Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.

Identifieur interne : 000142 ( Main/Curation ); précédent : 000141; suivant : 000143

Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.

Auteurs : Ian J. Campbell [États-Unis] ; George N. Bennett [États-Unis] ; Jonathan J. Silberg [États-Unis]

Source :

RBID : pubmed:32095484

Abstract

Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues. We find that the average number of small PEC genes per Archaea (~13), Bacteria (~8), and Eukarya (~3) genome varies, with some organisms containing as many as 54 total PEC genes. Organisms fall into three groups, including those lacking genes encoding low potential PECs (3%), specialists with a single PEC gene type (20%), and generalists that utilize multiple PEC types (77%). Mapping PEC gene usage onto an evolutionary tree highlights the prevalence of [4Fe-4S] Fds in ancient organisms that are deeply rooted, the expansion of [2Fe-2S] Fds with the advent of photosynthesis and a concomitant decrease in [4Fe-4S] Fds, and the expansion of Flds in organisms that inhabit low-iron host environments. Surprisingly, [4Fe-4S] Fds present a similar abundance in aerobes as [2Fe-2S] Fds. This bioinformatic study highlights understudied PECs whose structure, stability, and partner specificity should be further characterized.

DOI: 10.3389/fenrg.2019.00079
PubMed: 32095484
PubMed Central: PMC7039249

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32095484

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.</title>
<author>
<name sortKey="Campbell, Ian J" sort="Campbell, Ian J" uniqKey="Campbell I" first="Ian J" last="Campbell">Ian J. Campbell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bennett, George N" sort="Bennett, George N" uniqKey="Bennett G" first="George N" last="Bennett">George N. Bennett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of BioSciences, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of BioSciences, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Silberg, Jonathan J" sort="Silberg, Jonathan J" uniqKey="Silberg J" first="Jonathan J" last="Silberg">Jonathan J. Silberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of BioSciences, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of BioSciences, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioengineering, Rice University Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Rice University Houston, TX</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:32095484</idno>
<idno type="pmid">32095484</idno>
<idno type="doi">10.3389/fenrg.2019.00079</idno>
<idno type="pmc">PMC7039249</idno>
<idno type="wicri:Area/Main/Corpus">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000142</idno>
<idno type="wicri:Area/Main/Curation">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000142</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.</title>
<author>
<name sortKey="Campbell, Ian J" sort="Campbell, Ian J" uniqKey="Campbell I" first="Ian J" last="Campbell">Ian J. Campbell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bennett, George N" sort="Bennett, George N" uniqKey="Bennett G" first="George N" last="Bennett">George N. Bennett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of BioSciences, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of BioSciences, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Silberg, Jonathan J" sort="Silberg, Jonathan J" uniqKey="Silberg J" first="Jonathan J" last="Silberg">Jonathan J. Silberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of BioSciences, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of BioSciences, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioengineering, Rice University Houston, TX, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Rice University Houston, TX</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in energy research</title>
<idno type="eISSN">2296-598X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues. We find that the average number of small PEC genes per Archaea (~13), Bacteria (~8), and Eukarya (~3) genome varies, with some organisms containing as many as 54 total PEC genes. Organisms fall into three groups, including those lacking genes encoding low potential PECs (3%), specialists with a single PEC gene type (20%), and generalists that utilize multiple PEC types (77%). Mapping PEC gene usage onto an evolutionary tree highlights the prevalence of [4Fe-4S] Fds in ancient organisms that are deeply rooted, the expansion of [2Fe-2S] Fds with the advent of photosynthesis and a concomitant decrease in [4Fe-4S] Fds, and the expansion of Flds in organisms that inhabit low-iron host environments. Surprisingly, [4Fe-4S] Fds present a similar abundance in aerobes as [2Fe-2S] Fds. This bioinformatic study highlights understudied PECs whose structure, stability, and partner specificity should be further characterized.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32095484</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2296-598X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in energy research</Title>
<ISOAbbreviation>Front Energy Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fenrg.2019.00079</ELocationID>
<Abstract>
<AbstractText>Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues. We find that the average number of small PEC genes per Archaea (~13), Bacteria (~8), and Eukarya (~3) genome varies, with some organisms containing as many as 54 total PEC genes. Organisms fall into three groups, including those lacking genes encoding low potential PECs (3%), specialists with a single PEC gene type (20%), and generalists that utilize multiple PEC types (77%). Mapping PEC gene usage onto an evolutionary tree highlights the prevalence of [4Fe-4S] Fds in ancient organisms that are deeply rooted, the expansion of [2Fe-2S] Fds with the advent of photosynthesis and a concomitant decrease in [4Fe-4S] Fds, and the expansion of Flds in organisms that inhabit low-iron host environments. Surprisingly, [4Fe-4S] Fds present a similar abundance in aerobes as [2Fe-2S] Fds. This bioinformatic study highlights understudied PECs whose structure, stability, and partner specificity should be further characterized.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Ian J</ForeName>
<Initials>IJ</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bennett</LastName>
<ForeName>George N</ForeName>
<Initials>GN</Initials>
<AffiliationInfo>
<Affiliation>Department of BioSciences, Rice University, Houston, TX, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Silberg</LastName>
<ForeName>Jonathan J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of BioSciences, Rice University, Houston, TX, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, Rice University Houston, TX, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>80NSSC18M0093</GrantID>
<Acronym>ImNASA</Acronym>
<Agency>Intramural NASA</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Energy Res</MedlineTA>
<NlmUniqueID>101638683</NlmUniqueID>
<ISSNLinking>2296-598X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">electron transfer</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">ferredoxin</Keyword>
<Keyword MajorTopicYN="N">flavin mononucleotide</Keyword>
<Keyword MajorTopicYN="N">flavodoxin</Keyword>
<Keyword MajorTopicYN="N">iron-sulfur cluster</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">oxidoreductase</Keyword>
</KeywordList>
<CoiStatement>Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32095484</ArticleId>
<ArticleId IdType="doi">10.3389/fenrg.2019.00079</ArticleId>
<ArticleId IdType="pmc">PMC7039249</ArticleId>
