Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.

Identifieur interne : 000242 ( Main/Corpus ); précédent : 000241; suivant : 000243

In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.

Auteurs : Xudong Zhu ; Songtao Jiu ; Xiaopeng Li ; Kekun Zhang ; Mengqi Wang ; Chen Wang ; Jinggui Fang

Source :

RBID : pubmed:30047108

English descriptors

Abstract

Small interfering RNAs (siRNAs) are effectors of regulatory pathways underlying plant development, metabolism, and stress- and nutrient-signaling regulatory networks. The endogenous siRNAs are generally not conserved between plants; consequently, it is necessary and important to identify and characterize siRNAs from various plants. To address the nature and functions of siRNAs, and understand the biological roles of the huge siRNA population in grapevine (Vitis vinifera L.). The high-throughput sequencing technology was used to identify a large set of putative endogenous siRNAs from six grapevine tissues/organs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to classify the target genes of siRNA. In total, 520,519 candidate siRNAs were identified and their expression profiles exhibited typical temporal characters during grapevine development. In addition, we identified two grapevine trans-acting siRNA (TAS) gene homologs (VvTAS3 and VvTAS4) and the derived trans-acting siRNAs (tasiRNAs) that could target grapevine auxin response factor (ARF) and myeloblastosis (MYB) genes. Furthermore, the GO and KEGG analysis of target genes showed that most of them covered a broad range of functional categories, especially involving in disease-resistance process. The large-scale and completely genome-wide level identification and characterization of grapevine endogenous siRNAs from the diverse tissues by high throughput technology revealed the nature and functions of siRNAs in grapevine.

