Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana.

Identifieur interne : 000367 ( Main/Corpus ); précédent : 000366; suivant : 000368

Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana.

Auteurs : Xinlong Li ; Yali Zhang ; Ling Yin ; Jiang Lu

Source :

RBID : pubmed:27468994

English descriptors

Abstract

The NBS-LRR proteins encoded by the majority of R genes represent important intracellular receptors that directly or indirectly recognize pathogen effector proteins, which subsequently activate plant defense responses. In this study, a novel Plasmopara viticola-induced TIR-NBS-LRR gene, named VaRGA1, was cloned from leaf tissues of a highly downy mildew-resistant Vitis amurensis "Shuanghong" grapevine. The fluorescence signal of the VaRGA1-GFP fusion protein was clearly partitioned to the cytoplasm and nucleus. The expression of the VaRGA1 gene was strongly induced during early stages of infection by P. viticola, and was also significantly upregulated after drought and salt treatments. Accordingly, grapevine leaves transiently expressing the VaRGA1 gene manifested increased resistance to P. viticola, and the overexpression of the VaRGA1 gene in Nicotiana benthamiana conferred enhanced resistance to Phytophthora parasitica through the activation of salicylic acid (SA) signaling and phenylpropanoid pathways and could also increase tolerance to drought and salt stresses at the germination and vegetable growth stages. These findings indicate that the grapevine VaRGA1 gene may function as the immune and non-immune receptors against biotic and abiotic stresses and that there may be signaling overlap between biotic and abiotic responses.

