Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nubp2 is required for cranial neural crest survival in the mouse.

Identifieur interne : 000195 ( Main/Curation ); précédent : 000194; suivant : 000196

Nubp2 is required for cranial neural crest survival in the mouse.

Auteurs : Andrew Distasio [États-Unis] ; David Paulding [États-Unis] ; Praneet Chaturvedi [États-Unis] ; Rolf W. Stottmann [États-Unis]

Source :

RBID : pubmed:31733190

Descripteurs français

English descriptors

Abstract

The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2null). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.

DOI: 10.1016/j.ydbio.2019.10.039
PubMed: 31733190
PubMed Central: PMC6995770

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31733190

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nubp2 is required for cranial neural crest survival in the mouse.</title>
<author>
<name sortKey="Distasio, Andrew" sort="Distasio, Andrew" uniqKey="Distasio A" first="Andrew" last="Distasio">Andrew Distasio</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Human Genetics, OH, 45229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Human Genetics, OH, 45229</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paulding, David" sort="Paulding, David" uniqKey="Paulding D" first="David" last="Paulding">David Paulding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Human Genetics, OH, 45229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Human Genetics, OH, 45229</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chaturvedi, Praneet" sort="Chaturvedi, Praneet" uniqKey="Chaturvedi P" first="Praneet" last="Chaturvedi">Praneet Chaturvedi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stottmann, Rolf W" sort="Stottmann, Rolf W" uniqKey="Stottmann R" first="Rolf W" last="Stottmann">Rolf W. Stottmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA. Electronic address: Rolf.stottmann@cchmc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31733190</idno>
<idno type="pmid">31733190</idno>
<idno type="doi">10.1016/j.ydbio.2019.10.039</idno>
<idno type="pmc">PMC6995770</idno>
<idno type="wicri:Area/Main/Corpus">000195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000195</idno>
<idno type="wicri:Area/Main/Curation">000195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nubp2 is required for cranial neural crest survival in the mouse.</title>
<author>
<name sortKey="Distasio, Andrew" sort="Distasio, Andrew" uniqKey="Distasio A" first="Andrew" last="Distasio">Andrew Distasio</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Human Genetics, OH, 45229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Human Genetics, OH, 45229</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paulding, David" sort="Paulding, David" uniqKey="Paulding D" first="David" last="Paulding">David Paulding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Human Genetics, OH, 45229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Human Genetics, OH, 45229</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chaturvedi, Praneet" sort="Chaturvedi, Praneet" uniqKey="Chaturvedi P" first="Praneet" last="Chaturvedi">Praneet Chaturvedi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stottmann, Rolf W" sort="Stottmann, Rolf W" uniqKey="Stottmann R" first="Rolf W" last="Stottmann">Rolf W. Stottmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA. Electronic address: Rolf.stottmann@cchmc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Developmental biology</title>
<idno type="eISSN">1095-564X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Embryonic Development (genetics)</term>
<term>Ethylnitrosourea (MeSH)</term>
<term>Female (MeSH)</term>
<term>GTP-Binding Proteins (genetics)</term>
<term>GTP-Binding Proteins (metabolism)</term>
<term>High-Throughput Screening Assays (methods)</term>
<term>Male (MeSH)</term>
<term>Mesoderm (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Mutagenesis (genetics)</term>
<term>Mutation (genetics)</term>
<term>Neural Crest (embryology)</term>
<term>Neural Crest (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Signal Transduction (physiology)</term>
<term>Skull (metabolism)</term>
<term>Wnt1 Protein (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>1-Éthyl-1-nitroso-urée (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Crâne (métabolisme)</term>
<term>Crête neurale (embryologie)</term>
<term>Crête neurale (métabolisme)</term>
<term>Développement embryonnaire (génétique)</term>
<term>Femelle (MeSH)</term>
<term>Mutagenèse (génétique)</term>
<term>Mutation (génétique)</term>
<term>Mâle (MeSH)</term>
<term>Mésoderme (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Protéine Wnt1 (métabolisme)</term>
<term>Protéines G (génétique)</term>
<term>Protéines G (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Tests de criblage à haut débit (méthodes)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GTP-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>GTP-Binding Proteins</term>
<term>Wnt1 Protein</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Ethylnitrosourea</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Crête neurale</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Neural Crest</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Embryonic Development</term>
<term>Mutagenesis</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Développement embryonnaire</term>
<term>Mutagenèse</term>
<term>Mutation</term>
<term>Protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mesoderm</term>
<term>Neural Crest</term>
<term>Skull</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Screening Assays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Crâne</term>
<term>Crête neurale</term>
<term>Mésoderme</term>
<term>Protéine Wnt1</term>
<term>Protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Tests de criblage à haut débit</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>1-Éthyl-1-nitroso-urée</term>
<term>Animaux</term>
<term>Femelle</term>
<term>Mâle</term>
<term>Phénotype</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2
<sup>null</sup>
). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31733190</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-564X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>458</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Developmental biology</Title>
<ISOAbbreviation>Dev Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Nubp2 is required for cranial neural crest survival in the mouse.</ArticleTitle>
<Pagination>
<MedlinePgn>189-199</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0012-1606(19)30367-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ydbio.2019.10.039</ELocationID>
<Abstract>
<AbstractText>The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2
<sup>null</sup>
). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>DiStasio</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Division of Human Genetics, OH, 45229, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paulding</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Division of Human Genetics, OH, 45229, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaturvedi</LastName>
<ForeName>Praneet</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stottmann</LastName>
<ForeName>Rolf W</ForeName>
<Initials>RW</Initials>
<AffiliationInfo>
<Affiliation>Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA. Electronic address: Rolf.stottmann@cchmc.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F31 DE026676</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DE027091</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS085023</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM131875</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Dev Biol</MedlineTA>
<NlmUniqueID>0372762</NlmUniqueID>
<ISSNLinking>0012-1606</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C400289">NUBP2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051155">Wnt1 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D019204">GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>P8M1T4190R</RegistryNumber>
