Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.

Identifieur interne : 000929 ( Main/Corpus ); précédent : 000928; suivant : 000930

Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.

Auteurs : Emmanuelle Vigne ; Véronique Komar ; Marc Fuchs

Source :

RBID : pubmed:15198204

English descriptors

Abstract

One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.

DOI: 10.1023/b:trag.0000026075.79097.c9
PubMed: 15198204

Links to Exploration step

pubmed:15198204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.</title>
<author>
<name sortKey="Vigne, Emmanuelle" sort="Vigne, Emmanuelle" uniqKey="Vigne E" first="Emmanuelle" last="Vigne">Emmanuelle Vigne</name>
<affiliation>
<nlm:affiliation>Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche Vigne et Vins d'Alsace, 28 rue de Herrlisheim, 68021 Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Komar, Veronique" sort="Komar, Veronique" uniqKey="Komar V" first="Véronique" last="Komar">Véronique Komar</name>
</author>
<author>
<name sortKey="Fuchs, Marc" sort="Fuchs, Marc" uniqKey="Fuchs M" first="Marc" last="Fuchs">Marc Fuchs</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15198204</idno>
<idno type="pmid">15198204</idno>
<idno type="doi">10.1023/b:trag.0000026075.79097.c9</idno>
<idno type="wicri:Area/Main/Corpus">000929</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000929</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.</title>
<author>
<name sortKey="Vigne, Emmanuelle" sort="Vigne, Emmanuelle" uniqKey="Vigne E" first="Emmanuelle" last="Vigne">Emmanuelle Vigne</name>
<affiliation>
<nlm:affiliation>Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche Vigne et Vins d'Alsace, 28 rue de Herrlisheim, 68021 Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Komar, Veronique" sort="Komar, Veronique" uniqKey="Komar V" first="Véronique" last="Komar">Véronique Komar</name>
</author>
<author>
<name sortKey="Fuchs, Marc" sort="Fuchs, Marc" uniqKey="Fuchs M" first="Marc" last="Fuchs">Marc Fuchs</name>
</author>
</analytic>
<series>
<title level="j">Transgenic research</title>
<idno type="ISSN">0962-8819</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Capsid Proteins (genetics)</term>
<term>Capsid Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nematoda (parasitology)</term>
<term>Plant Diseases (parasitology)</term>
<term>Plant Viruses (genetics)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (virology)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>Recombination, Genetic (MeSH)</term>
<term>Vitis (genetics)</term>
<term>Vitis (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Capsid Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Capsid Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Viruses</term>
<term>Plants, Genetically Modified</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Nematoda</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Recombination, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15198204</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0962-8819</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Transgenic research</Title>
<ISOAbbreviation>Transgenic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.</ArticleTitle>
<Pagination>
<MedlinePgn>165-79</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vigne</LastName>
<ForeName>Emmanuelle</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche Vigne et Vins d'Alsace, 28 rue de Herrlisheim, 68021 Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Komar</LastName>
<ForeName>Véronique</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fuchs</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Transgenic Res</MedlineTA>
<NlmUniqueID>9209120</NlmUniqueID>
<ISSNLinking>0962-8819</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036022">Capsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C095208">coat protein, grapevine fanleaf virus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036022" MajorTopicYN="N">Capsid Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009348" MajorTopicYN="N">Nematoda</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010942" MajorTopicYN="N">Plant Viruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="Y">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15198204</ArticleId>
<ArticleId IdType="doi">10.1023/b:trag.0000026075.79097.c9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 1996 Nov 1;225(1):231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Mar 11;263(5152):1423-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8128222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2001 Jun;75(2):139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Jul;82(Pt 7):1791-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:467-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Nov;5(11):1669-1679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Aug;74(16):7462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10906199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Mar 11;263(5152):1395-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8179685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1999 Oct;80 ( Pt 10):2535-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10573145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2000;145(9):1867-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11043947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Feb;12(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9926415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Jul;16(7):573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1990 Jul;71 ( Pt 7):1433-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2374004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Jan;84(Pt 1):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12533721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chin J Biotechnol. 1996;12(2):73-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8988353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Sep 1;223(1):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1991;117(3-4):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2018431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2003 Mar;108(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12565151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:157-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:119-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Oct 11;19(19):5440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1999 Jun;80 ( Pt 6):1339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10374949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1995;140(1):157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7646340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1995 Jun;14(9):550-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185595</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000929 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000929 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15198204
   |texte=   Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:15198204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020