Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production of adeno-associated virus vectors for in vitro and in vivo applications.

Identifieur interne : 000111 ( Main/Corpus ); précédent : 000110; suivant : 000112

Production of adeno-associated virus vectors for in vitro and in vivo applications.

Auteurs : Toyokazu Kimura ; Beatriz Ferran ; Yuko Tsukahara ; Qifan Shang ; Suveer Desai ; Alessandra Fedoce ; David Richard Pimentel ; Ivan Luptak ; Takeshi Adachi ; Yasuo Ido ; Reiko Matsui ; Markus Michael Bachschmid

Source :

RBID : pubmed:31537820

English descriptors

Abstract

Delivering and expressing a gene of interest in cells or living animals has become a pivotal technique in biomedical research and gene therapy. Among viral delivery systems, adeno-associated viruses (AAVs) are relatively safe and demonstrate high gene transfer efficiency, low immunogenicity, stable long-term expression, and selective tissue tropism. Combined with modern gene technologies, such as cell-specific promoters, the Cre/lox system, and genome editing, AAVs represent a practical, rapid, and economical alternative to conditional knockout and transgenic mouse models. However, major obstacles remain for widespread AAV utilization, such as impractical purification strategies and low viral quantities. Here, we report an improved protocol to produce serotype-independent purified AAVs economically. Using a helper-free AAV system, we purified AAVs from HEK293T cell lysates and medium by polyethylene glycol precipitation with subsequent aqueous two-phase partitioning. Furthermore, we then implemented an iodixanol gradient purification, which resulted in preparations with purities adequate for in vivo use. Of note, we achieved titers of 1010-1011 viral genome copies per µl with a typical production volume of up to 1 ml while requiring five times less than the usual number of HEK293T cells used in standard protocols. For proof of concept, we verified in vivo transduction via Western blot, qPCR, luminescence, and immunohistochemistry. AAVs coding for glutaredoxin-1 (Glrx) shRNA successfully inhibited Glrx expression by ~66% in the liver and skeletal muscle. Our study provides an improved protocol for a more economical and efficient purified AAV preparation.

