>cps</i>
transcriptional activators. Deletion of
<i>rmpA</i>
or
<i>rmpA2</i>
in the Δ
<i>fnr</i>
strain reduced CPS biosynthesis, suggesting that RmpA and RmpA2 participated in the holo-FNR-mediated repression of
<i>cps</i>
transcription, thereby regulating the CPS amount, serum resistance, and anti-phagocytosis. Taken together, our results provided evidence that RmpA and RmpA2 participated in the holo-FNR-mediated repression of CPS biosynthesis, and resistance to the host defense in response to oxygen availability.</AbstractText>
<CopyrightInformation>Copyright © 2019 Lin, Wu, Kuo, Chu, Lee and Lin.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Tien-Huang</ForeName>
<Initials>TH</Initials>
<AffiliationInfo>
<Affiliation>Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Chien-Chen</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>Jong-Tar</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Hsu-Feng</ForeName>
<Initials>HF</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Ding-Yu</ForeName>
<Initials>DY</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Ching-Ting</ForeName>
<Initials>CT</Initials>
<AffiliationInfo>
<Affiliation>School of Chinese Medicine, China Medical University, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">FNR</Keyword>
<Keyword MajorTopicYN="N">Klebsiella pneumoniae</Keyword>
<Keyword MajorTopicYN="N">RmpA</Keyword>
<Keyword MajorTopicYN="N">RmpA2</Keyword>
<Keyword MajorTopicYN="N">capsule polysaccharide</Keyword>
<Keyword MajorTopicYN="N">oxygen</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31736888</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2019.02436</ArticleId>
<ArticleId IdType="pmc">PMC6828653</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiology. 2003 Sep;149(Pt 9):2397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2018 Dec;110(5):689-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29802751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1973 Aug;54(2):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4269305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 28;10(9):e0139152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26414183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Oct;59(10):5873-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26169401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Feb;185(3):788-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12533454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Gastroenterol. 2005 Feb;100(2):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15667489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2003 Jan-Feb;154(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12576153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1989 Oct;3(10):1349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2693894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 08;6:36280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27824151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Sep 11;12:201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2010 Jul 24;17:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20653976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 19;9(9):e107812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25237815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Aug;73(8):4626-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 May 15;166(2):241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2006 Feb;152(Pt 2):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16436443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 Nov 20;9(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30459193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2004 Nov;6(13):1191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Apr;158(Pt 4):1045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22262101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Oral Biol Med. 2001;12(2):101-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11345521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Nov;69(11):7140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1991 Jun;59(6):2043-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2037364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1998 Jun;62(6):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9692193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2017 May 16;7:182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28560183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2016 Feb 09;6:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e54430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23408939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1998 Oct;11(4):589-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2015 Oct 13;15:415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26464061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1998 Dec;22(5):341-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut Pathog. 2016 Feb 13;8:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26893615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2014 Apr;133:110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24485010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Feb 22;169(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8635748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2014;5(8):794-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25603427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Aug;188(16):5935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2017 Jul 25;199(16):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28439035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2016 May;62(2):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26660885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2836362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>West J Med. 1995 Mar;162(3):220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7725704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Apr;177(7):1788-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Sep 30;30(24):4931-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8577745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 25;354(2):220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1054-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Dec;98(5):847-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26264774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Jun;192(12):3144-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2009 Oct;47(10):3336-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2018 Jan;18(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28864030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1989 Dec;57(12):3778-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2680983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2016 Jun 15;80(3):629-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27307579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2000 Jan;38(1):412-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10618128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Oct;189(19):6957-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12588-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Dec;2(12):954-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Dec;68(12):6744-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11083790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Apr 24;541(1-3):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2011 Feb;157(Pt 2):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Jul 24;12:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22827802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<country name="Taïwan">
<noRegion>
<name sortKey="Lin, Tien Huang" sort="Lin, Tien Huang" uniqKey="Lin T" first="Tien-Huang" last="Lin">Tien-Huang Lin</name>
</noRegion>
<name sortKey="Chu, Hsu Feng" sort="Chu, Hsu Feng" uniqKey="Chu H" first="Hsu-Feng" last="Chu">Hsu-Feng Chu</name>
<name sortKey="Kuo, Jong Tar" sort="Kuo, Jong Tar" uniqKey="Kuo J" first="Jong-Tar" last="Kuo">Jong-Tar Kuo</name>
<name sortKey="Lee, Ding Yu" sort="Lee, Ding Yu" uniqKey="Lee D" first="Ding-Yu" last="Lee">Ding-Yu Lee</name>
<name sortKey="Lin, Ching Ting" sort="Lin, Ching Ting" uniqKey="Lin C" first="Ching-Ting" last="Lin">Ching-Ting Lin</name>
<name sortKey="Lin, Tien Huang" sort="Lin, Tien Huang" uniqKey="Lin T" first="Tien-Huang" last="Lin">Tien-Huang Lin</name>
<name sortKey="Wu, Chien Chen" sort="Wu, Chien Chen" uniqKey="Wu C" first="Chien-Chen" last="Wu">Chien-Chen Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000240 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000240 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31736888
   |texte=   FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in Klebsiella pneumoniae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31736888" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020