DOI: 10.1007/s00709-016-1005-8
PubMed: 27468994

Links to Exploration step

pubmed:27468994

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana.</title>
<author>
<name sortKey="Li, Xinlong" sort="Li, Xinlong" uniqKey="Li X" first="Xinlong" last="Li">Xinlong Li</name>
<affiliation>
<nlm:affiliation>School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
<affiliation>
<nlm:affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
<affiliation>
<nlm:affiliation>Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
<affiliation>
<nlm:affiliation>School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China. jiangluvitis@cau.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. jiangluvitis@cau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27468994</idno>
<idno type="pmid">27468994</idno>
<idno type="doi">10.1007/s00709-016-1005-8</idno>
<idno type="wicri:Area/Main/Corpus">000367</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000367</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana.</title>
<author>
<name sortKey="Li, Xinlong" sort="Li, Xinlong" uniqKey="Li X" first="Xinlong" last="Li">Xinlong Li</name>
<affiliation>
<nlm:affiliation>School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
<affiliation>
<nlm:affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
<affiliation>
<nlm:affiliation>Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
<affiliation>
<nlm:affiliation>School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China. jiangluvitis@cau.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. jiangluvitis@cau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protoplasma</title>
<idno type="eISSN">1615-6102</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Disease Resistance (drug effects)</term>
<term>Disease Resistance (genetics)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Peronospora (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Propanols (metabolism)</term>
<term>Protein Transport (drug effects)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Salt Tolerance (drug effects)</term>
<term>Salt Tolerance (genetics)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Signal Transduction (genetics)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Subcellular Fractions (drug effects)</term>
<term>Subcellular Fractions (metabolism)</term>
<term>Tobacco (drug effects)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (microbiology)</term>
<term>Tobacco (physiology)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Disease Resistance</term>
<term>Gene Expression Regulation, Plant</term>
<term>Protein Transport</term>
<term>Salt Tolerance</term>
<term>Subcellular Fractions</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Disease Resistance</term>
<term>Plant Diseases</term>
<term>Plant Proteins</term>
<term>Salt Tolerance</term>
<term>Signal Transduction</term>
<term>Tobacco</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Propanols</term>
<term>Salicylic Acid</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Peronospora</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Droughts</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Analysis, Protein</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The NBS-LRR proteins encoded by the majority of R genes represent important intracellular receptors that directly or indirectly recognize pathogen effector proteins, which subsequently activate plant defense responses. In this study, a novel Plasmopara viticola-induced TIR-NBS-LRR gene, named VaRGA1, was cloned from leaf tissues of a highly downy mildew-resistant Vitis amurensis "Shuanghong" grapevine. The fluorescence signal of the VaRGA1-GFP fusion protein was clearly partitioned to the cytoplasm and nucleus. The expression of the VaRGA1 gene was strongly induced during early stages of infection by P. viticola, and was also significantly upregulated after drought and salt treatments. Accordingly, grapevine leaves transiently expressing the VaRGA1 gene manifested increased resistance to P. viticola, and the overexpression of the VaRGA1 gene in Nicotiana benthamiana conferred enhanced resistance to Phytophthora parasitica through the activation of salicylic acid (SA) signaling and phenylpropanoid pathways and could also increase tolerance to drought and salt stresses at the germination and vegetable growth stages. These findings indicate that the grapevine VaRGA1 gene may function as the immune and non-immune receptors against biotic and abiotic stresses and that there may be signaling overlap between biotic and abiotic responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27468994</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1615-6102</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>254</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Protoplasma</Title>
<ISOAbbreviation>Protoplasma</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana.</ArticleTitle>
<Pagination>
<MedlinePgn>957-969</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00709-016-1005-8</ELocationID>
<Abstract>
<AbstractText>The NBS-LRR proteins encoded by the majority of R genes represent important intracellular receptors that directly or indirectly recognize pathogen effector proteins, which subsequently activate plant defense responses. In this study, a novel Plasmopara viticola-induced TIR-NBS-LRR gene, named VaRGA1, was cloned from leaf tissues of a highly downy mildew-resistant Vitis amurensis "Shuanghong" grapevine. The fluorescence signal of the VaRGA1-GFP fusion protein was clearly partitioned to the cytoplasm and nucleus. The expression of the VaRGA1 gene was strongly induced during early stages of infection by P. viticola, and was also significantly upregulated after drought and salt treatments. Accordingly, grapevine leaves transiently expressing the VaRGA1 gene manifested increased resistance to P. viticola, and the overexpression of the VaRGA1 gene in Nicotiana benthamiana conferred enhanced resistance to Phytophthora parasitica through the activation of salicylic acid (SA) signaling and phenylpropanoid pathways and could also increase tolerance to drought and salt stresses at the germination and vegetable growth stages. These findings indicate that the grapevine VaRGA1 gene may function as the immune and non-immune receptors against biotic and abiotic stresses and that there may be signaling overlap between biotic and abiotic responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xinlong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yali</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China. jiangluvitis@cau.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. jiangluvitis@cau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Protoplasma</MedlineTA>
<NlmUniqueID>9806853</NlmUniqueID>
<ISSNLinking>0033-183X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020005">Propanols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0F897O3O4M</RegistryNumber>
<NameOfSubstance UI="C439395">1-phenylpropanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044742" MajorTopicYN="N">Peronospora</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020005" MajorTopicYN="N">Propanols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Disease resistance</Keyword>
<Keyword MajorTopicYN="N">Drought and salt stresses</Keyword>
<Keyword MajorTopicYN="N">N. benthamiana</Keyword>
<Keyword MajorTopicYN="N">Overexpression</Keyword>
<Keyword MajorTopicYN="N">TIR-NBS-LRR</Keyword>
<Keyword MajorTopicYN="N">V. amurensis</Keyword>
<Keyword MajorTopicYN="N">VaRGA1</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27468994</ArticleId>
<ArticleId IdType="doi">10.1007/s00709-016-1005-8</ArticleId>
<ArticleId IdType="pii">10.1007/s00709-016-1005-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3935-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jan;11(1):15-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 9;334(6061):1401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Oct 28;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):14-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Feb 8;132(3):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Dec 4;17(23):2023-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17997306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18602859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol Res Commun. 2001 Nov;4(6):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:575-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Nov;76(4):661-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Jun 1;166(9):914-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2008 Feb;20(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Apr;15(2):165-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16604458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Nov;42(11):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):1041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21279649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Aug;16(8):669-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(3):e28085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24603484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(6):996-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21418352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 23;315(5815):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):1163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Aug 12;11:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jan 15;16(2):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):810-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Apr;66(7):1865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25614660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1773-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):353-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Jun;27(6):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18317773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 23;435(7045):1122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15973413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Aug;21(8):2503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Oct;95:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26151858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1968 Apr;125(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5655425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jul 09;12:105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29762</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1995;49:39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8563823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Sep 1;33(17):1941-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25024433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Aug;280(2):111-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18553106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Jun;5(6):986-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000367 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000367 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27468994
   |texte=   Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27468994" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020