Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.

Identifieur interne : 002032 ( Main/Exploration ); précédent : 002031; suivant : 002033

A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.

Auteurs : Sandra Prévéral ; Landry Gayet ; Cristina Moldes ; Jonathan Hoffmann ; Sandra Mounicou ; Antoine Gruet ; Florie Reynaud ; Ryszard Lobinski ; Jean-Marc Verbavatz ; Alain Vavasseur ; Cyrille Forestier

Source :

RBID : pubmed:19054771

Descripteurs français

English descriptors

Abstract

Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.

DOI: 10.1074/jbc.M808130200
PubMed: 19054771


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.</title>
<author>
<name sortKey="Preveral, Sandra" sort="Preveral, Sandra" uniqKey="Preveral S" first="Sandra" last="Prévéral">Sandra Prévéral</name>
<affiliation>
<nlm:affiliation>Commissariat à l'Energie Atomique (CEA) Cadarache, Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire des Echanges Membranaires et Signalisation, the CNRS, UMR Biologie Végétale et de Microbiologie Environnementales.</nlm:affiliation>
<wicri:noCountry code="subField">UMR Biologie Végétale et de Microbiologie Environnementales</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gayet, Landry" sort="Gayet, Landry" uniqKey="Gayet L" first="Landry" last="Gayet">Landry Gayet</name>
</author>
<author>
<name sortKey="Moldes, Cristina" sort="Moldes, Cristina" uniqKey="Moldes C" first="Cristina" last="Moldes">Cristina Moldes</name>
</author>
<author>
<name sortKey="Hoffmann, Jonathan" sort="Hoffmann, Jonathan" uniqKey="Hoffmann J" first="Jonathan" last="Hoffmann">Jonathan Hoffmann</name>
</author>
<author>
<name sortKey="Mounicou, Sandra" sort="Mounicou, Sandra" uniqKey="Mounicou S" first="Sandra" last="Mounicou">Sandra Mounicou</name>
</author>
<author>
<name sortKey="Gruet, Antoine" sort="Gruet, Antoine" uniqKey="Gruet A" first="Antoine" last="Gruet">Antoine Gruet</name>
</author>
<author>
<name sortKey="Reynaud, Florie" sort="Reynaud, Florie" uniqKey="Reynaud F" first="Florie" last="Reynaud">Florie Reynaud</name>
</author>
<author>
<name sortKey="Lobinski, Ryszard" sort="Lobinski, Ryszard" uniqKey="Lobinski R" first="Ryszard" last="Lobinski">Ryszard Lobinski</name>
</author>
<author>
<name sortKey="Verbavatz, Jean Marc" sort="Verbavatz, Jean Marc" uniqKey="Verbavatz J" first="Jean-Marc" last="Verbavatz">Jean-Marc Verbavatz</name>
</author>
<author>
<name sortKey="Vavasseur, Alain" sort="Vavasseur, Alain" uniqKey="Vavasseur A" first="Alain" last="Vavasseur">Alain Vavasseur</name>
</author>
<author>
<name sortKey="Forestier, Cyrille" sort="Forestier, Cyrille" uniqKey="Forestier C" first="Cyrille" last="Forestier">Cyrille Forestier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19054771</idno>
<idno type="pmid">19054771</idno>
<idno type="doi">10.1074/jbc.M808130200</idno>
<idno type="wicri:Area/Main/Corpus">002023</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002023</idno>
<idno type="wicri:Area/Main/Curation">002023</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002023</idno>
<idno type="wicri:Area/Main/Exploration">002023</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.</title>
<author>
<name sortKey="Preveral, Sandra" sort="Preveral, Sandra" uniqKey="Preveral S" first="Sandra" last="Prévéral">Sandra Prévéral</name>
<affiliation>
<nlm:affiliation>Commissariat à l'Energie Atomique (CEA) Cadarache, Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire des Echanges Membranaires et Signalisation, the CNRS, UMR Biologie Végétale et de Microbiologie Environnementales.</nlm:affiliation>
<wicri:noCountry code="subField">UMR Biologie Végétale et de Microbiologie Environnementales</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gayet, Landry" sort="Gayet, Landry" uniqKey="Gayet L" first="Landry" last="Gayet">Landry Gayet</name>
</author>
<author>
<name sortKey="Moldes, Cristina" sort="Moldes, Cristina" uniqKey="Moldes C" first="Cristina" last="Moldes">Cristina Moldes</name>
</author>
<author>
<name sortKey="Hoffmann, Jonathan" sort="Hoffmann, Jonathan" uniqKey="Hoffmann J" first="Jonathan" last="Hoffmann">Jonathan Hoffmann</name>
</author>
<author>
