Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.

Identifieur interne : 000691 ( Main/Corpus ); précédent : 000690; suivant : 000692

Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.

Auteurs : Mohammad B. Ali ; Susanne Howard ; Shangwu Chen ; Yechun Wang ; Oliver Yu ; Laszlo G. Kovacs ; Wenping Qiu

Source :

RBID : pubmed:21219654

English descriptors

Abstract

BACKGROUND

The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways.

RESULTS

A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.

CONCLUSIONS

This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.


DOI: 10.1186/1471-2229-11-7
PubMed: 21219654
PubMed Central: PMC3025947

Links to Exploration step

pubmed:21219654

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.</title>
<author>
<name sortKey="Ali, Mohammad B" sort="Ali, Mohammad B" uniqKey="Ali M" first="Mohammad B" last="Ali">Mohammad B. Ali</name>
<affiliation>
<nlm:affiliation>Center for Grapevine Biotechnology, William H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Howard, Susanne" sort="Howard, Susanne" uniqKey="Howard S" first="Susanne" last="Howard">Susanne Howard</name>
</author>
<author>
<name sortKey="Chen, Shangwu" sort="Chen, Shangwu" uniqKey="Chen S" first="Shangwu" last="Chen">Shangwu Chen</name>
</author>
<author>
<name sortKey="Wang, Yechun" sort="Wang, Yechun" uniqKey="Wang Y" first="Yechun" last="Wang">Yechun Wang</name>
</author>
<author>
<name sortKey="Yu, Oliver" sort="Yu, Oliver" uniqKey="Yu O" first="Oliver" last="Yu">Oliver Yu</name>
</author>
<author>
<name sortKey="Kovacs, Laszlo G" sort="Kovacs, Laszlo G" uniqKey="Kovacs L" first="Laszlo G" last="Kovacs">Laszlo G. Kovacs</name>
</author>
<author>
<name sortKey="Qiu, Wenping" sort="Qiu, Wenping" uniqKey="Qiu W" first="Wenping" last="Qiu">Wenping Qiu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21219654</idno>
<idno type="pmid">21219654</idno>
<idno type="doi">10.1186/1471-2229-11-7</idno>
<idno type="pmc">PMC3025947</idno>
<idno type="wicri:Area/Main/Corpus">000691</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000691</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.</title>
<author>
<name sortKey="Ali, Mohammad B" sort="Ali, Mohammad B" uniqKey="Ali M" first="Mohammad B" last="Ali">Mohammad B. Ali</name>
<affiliation>
<nlm:affiliation>Center for Grapevine Biotechnology, William H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Howard, Susanne" sort="Howard, Susanne" uniqKey="Howard S" first="Susanne" last="Howard">Susanne Howard</name>
</author>
<author>
<name sortKey="Chen, Shangwu" sort="Chen, Shangwu" uniqKey="Chen S" first="Shangwu" last="Chen">Shangwu Chen</name>
</author>
<author>
<name sortKey="Wang, Yechun" sort="Wang, Yechun" uniqKey="Wang Y" first="Yechun" last="Wang">Yechun Wang</name>
</author>
<author>
<name sortKey="Yu, Oliver" sort="Yu, Oliver" uniqKey="Yu O" first="Oliver" last="Yu">Oliver Yu</name>
</author>
<author>
<name sortKey="Kovacs, Laszlo G" sort="Kovacs, Laszlo G" uniqKey="Kovacs L" first="Laszlo G" last="Kovacs">Laszlo G. Kovacs</name>
</author>
<author>
<name sortKey="Qiu, Wenping" sort="Qiu, Wenping" uniqKey="Qiu W" first="Wenping" last="Qiu">Wenping Qiu</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyltransferases (genetics)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>DNA Probes (metabolism)</term>
<term>Flavonoids (biosynthesis)</term>
<term>Fruit (genetics)</term>
<term>Fruit (growth & development)</term>
<term>Fruit (immunology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Kinetics (MeSH)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Proanthocyanidins (biosynthesis)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Vitis (enzymology)</term>
<term>Vitis (genetics)</term>
<term>Vitis (growth & development)</term>
<term>Vitis (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Flavonoids</term>
<term>Proanthocyanidins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acyltransferases</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Probes</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fruit</term>
<term>Genes, Plant</term>
<term>Metabolic Networks and Pathways</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fruit</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Fruit</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Kinetics</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Principal Component Analysis</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Transcription, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21219654</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-11-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Mohammad B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Center for Grapevine Biotechnology, William H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Howard</LastName>
<ForeName>Susanne</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shangwu</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yechun</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kovacs</LastName>
<ForeName>Laszlo G</ForeName>
<Initials>LG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Wenping</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE24561</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015342">DNA Probes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044945">Proanthocyanidins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="C022674">stilbene synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015342" MajorTopicYN="N">DNA Probes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="Y">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044945" MajorTopicYN="N">Proanthocyanidins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21219654</ArticleId>
<ArticleId IdType="pii">1471-2229-11-7</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-11-7</ArticleId>
<ArticleId IdType="pmc">PMC3025947</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protoplasma. 2008;233(1-2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):772-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2004 May;11(10):1345-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jun;117(2):465-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9625699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1851-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006;6:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(11):3043-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 May;16(5):456-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Nov;30(11):1381-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2004 May;94(5):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 May 1;22(9):1111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Apr;15(2):165-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16604458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Dec 24;56(24):11773-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Mar;71(4):338-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 14;304(5673):982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2009 May 13;57(9):3512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19338353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Feb;46(2):140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2010 Jan;60(1):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19813054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):759-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 15;31(14):e73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17337528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Jan;59(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11754938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Dec;93(12):1505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(4):212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):1787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Sep;7(17):3154-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 Dec;7(12):1243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17584945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Nov;115(3):1029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Oct 8;8(20):1129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9778530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 May 8;50(10):2731-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11982391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 May;93(5):556-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18942977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Oct;19(10):1103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17022174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(12):e8365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Jun;4(6):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1392589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 May;93(5):547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18942976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Nov;115(3):1155-1161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Rev. 2008 Aug;66(8):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1028-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19098092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):236-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(13):3621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):803-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2004 Nov 3;52(22):6779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2001 Nov;49(11):5531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):9-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jan;36(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2057-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000691 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000691 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21219654
   |texte=   Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21219654" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020