Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea.

Identifieur interne : 000356 ( Main/Corpus ); précédent : 000355; suivant : 000357

Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea.

Auteurs : Li Huang ; Songlin Zhang ; Stacy D. Singer ; Xiangjing Yin ; Jinhua Yang ; Yuejin Wang ; Xiping Wang

Source :

RBID : pubmed:27695466

Abstract

Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

DOI: 10.3389/fpls.2016.01379
PubMed: 27695466
PubMed Central: PMC5024652

Links to Exploration step

pubmed:27695466

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression of the Grape
<i>VqSTS21</i>
Gene in
<i>Arabidopsis</i>
Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not
<i>Botrytis cinerea</i>
.</title>
<author>
<name sortKey="Huang, Li" sort="Huang, Li" uniqKey="Huang L" first="Li" last="Huang">Li Huang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Songlin" sort="Zhang, Songlin" uniqKey="Zhang S" first="Songlin" last="Zhang">Songlin Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singer, Stacy D" sort="Singer, Stacy D" uniqKey="Singer S" first="Stacy D" last="Singer">Stacy D. Singer</name>
<affiliation>
<nlm:affiliation>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Xiangjing" sort="Yin, Xiangjing" uniqKey="Yin X" first="Xiangjing" last="Yin">Xiangjing Yin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jinhua" sort="Yang, Jinhua" uniqKey="Yang J" first="Jinhua" last="Yang">Jinhua Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yuejin" sort="Wang, Yuejin" uniqKey="Wang Y" first="Yuejin" last="Wang">Yuejin Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiping" sort="Wang, Xiping" uniqKey="Wang X" first="Xiping" last="Wang">Xiping Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27695466</idno>
<idno type="pmid">27695466</idno>
<idno type="pmc">PMC5024652</idno>
<idno type="doi">10.3389/fpls.2016.01379</idno>
<idno type="wicri:Area/Main/Corpus">000356</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression of the Grape
<i>VqSTS21</i>
Gene in
<i>Arabidopsis</i>
Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not
<i>Botrytis cinerea</i>
.</title>
<author>
<name sortKey="Huang, Li" sort="Huang, Li" uniqKey="Huang L" first="Li" last="Huang">Li Huang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Songlin" sort="Zhang, Songlin" uniqKey="Zhang S" first="Songlin" last="Zhang">Songlin Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singer, Stacy D" sort="Singer, Stacy D" uniqKey="Singer S" first="Stacy D" last="Singer">Stacy D. Singer</name>
<affiliation>
<nlm:affiliation>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Xiangjing" sort="Yin, Xiangjing" uniqKey="Yin X" first="Xiangjing" last="Yin">Xiangjing Yin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jinhua" sort="Yang, Jinhua" uniqKey="Yang J" first="Jinhua" last="Yang">Jinhua Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yuejin" sort="Wang, Yuejin" uniqKey="Wang Y" first="Yuejin" last="Wang">Yuejin Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiping" sort="Wang, Xiping" uniqKey="Wang X" first="Xiping" last="Wang">Xiping Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stilbene synthase (
<i>STS</i>
) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of
<i>STS</i>
genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of
<i>STS</i>
genes in the defense against biotic and abiotic stress in the model plant
<i>Arabidopsis thaliana</i>
. Expression profiling of 31
<i>VqSTS</i>
genes from
<i>Vitis quinquangularis</i>
revealed that
<i>VqSTS21</i>
was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of
<i>VqSTS21</i>
and overexpressed it in
<i>Arabidopsis thaliana</i>
via
<i>Agrobacterium</i>
-mediated transformation. The resulting
<i>VqSTS21 Arabidopsis</i>
lines produced
<i>trans</i>
-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000, but displayed increased susceptibility to
<i>Botrytis cinerea</i>
. In addition, transgenic
<i>Arabidopsis</i>
lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that
<i>VqSTS21</i>
plays a role in various phytohormone-related pathways, providing insight into the mechanism behind
<i>VqSTS21</i>
-mediated resistance to biotic and abiotic stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27695466</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression of the Grape
<i>VqSTS21</i>
Gene in
<i>Arabidopsis</i>
Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not
<i>Botrytis cinerea</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1379</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Stilbene synthase (
<i>STS</i>
) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of
<i>STS</i>
genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of
<i>STS</i>
genes in the defense against biotic and abiotic stress in the model plant
<i>Arabidopsis thaliana</i>
. Expression profiling of 31
<i>VqSTS</i>
genes from
<i>Vitis quinquangularis</i>
revealed that
<i>VqSTS21</i>
was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of
<i>VqSTS21</i>
and overexpressed it in
<i>Arabidopsis thaliana</i>
via
<i>Agrobacterium</i>
-mediated transformation. The resulting
<i>VqSTS21 Arabidopsis</i>
lines produced
<i>trans</i>
-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000, but displayed increased susceptibility to
<i>Botrytis cinerea</i>
. In addition, transgenic
<i>Arabidopsis</i>
lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that
<i>VqSTS21</i>
plays a role in various phytohormone-related pathways, providing insight into the mechanism behind
<i>VqSTS21</i>
-mediated resistance to biotic and abiotic stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Songlin</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singer</LastName>
<ForeName>Stacy D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Xiangjing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Jinhua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yuejin</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiping</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">Botrytis cinerea</Keyword>
<Keyword MajorTopicYN="N">drought stress</Keyword>
<Keyword MajorTopicYN="N">grapevine</Keyword>
<Keyword MajorTopicYN="N">piceid</Keyword>
<Keyword MajorTopicYN="N">powdery mildew</Keyword>
<Keyword MajorTopicYN="N">salt stress</Keyword>
<Keyword MajorTopicYN="N">stilbene synthase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27695466</ArticleId>
<ArticleId IdType="pmc">PMC5024652</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.01379</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 19;7:503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Jul;248:17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27181943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 May;78:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24602773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Dec;220(2):241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2008 Feb;26(2):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2004 Sep-Oct;24(5A):2783-840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15517885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2007 Sep 01;12:4839-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17569614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1994 Jun;38(6):610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Sep 15;506(2):265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22771691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jan 14;361(6408):153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8421520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Aug 22;55(17):7002-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17655245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Jun;207:79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23602102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 05;9(11):e111988</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25372567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):473-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 06;6:821</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26500665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 May 8;50(10):2731-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11982391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Nov 15;170(17):1491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(16):5873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23048128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Oct;12(10):474-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):536-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):750-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fitoterapia. 2012 Dec;83(8):1345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22516542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jul;47(7):1017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2013 Dec;93(15):3870-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23929583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23067202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2014 Jun;98(12):5541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24584516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Aug;27(4):325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Oct 18;54(21):8082-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jan;65(1):75-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Apr;243(4):1041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26781778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 May;13(5):551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10796021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(1):225-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Nov;30(11):2027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21717185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Feb;39(2):969-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573796</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000356 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000356 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27695466
   |texte=   Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27695466" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020