DOI: 10.1038/s41598-019-49624-w
PubMed: 31537820
PubMed Central: PMC6753157

Links to Exploration step

pubmed:31537820

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production of adeno-associated virus vectors for in vitro and in vivo applications.</title>
<author>
<name sortKey="Kimura, Toyokazu" sort="Kimura, Toyokazu" uniqKey="Kimura T" first="Toyokazu" last="Kimura">Toyokazu Kimura</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferran, Beatriz" sort="Ferran, Beatriz" uniqKey="Ferran B" first="Beatriz" last="Ferran">Beatriz Ferran</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsukahara, Yuko" sort="Tsukahara, Yuko" uniqKey="Tsukahara Y" first="Yuko" last="Tsukahara">Yuko Tsukahara</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Qifan" sort="Shang, Qifan" uniqKey="Shang Q" first="Qifan" last="Shang">Qifan Shang</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desai, Suveer" sort="Desai, Suveer" uniqKey="Desai S" first="Suveer" last="Desai">Suveer Desai</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fedoce, Alessandra" sort="Fedoce, Alessandra" uniqKey="Fedoce A" first="Alessandra" last="Fedoce">Alessandra Fedoce</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pimentel, David Richard" sort="Pimentel, David Richard" uniqKey="Pimentel D" first="David Richard" last="Pimentel">David Richard Pimentel</name>
<affiliation>
<nlm:affiliation>Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luptak, Ivan" sort="Luptak, Ivan" uniqKey="Luptak I" first="Ivan" last="Luptak">Ivan Luptak</name>
<affiliation>
<nlm:affiliation>Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adachi, Takeshi" sort="Adachi, Takeshi" uniqKey="Adachi T" first="Takeshi" last="Adachi">Takeshi Adachi</name>
<affiliation>
<nlm:affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ido, Yasuo" sort="Ido, Yasuo" uniqKey="Ido Y" first="Yasuo" last="Ido">Yasuo Ido</name>
<affiliation>
<nlm:affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA. rmatsui@bu.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus Michael" sort="Bachschmid, Markus Michael" uniqKey="Bachschmid M" first="Markus Michael" last="Bachschmid">Markus Michael Bachschmid</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA. bach@bu.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31537820</idno>
<idno type="pmid">31537820</idno>
<idno type="doi">10.1038/s41598-019-49624-w</idno>
<idno type="pmc">PMC6753157</idno>
<idno type="wicri:Area/Main/Corpus">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000111</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production of adeno-associated virus vectors for in vitro and in vivo applications.</title>
<author>
<name sortKey="Kimura, Toyokazu" sort="Kimura, Toyokazu" uniqKey="Kimura T" first="Toyokazu" last="Kimura">Toyokazu Kimura</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferran, Beatriz" sort="Ferran, Beatriz" uniqKey="Ferran B" first="Beatriz" last="Ferran">Beatriz Ferran</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsukahara, Yuko" sort="Tsukahara, Yuko" uniqKey="Tsukahara Y" first="Yuko" last="Tsukahara">Yuko Tsukahara</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Qifan" sort="Shang, Qifan" uniqKey="Shang Q" first="Qifan" last="Shang">Qifan Shang</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desai, Suveer" sort="Desai, Suveer" uniqKey="Desai S" first="Suveer" last="Desai">Suveer Desai</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fedoce, Alessandra" sort="Fedoce, Alessandra" uniqKey="Fedoce A" first="Alessandra" last="Fedoce">Alessandra Fedoce</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pimentel, David Richard" sort="Pimentel, David Richard" uniqKey="Pimentel D" first="David Richard" last="Pimentel">David Richard Pimentel</name>
<affiliation>
<nlm:affiliation>Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luptak, Ivan" sort="Luptak, Ivan" uniqKey="Luptak I" first="Ivan" last="Luptak">Ivan Luptak</name>
<affiliation>
<nlm:affiliation>Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adachi, Takeshi" sort="Adachi, Takeshi" uniqKey="Adachi T" first="Takeshi" last="Adachi">Takeshi Adachi</name>
<affiliation>
<nlm:affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ido, Yasuo" sort="Ido, Yasuo" uniqKey="Ido Y" first="Yasuo" last="Ido">Yasuo Ido</name>
<affiliation>
<nlm:affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA. rmatsui@bu.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus Michael" sort="Bachschmid, Markus Michael" uniqKey="Bachschmid M" first="Markus Michael" last="Bachschmid">Markus Michael Bachschmid</name>
<affiliation>
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA. bach@bu.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Chemical Precipitation (MeSH)</term>
<term>Dependovirus (genetics)</term>
<term>Dependovirus (growth & development)</term>
<term>Dependovirus (isolation & purification)</term>
<term>Down-Regulation (MeSH)</term>
<term>Genetic Vectors (genetics)</term>
<term>Glutaredoxins (antagonists & inhibitors)</term>
<term>Glutaredoxins (metabolism)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Liver (metabolism)</term>
<term>Male (MeSH)</term>
<term>Muscle, Skeletal (metabolism)</term>
<term>Polyethylenes (chemistry)</term>
<term>Proof of Concept Study (MeSH)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>Transduction, Genetic (MeSH)</term>
<term>Viral Load (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polyethylenes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Dependovirus</term>
<term>Genetic Vectors</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Dependovirus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Dependovirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Liver</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chemical Precipitation</term>
<term>Down-Regulation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Male</term>
<term>Proof of Concept Study</term>
<term>Transduction, Genetic</term>