<ArticleId IdType="mid">NIHMS1553086</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Virulence. 2010 Nov-Dec;1(6):541-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21178499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D666-D677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30289528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22544797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2335-2374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 8;274(41):29399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10506201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1280-1285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1996 Oct;3(10):834-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8836097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Apr 26;318(2):503-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2004 Feb;104(2):527-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Jan 01;3:e01496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Mar 11;53(9):1435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24533927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):1037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Oct;65(18):5161-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25009172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Oct;195(20):4726-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Eng. 2011 May 26;5:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21615937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11053838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1999 Oct 15;7(10):1201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Jul 28;1386(1):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9675266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 21;411(6840):909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Dec;189(24):9101-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2017 Oct;101(19):7113-7127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28849247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 May;11(5):1245-1260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28106880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Jul;194(14):3689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22582275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1972 Sep 25;247(18):5777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4341491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jan;76(2):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2019 Feb;15(2):189-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30559426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 Mar;6(3):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Mar 5;10(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30837343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Jul 1;239(1):190-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8706707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 16;48(23):5405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jun;33(6):1635-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26921390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 1993 Oct;39(4):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8411084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Jun;74(11):3559-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 2011 Feb;163(2):250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Oct;24(4):403-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 14;278(46):45818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jan 21;280(3):2275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15513928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2000 Jul;2(3):257-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10937432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 May 21;130(20):6395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 2;287(1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22069325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2007 Sep;71(3):495-548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21410714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2017 Dec;134(3):329-342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28285375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Dec 15;360(Pt 3):717-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11736664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Dec 27;55(51):7047-7064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27966889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 07;15:268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24708309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):47177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2000 Feb;57(2):250-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2002 Oct;178(4):250-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Aug 17;360(1):97-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17577575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Sep 22;198(20):2864-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Dec 6;288(49):35192-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24100040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 May 1;67(2):317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2016 Nov 23;116(22):13685-13713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27933770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2017 Dec;134(3):235-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28150152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2016 Jan 13;138(1):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26654855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2002 Feb;11(2):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11790835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2294-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Jun;171(6):3433-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2542225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 May;239(1-2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8510664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2002 May;52(Pt 3):933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12054260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Jan 11;44(1):29-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15628843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Feb;60(Pt 2):388-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Aug 15;232(1):192-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7556151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2008 Aug;15(4):215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18524787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Jun 29;38(26):8228-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10387068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Apr 11;1:16048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life (Basel). 2014 Nov 07;4(4):666-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 5;448(7149):92-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2017 Aug 22;56(33):4293-4308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28826221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2016 Aug;160(2):101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26920048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1993 Apr;6(2):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8472246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 May;1857(5):557-581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26301482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 18;284(38):25867-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19586916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 29;47(4):1207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18177021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10139-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Oct;275(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2013 Aug;18(6):599-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23690205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 25;269(47):29444-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2019 Feb;21(2):521-530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30307099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 26;276(4):2786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11053423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 4;353(4):911-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16198373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(10):3498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Feb;8(2):117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20130088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stand Genomic Sci. 2011 Dec 31;5(3):356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Mar 5;218(1):195-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2002503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14557-14562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31262814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Feb;1827(2):161-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23044392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(1):e4207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32095484
   |texte=   Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:32095484" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020