Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.

Identifieur interne : 000236 ( Main/Exploration ); précédent : 000235; suivant : 000237

H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.

Auteurs : Amanda S. Byer [États-Unis] ; Eric M. Shepard [États-Unis] ; Michael W. Ratzloff [États-Unis] ; Jeremiah N. Betz [États-Unis] ; Paul W. King [États-Unis] ; William E. Broderick [États-Unis] ; Joan B. Broderick [États-Unis]

Source :

RBID : pubmed:31493152

Descripteurs français

English descriptors

Abstract

[FeFe]-hydrogenase catalyzes the reversible reduction of protons to H2 at a complex metallocofactor site, the H-cluster. Biosynthesis of this active-site H-cluster requires three maturation enzymes: the radical S-adenosylmethionine enzymes HydE and HydG synthesize the nonprotein ligands, while the GTPase HydF provides a scaffold for assembly of the 2Fe subcluster of the H-cluster ([2Fe]H) prior to its transfer to hydrogenase. To delineate the assembly and delivery steps for the 2Fe precursor cluster coordinated to HydF ([2Fe]F), we have heterologously expressed HydF in the presence of HydE alone (HydFE) or HydG alone (HydFG), and characterized the resulting purified HydFE and HydFG using UV-visible, EPR, and FTIR spectroscopies and biochemical assays. The iron-sulfur clusters on HydF are modified by co-expression with HydE or HydG, as evidenced by the changes in the visible, EPR, and FTIR spectral features. Further, biochemical assays show that HydFE is capable of activating HydAΔEFG to a limited extent (~ 1% of WT) even though the normal source of CO and CN- ligands of [2Fe]H (HydG) was absent. Activation assays performed with HydFG, in contrast, exhibit no ability to mature HydAΔEFG. It appears that in the case of HydFE, trace diatomics from the cellular environment are incorporated into a [2Fe]F-like precursor on HydF in the absence of HydG. We conclude that the product of HydE, presumably the dithiomethylamine ligand of [2Fe]H, is absolutely essential to the activation process, while the diatomic products of HydG can be provided from alternate sources.