<term>Viral Load</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Delivering and expressing a gene of interest in cells or living animals has become a pivotal technique in biomedical research and gene therapy. Among viral delivery systems, adeno-associated viruses (AAVs) are relatively safe and demonstrate high gene transfer efficiency, low immunogenicity, stable long-term expression, and selective tissue tropism. Combined with modern gene technologies, such as cell-specific promoters, the Cre/lox system, and genome editing, AAVs represent a practical, rapid, and economical alternative to conditional knockout and transgenic mouse models. However, major obstacles remain for widespread AAV utilization, such as impractical purification strategies and low viral quantities. Here, we report an improved protocol to produce serotype-independent purified AAVs economically. Using a helper-free AAV system, we purified AAVs from HEK293T cell lysates and medium by polyethylene glycol precipitation with subsequent aqueous two-phase partitioning. Furthermore, we then implemented an iodixanol gradient purification, which resulted in preparations with purities adequate for in vivo use. Of note, we achieved titers of 10
<sup>10</sup>
-10
<sup>11</sup>
viral genome copies per µl with a typical production volume of up to 1 ml while requiring five times less than the usual number of HEK293T cells used in standard protocols. For proof of concept, we verified in vivo transduction via Western blot, qPCR, luminescence, and immunohistochemistry. AAVs coding for glutaredoxin-1 (Glrx) shRNA successfully inhibited Glrx expression by ~66% in the liver and skeletal muscle. Our study provides an improved protocol for a more economical and efficient purified AAV preparation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31537820</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Production of adeno-associated virus vectors for in vitro and in vivo applications.</ArticleTitle>
<Pagination>
<MedlinePgn>13601</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-019-49624-w</ELocationID>
<Abstract>
<AbstractText>Delivering and expressing a gene of interest in cells or living animals has become a pivotal technique in biomedical research and gene therapy. Among viral delivery systems, adeno-associated viruses (AAVs) are relatively safe and demonstrate high gene transfer efficiency, low immunogenicity, stable long-term expression, and selective tissue tropism. Combined with modern gene technologies, such as cell-specific promoters, the Cre/lox system, and genome editing, AAVs represent a practical, rapid, and economical alternative to conditional knockout and transgenic mouse models. However, major obstacles remain for widespread AAV utilization, such as impractical purification strategies and low viral quantities. Here, we report an improved protocol to produce serotype-independent purified AAVs economically. Using a helper-free AAV system, we purified AAVs from HEK293T cell lysates and medium by polyethylene glycol precipitation with subsequent aqueous two-phase partitioning. Furthermore, we then implemented an iodixanol gradient purification, which resulted in preparations with purities adequate for in vivo use. Of note, we achieved titers of 10
<sup>10</sup>
-10
<sup>11</sup>
viral genome copies per µl with a typical production volume of up to 1 ml while requiring five times less than the usual number of HEK293T cells used in standard protocols. For proof of concept, we verified in vivo transduction via Western blot, qPCR, luminescence, and immunohistochemistry. AAVs coding for glutaredoxin-1 (Glrx) shRNA successfully inhibited Glrx expression by ~66% in the liver and skeletal muscle. Our study provides an improved protocol for a more economical and efficient purified AAV preparation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kimura</LastName>
<ForeName>Toyokazu</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferran</LastName>
<ForeName>Beatriz</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsukahara</LastName>
<ForeName>Yuko</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Qifan</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Desai</LastName>
<ForeName>Suveer</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fedoce</LastName>
<ForeName>Alessandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pimentel</LastName>
<ForeName>David Richard</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luptak</LastName>
<ForeName>Ivan</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adachi</LastName>
<ForeName>Takeshi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ido</LastName>
<ForeName>Yasuo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8132-2823</Identifier>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA. rmatsui@bu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bachschmid</LastName>
<ForeName>Markus Michael</ForeName>
<Initials>MM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0748-5528</Identifier>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA. bach@bu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 HL007224</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL133013</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 AG051857</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK103750</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 TR001430</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516006">Glrx protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011095">Polyethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C045578">polyethylene chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011232" MajorTopicYN="N">Chemical Precipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000229" MajorTopicYN="N">Dependovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011095" MajorTopicYN="N">Polyethylenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000075082" MajorTopicYN="N">Proof of Concept Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014161" MajorTopicYN="N">Transduction, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31537820</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-019-49624-w</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-019-49624-w</ArticleId>
<ArticleId IdType="pmc">PMC6753157</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000111 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000111 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31537820
   |texte=   Production of adeno-associated virus vectors for in vitro and in vivo applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31537820" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020