<NameOfSubstance UI="D005038">Ethylnitrosourea</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047108" MajorTopicYN="N">Embryonic Development</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005038" MajorTopicYN="N">Ethylnitrosourea</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019204" MajorTopicYN="N">GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057166" MajorTopicYN="N">High-Throughput Screening Assays</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008648" MajorTopicYN="N">Mesoderm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009432" MajorTopicYN="N">Neural Crest</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012886" MajorTopicYN="N">Skull</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051155" MajorTopicYN="N">Wnt1 Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cilia</Keyword>
<Keyword MajorTopicYN="Y">ENU mutagenesis</Keyword>
<Keyword MajorTopicYN="Y">Neural crest</Keyword>
<Keyword MajorTopicYN="Y">Nubp2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31733190</ArticleId>
<ArticleId IdType="pii">S0012-1606(19)30367-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.ydbio.2019.10.039</ArticleId>
<ArticleId IdType="pmc">PMC6995770</ArticleId>
<ArticleId IdType="mid">NIHMS1545373</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2004 Jun;24(12):5324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15169896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Laryngoscope. 2004 Oct;114(10):1791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15454774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med Genet A. 2011 Feb;155A(2):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21271641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Sep 15;23(6):801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 May;3(5):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1989 Jan;3(1):26-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2565278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Dec 3;8(24):1323-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2010;477:329-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9085-E9094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30201724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Jan;11(1):61-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7762303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 7;288(23):16680-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23585563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Jan;18(1):60-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2018 Oct 24;145(20):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30228102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Jan;43(1):20-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2017 Nov 5;281:53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28919490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Nov;18(3):449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8748029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2006 May;235(5):1152-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Nov 18;9(22):1304-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med Genet A. 2019 Jul;179(7):1390-1394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30957429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 6;286(18):15797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21367862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2016 Mar;245(3):276-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26562615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Birth Defects Res C Embryo Today. 2014 Sep;102(3):210-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25219761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 3;12(1):e0169351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28046103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2014 Dec;42(6):1684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Mar;132(6):1453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):12365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22362766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2019 Mar 26;58(12):1587-1595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30785732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Sep 25;290(39):23793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26195633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Lett. 2017 Sep;14(3):3587-3593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28927116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 1;13(23):3136-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2008 Feb;18(1):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2007 Sep;45(9):593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17868096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 2016 Feb;27(1-2):8-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26662625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2014 Feb;71(3):517-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23807208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Dev. 1997 Nov;68(1-2):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9431803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 May 15;119(Pt 10):2035-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16638812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Sep 22;537(7621):508-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27626380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2015 Oct;7(5):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Mar;37(3):1165-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19263241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2015 May 7;96(5):765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25913037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Apr 15;18(8):937-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2007 Sep;6(3):180-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2016;116:115-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26970616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2008 Oct;22(10):2268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1999 Sep 1;60(2):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10486206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14058-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yonsei Med J. 2000 Aug;41(4):477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10992809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2010 Sep 15;345(2):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20654612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1995 Feb;121(2):439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7768185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jul 14;11(7):e0159275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27415760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Sep;7(9):e1002224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21912524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 07;10(5):e0125304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25951169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Dev Biol. 2006 Nov 01;6:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2015 Sep;53(9):573-582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26177923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2019 Apr 16;58(15):2017-2027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30865432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jun 14;272(5268):1668-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8658145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 6;136(3):535-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2015 Apr;244(4):564-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25626636</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000195 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000195 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31733190
   |texte=   Nubp2 is required for cranial neural crest survival in the mouse.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:31733190" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020