DOI: 10.1007/s00775-019-01709-7
PubMed: 31493152


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.</title>
<author>
<name sortKey="Byer, Amanda S" sort="Byer, Amanda S" uniqKey="Byer A" first="Amanda S" last="Byer">Amanda S. Byer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shepard, Eric M" sort="Shepard, Eric M" uniqKey="Shepard E" first="Eric M" last="Shepard">Eric M. Shepard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratzloff, Michael W" sort="Ratzloff, Michael W" uniqKey="Ratzloff M" first="Michael W" last="Ratzloff">Michael W. Ratzloff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Betz, Jeremiah N" sort="Betz, Jeremiah N" uniqKey="Betz J" first="Jeremiah N" last="Betz">Jeremiah N. Betz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="King, Paul W" sort="King, Paul W" uniqKey="King P" first="Paul W" last="King">Paul W. King</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broderick, William E" sort="Broderick, William E" uniqKey="Broderick W" first="William E" last="Broderick">William E. Broderick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broderick, Joan B" sort="Broderick, Joan B" uniqKey="Broderick J" first="Joan B" last="Broderick">Joan B. Broderick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. jbroderick@chemistry.montana.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31493152</idno>
<idno type="pmid">31493152</idno>
<idno type="doi">10.1007/s00775-019-01709-7</idno>
<idno type="wicri:Area/Main/Corpus">000243</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000243</idno>
<idno type="wicri:Area/Main/Curation">000243</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000243</idno>
<idno type="wicri:Area/Main/Exploration">000243</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.</title>
<author>
<name sortKey="Byer, Amanda S" sort="Byer, Amanda S" uniqKey="Byer A" first="Amanda S" last="Byer">Amanda S. Byer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shepard, Eric M" sort="Shepard, Eric M" uniqKey="Shepard E" first="Eric M" last="Shepard">Eric M. Shepard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratzloff, Michael W" sort="Ratzloff, Michael W" uniqKey="Ratzloff M" first="Michael W" last="Ratzloff">Michael W. Ratzloff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Betz, Jeremiah N" sort="Betz, Jeremiah N" uniqKey="Betz J" first="Jeremiah N" last="Betz">Jeremiah N. Betz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="King, Paul W" sort="King, Paul W" uniqKey="King P" first="Paul W" last="King">Paul W. King</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broderick, William E" sort="Broderick, William E" uniqKey="Broderick W" first="William E" last="Broderick">William E. Broderick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broderick, Joan B" sort="Broderick, Joan B" uniqKey="Broderick J" first="Joan B" last="Broderick">Joan B. Broderick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. jbroderick@chemistry.montana.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717</wicri:regionArea>
<wicri:noRegion>59717</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</title>
<idno type="eISSN">1432-1327</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Clostridium acetobutylicum (enzymology)</term>
<term>Clostridium acetobutylicum (metabolism)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Hydrogenase (chemistry)</term>
<term>Hydrogenase (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>S-Adenosylmethionine (chemistry)</term>
<term>S-Adenosylmethionine (metabolism)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adémétionine (composition chimique)</term>
<term>Adémétionine (métabolisme)</term>
<term>Clostridium acetobutylicum (enzymologie)</term>
<term>Clostridium acetobutylicum (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Hydrogenase (composition chimique)</term>
<term>Hydrogenase (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Spectroscopie de résonance de spin électronique (MeSH)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hydrogenase</term>
<term>Iron-Sulfur Proteins</term>
<term>S-Adenosylmethionine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hydrogenase</term>
<term>Iron-Sulfur Proteins</term>
<term>S-Adenosylmethionine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Adémétionine</term>
<term>Ferrosulfoprotéines</term>
<term>Hydrogenase</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Clostridium acetobutylicum</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Clostridium acetobutylicum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Clostridium acetobutylicum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adémétionine</term>
<term>Clostridium acetobutylicum</term>
<term>Ferrosulfoprotéines</term>
<term>Hydrogenase</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Spin Resonance Spectroscopy</term>
<term>Protein Conformation</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Spectroscopie de résonance de spin électronique</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[FeFe]-hydrogenase catalyzes the reversible reduction of protons to H
<sub>2</sub>
at a complex metallocofactor site, the H-cluster. Biosynthesis of this active-site H-cluster requires three maturation enzymes: the radical S-adenosylmethionine enzymes HydE and HydG synthesize the nonprotein ligands, while the GTPase HydF provides a scaffold for assembly of the 2Fe subcluster of the H-cluster ([2Fe]
<sub>H</sub>
) prior to its transfer to hydrogenase. To delineate the assembly and delivery steps for the 2Fe precursor cluster coordinated to HydF ([2Fe]
<sub>F</sub>
), we have heterologously expressed HydF in the presence of HydE alone (HydF
<sup>E</sup>
) or HydG alone (HydF
<sup>G</sup>
), and characterized the resulting purified HydF
<sup>E</sup>
and HydF
<sup>G</sup>
using UV-visible, EPR, and FTIR spectroscopies and biochemical assays. The iron-sulfur clusters on HydF are modified by co-expression with HydE or HydG, as evidenced by the changes in the visible, EPR, and FTIR spectral features. Further, biochemical assays show that HydF
<sup>E</sup>
is capable of activating HydA
<sup>ΔEFG</sup>
to a limited extent (~ 1% of WT) even though the normal source of CO and CN
<sup>-</sup>
ligands of [2Fe]
<sub>H</sub>
(HydG) was absent. Activation assays performed with HydF
<sup>G</sup>
, in contrast, exhibit no ability to mature HydA
<sup>ΔEFG</sup>
. It appears that in the case of HydF
<sup>E</sup>
, trace diatomics from the cellular environment are incorporated into a [2Fe]
<sub>F</sub>
-like precursor on HydF in the absence of HydG. We conclude that the product of HydE, presumably the dithiomethylamine ligand of [2Fe]
<sub>H</sub>
, is absolutely essential to the activation process, while the diatomic products of HydG can be provided from alternate sources.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31493152</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1327</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</Title>
<ISOAbbreviation>J Biol Inorg Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.</ArticleTitle>
<Pagination>
<MedlinePgn>783-792</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00775-019-01709-7</ELocationID>
<Abstract>
<AbstractText>[FeFe]-hydrogenase catalyzes the reversible reduction of protons to H
<sub>2</sub>
at a complex metallocofactor site, the H-cluster. Biosynthesis of this active-site H-cluster requires three maturation enzymes: the radical S-adenosylmethionine enzymes HydE and HydG synthesize the nonprotein ligands, while the GTPase HydF provides a scaffold for assembly of the 2Fe subcluster of the H-cluster ([2Fe]
<sub>H</sub>
) prior to its transfer to hydrogenase. To delineate the assembly and delivery steps for the 2Fe precursor cluster coordinated to HydF ([2Fe]
<sub>F</sub>
), we have heterologously expressed HydF in the presence of HydE alone (HydF
<sup>E</sup>
) or HydG alone (HydF
<sup>G</sup>
), and characterized the resulting purified HydF
<sup>E</sup>
and HydF
<sup>G</sup>
using UV-visible, EPR, and FTIR spectroscopies and biochemical assays. The iron-sulfur clusters on HydF are modified by co-expression with HydE or HydG, as evidenced by the changes in the visible, EPR, and FTIR spectral features. Further, biochemical assays show that HydF
<sup>E</sup>