DOI: 10.1007/s13258-018-0679-z
PubMed: 30047108

Links to Exploration step

pubmed:30047108

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.</title>
<author>
<name sortKey="Zhu, Xudong" sort="Zhu, Xudong" uniqKey="Zhu X" first="Xudong" last="Zhu">Xudong Zhu</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiu, Songtao" sort="Jiu, Songtao" uniqKey="Jiu S" first="Songtao" last="Jiu">Songtao Jiu</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaopeng" sort="Li, Xiaopeng" uniqKey="Li X" first="Xiaopeng" last="Li">Xiaopeng Li</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Kekun" sort="Zhang, Kekun" uniqKey="Zhang K" first="Kekun" last="Zhang">Kekun Zhang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mengqi" sort="Wang, Mengqi" uniqKey="Wang M" first="Mengqi" last="Wang">Mengqi Wang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chen" sort="Wang, Chen" uniqKey="Wang C" first="Chen" last="Wang">Chen Wang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China. fanggg@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30047108</idno>
<idno type="pmid">30047108</idno>
<idno type="doi">10.1007/s13258-018-0679-z</idno>
<idno type="wicri:Area/Main/Corpus">000242</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000242</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.</title>
<author>
<name sortKey="Zhu, Xudong" sort="Zhu, Xudong" uniqKey="Zhu X" first="Xudong" last="Zhu">Xudong Zhu</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiu, Songtao" sort="Jiu, Songtao" uniqKey="Jiu S" first="Songtao" last="Jiu">Songtao Jiu</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaopeng" sort="Li, Xiaopeng" uniqKey="Li X" first="Xiaopeng" last="Li">Xiaopeng Li</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Kekun" sort="Zhang, Kekun" uniqKey="Zhang K" first="Kekun" last="Zhang">Kekun Zhang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mengqi" sort="Wang, Mengqi" uniqKey="Wang M" first="Mengqi" last="Wang">Mengqi Wang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chen" sort="Wang, Chen" uniqKey="Wang C" first="Chen" last="Wang">Chen Wang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China. fanggg@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes & genomics</title>
<idno type="eISSN">2092-9293</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>Vitis (genetics)</term>
<term>Vitis (growth & development)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
<term>RNA, Plant</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Computer Simulation</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Small interfering RNAs (siRNAs) are effectors of regulatory pathways underlying plant development, metabolism, and stress- and nutrient-signaling regulatory networks. The endogenous siRNAs are generally not conserved between plants; consequently, it is necessary and important to identify and characterize siRNAs from various plants. To address the nature and functions of siRNAs, and understand the biological roles of the huge siRNA population in grapevine (Vitis vinifera L.). The high-throughput sequencing technology was used to identify a large set of putative endogenous siRNAs from six grapevine tissues/organs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to classify the target genes of siRNA. In total, 520,519 candidate siRNAs were identified and their expression profiles exhibited typical temporal characters during grapevine development. In addition, we identified two grapevine trans-acting siRNA (TAS) gene homologs (VvTAS3 and VvTAS4) and the derived trans-acting siRNAs (tasiRNAs) that could target grapevine auxin response factor (ARF) and myeloblastosis (MYB) genes. Furthermore, the GO and KEGG analysis of target genes showed that most of them covered a broad range of functional categories, especially involving in disease-resistance process. The large-scale and completely genome-wide level identification and characterization of grapevine endogenous siRNAs from the diverse tissues by high throughput technology revealed the nature and functions of siRNAs in grapevine.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30047108</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2092-9293</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Genes & genomics</Title>
<ISOAbbreviation>Genes Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.</ArticleTitle>
<Pagination>
<MedlinePgn>801-817</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s13258-018-0679-z</ELocationID>
<Abstract>
<AbstractText>Small interfering RNAs (siRNAs) are effectors of regulatory pathways underlying plant development, metabolism, and stress- and nutrient-signaling regulatory networks. The endogenous siRNAs are generally not conserved between plants; consequently, it is necessary and important to identify and characterize siRNAs from various plants. To address the nature and functions of siRNAs, and understand the biological roles of the huge siRNA population in grapevine (Vitis vinifera L.). The high-throughput sequencing technology was used to identify a large set of putative endogenous siRNAs from six grapevine tissues/organs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to classify the target genes of siRNA. In total, 520,519 candidate siRNAs were identified and their expression profiles exhibited typical temporal characters during grapevine development. In addition, we identified two grapevine trans-acting siRNA (TAS) gene homologs (VvTAS3 and VvTAS4) and the derived trans-acting siRNAs (tasiRNAs) that could target grapevine auxin response factor (ARF) and myeloblastosis (MYB) genes. Furthermore, the GO and KEGG analysis of target genes showed that most of them covered a broad range of functional categories, especially involving in disease-resistance process. The large-scale and completely genome-wide level identification and characterization of grapevine endogenous siRNAs from the diverse tissues by high throughput technology revealed the nature and functions of siRNAs in grapevine.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xudong</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0003-0110-2423</Identifier>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiu</LastName>
<ForeName>Songtao</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiaopeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Kekun</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Mengqi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Jinggui</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China. fanggg@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31672131</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>31401846</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>31301759</GrantID>
<Agency>Natural Science Foundation of China</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2016M590465</GrantID>
<Agency>China Postdoctoral Science Foundation Funded Project</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>ZW2014009</GrantID>
<Agency>Opening Project of State Key Laboratory of Crop Genetics and Germplasm Enhancement</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>Genes Genomics</MedlineTA>
<NlmUniqueID>101481027</NlmUniqueID>
<ISSNLinking>1976-9571</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Endogenous siRNA</Keyword>
<Keyword MajorTopicYN="Y">Grapevine</Keyword>
<Keyword MajorTopicYN="Y">High-throughput</Keyword>
<Keyword MajorTopicYN="Y">Target genes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30047108</ArticleId>
<ArticleId IdType="doi">10.1007/s13258-018-0679-z</ArticleId>
<ArticleId IdType="pii">10.1007/s13258-018-0679-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2008 Apr;49(4):493-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jul;12(7):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):27-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jul;18(7):1559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2010 Oct;21(8):805-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(6):960-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 15;12:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22894611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Jul 23;13:329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22823569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):669-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Mar 29;13:122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Sep;80(1):117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2006 Dec;16(6):545-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17055251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Aug 24;13:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1513-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):128-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2120-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e55107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23359822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 May 15;24(10):1010-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20478994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Sep;143(1):64-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21496033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Nov;18(11):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23993483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Sep;59(5):750-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Feb;19(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19507046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Nov;21(11):3421-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9703-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Aug 02;33(14):4443-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16077027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Oct;18(10):1602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Jun 15;395(1-2):49-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17408884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Sep 15;19(18):2164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16131612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):18002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 May 9;16(9):939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Mar;5(3):e57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:225-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Jun;15(6):1012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 15;28(20):2561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Apr;69(6):633-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19096760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Feb 12;11:109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20152027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):1045-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1567-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jul 13;11:431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Jan;237(1):89-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12984-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):642-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Jan;14(1):30-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22947170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Dec;36(21):e141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):489-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Interdiscip Sci. 2009 Dec;1(4):298-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20640808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3318-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(11):R122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):926-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400893</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30047108
   |texte=   In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30047108" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020