is capable of activating HydA
<sup>ΔEFG</sup>
to a limited extent (~ 1% of WT) even though the normal source of CO and CN
<sup>-</sup>
ligands of [2Fe]
<sub>H</sub>
(HydG) was absent. Activation assays performed with HydF
<sup>G</sup>
, in contrast, exhibit no ability to mature HydA
<sup>ΔEFG</sup>
. It appears that in the case of HydF
<sup>E</sup>
, trace diatomics from the cellular environment are incorporated into a [2Fe]
<sub>F</sub>
-like precursor on HydF in the absence of HydG. We conclude that the product of HydE, presumably the dithiomethylamine ligand of [2Fe]
<sub>H</sub>
, is absolutely essential to the activation process, while the diatomic products of HydG can be provided from alternate sources.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Byer</LastName>
<ForeName>Amanda S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shepard</LastName>
<ForeName>Eric M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ratzloff</LastName>
<ForeName>Michael W</ForeName>
<Initials>MW</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Betz</LastName>
<ForeName>Jeremiah N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Paul W</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Broderick</LastName>
<ForeName>William E</ForeName>
<Initials>WE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Broderick</LastName>
<ForeName>Joan B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. jbroderick@chemistry.montana.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Biol Inorg Chem</MedlineTA>
<NlmUniqueID>9616326</NlmUniqueID>
<ISSNLinking>0949-8257</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7LP2MPO46S</RegistryNumber>
<NameOfSubstance UI="D012436">S-Adenosylmethionine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.12.7.2</RegistryNumber>
<NameOfSubstance UI="D006864">Hydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046969" MajorTopicYN="N">Clostridium acetobutylicum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006864" MajorTopicYN="N">Hydrogenase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012436" MajorTopicYN="N">S-Adenosylmethionine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">H-cluster</Keyword>
<Keyword MajorTopicYN="Y">HydF</Keyword>
<Keyword MajorTopicYN="Y">Maturation</Keyword>
<Keyword MajorTopicYN="Y">Radical SAM</Keyword>
<Keyword MajorTopicYN="Y">[FeFe] hydrogenase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31493152</ArticleId>
<ArticleId IdType="doi">10.1007/s00775-019-01709-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00775-019-01709-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Oct 5;38(40):12969-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10529166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 11;279(24):25711-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15082711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2006 Jan;178(1):42-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jan 13;281(2):769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jan 23;580(2):363-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16386249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2007 May;12(4):443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17372774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Jun 25;582(15):2183-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18501709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Feb 4;583(3):506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19435321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Feb 5;584(3):638-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2010 Feb 22;49(9):1687-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20108298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 13;465(7295):248-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20418861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Jul 14;132(27):9247-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Jan 3;585(1):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1978 Dec 20;537(2):255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">215217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2011 Aug 10;19(8):1038-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21827941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Oct 19;287(43):36544-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22932901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e45850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23049878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 4;499(7456):66-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23803769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Dec 3;52(48):8696-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jan 24;343(6169):424-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24458644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Apr 23;114(8):4081-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Jul 1;53(25):4090-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24878200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2014 Aug;19(6):747-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24972661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Sep 24;136(38):13086-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25099480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1350-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Feb 13;290(7):3987-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25477518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Mar 10;54(9):1807-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25654171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26699472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2016 May;8(5):491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27102684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Jun 28;55(25):3514-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27232385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 May 10;7(1):1714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28490758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2017 Jun 27;56(25):3234-3247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28525271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2017 Sep 12;56(36):4733-4734</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28853860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2018 Jul 17;47(28):9521-9535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29964288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Oct 11;19(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30314343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2019 May 7;48(18):5978-5986</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30632592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Nov 5;234(1):140-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8230194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 1997;37:517-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9131263</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Byer, Amanda S" sort="Byer, Amanda S" uniqKey="Byer A" first="Amanda S" last="Byer">Amanda S. Byer</name>
</noRegion>
<name sortKey="Betz, Jeremiah N" sort="Betz, Jeremiah N" uniqKey="Betz J" first="Jeremiah N" last="Betz">Jeremiah N. Betz</name>
<name sortKey="Broderick, Joan B" sort="Broderick, Joan B" uniqKey="Broderick J" first="Joan B" last="Broderick">Joan B. Broderick</name>
<name sortKey="Broderick, William E" sort="Broderick, William E" uniqKey="Broderick W" first="William E" last="Broderick">William E. Broderick</name>
<name sortKey="King, Paul W" sort="King, Paul W" uniqKey="King P" first="Paul W" last="King">Paul W. King</name>
<name sortKey="Ratzloff, Michael W" sort="Ratzloff, Michael W" uniqKey="Ratzloff M" first="Michael W" last="Ratzloff">Michael W. Ratzloff</name>
<name sortKey="Shepard, Eric M" sort="Shepard, Eric M" uniqKey="Shepard E" first="Eric M" last="Shepard">Eric M. Shepard</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000236 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000236 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31493152
   |texte=   H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31493152" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020