<name sortKey="Mounicou, Sandra" sort="Mounicou, Sandra" uniqKey="Mounicou S" first="Sandra" last="Mounicou">Sandra Mounicou</name>
</author>
<author>
<name sortKey="Gruet, Antoine" sort="Gruet, Antoine" uniqKey="Gruet A" first="Antoine" last="Gruet">Antoine Gruet</name>
</author>
<author>
<name sortKey="Reynaud, Florie" sort="Reynaud, Florie" uniqKey="Reynaud F" first="Florie" last="Reynaud">Florie Reynaud</name>
</author>
<author>
<name sortKey="Lobinski, Ryszard" sort="Lobinski, Ryszard" uniqKey="Lobinski R" first="Ryszard" last="Lobinski">Ryszard Lobinski</name>
</author>
<author>
<name sortKey="Verbavatz, Jean Marc" sort="Verbavatz, Jean Marc" uniqKey="Verbavatz J" first="Jean-Marc" last="Verbavatz">Jean-Marc Verbavatz</name>
</author>
<author>
<name sortKey="Vavasseur, Alain" sort="Vavasseur, Alain" uniqKey="Vavasseur A" first="Alain" last="Vavasseur">Alain Vavasseur</name>
</author>
<author>
<name sortKey="Forestier, Cyrille" sort="Forestier, Cyrille" uniqKey="Forestier C" first="Cyrille" last="Forestier">Cyrille Forestier</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP-Binding Cassette Transporters (MeSH)</term>
<term>Adenosine Triphosphatases (genetics)</term>
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Adenosine Triphosphate (genetics)</term>
<term>Adenosine Triphosphate (metabolism)</term>
<term>Amino Acid Substitution (MeSH)</term>
<term>Aminoacyltransferases (genetics)</term>
<term>Aminoacyltransferases (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Arabidopsis (MeSH)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cadmium (pharmacology)</term>
<term>Chelating Agents (MeSH)</term>
<term>Drug Resistance, Fungal (physiology)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Mutation, Missense (MeSH)</term>
<term>Phytochelatins (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adenosine triphosphatases (génétique)</term>
<term>Adenosine triphosphatases (métabolisme)</term>
<term>Adénosine triphosphate (génétique)</term>
<term>Adénosine triphosphate (métabolisme)</term>
<term>Aminoacyltransferases (génétique)</term>
<term>Aminoacyltransferases (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Arabidopsis (MeSH)</term>
<term>Cadmium (pharmacologie)</term>
<term>Chélateurs (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mutation faux-sens (MeSH)</term>
<term>Phytochélatines (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Résistance des champignons aux médicaments (physiologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Transporteurs ABC (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Adenosine Triphosphate</term>
<term>Aminoacyltransferases</term>
<term>Arabidopsis Proteins</term>
<term>Glutathione</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Adenosine Triphosphate</term>
<term>Aminoacyltransferases</term>
<term>Arabidopsis Proteins</term>
<term>Glutathione</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
<term>Chelating Agents</term>
<term>Phytochelatins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Saccharomyces cerevisiae</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Adénosine triphosphate</term>
<term>Aminoacyltransferases</term>
<term>Escherichia coli</term>
<term>Glutathion</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines recombinantes</term>
<term>Saccharomyces cerevisiae</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Saccharomyces cerevisiae</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Adénosine triphosphate</term>
<term>Aminoacyltransferases</term>
<term>Escherichia coli</term>
<term>Glutathion</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines recombinantes</term>
<term>Saccharomyces cerevisiae</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Résistance des champignons aux médicaments</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Drug Resistance, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Arabidopsis</term>
<term>Gene Expression</term>
<term>Gene Knockout Techniques</term>
<term>Humans</term>
<term>Mutation, Missense</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Arabidopsis</term>
<term>Chélateurs</term>
<term>Expression des gènes</term>
<term>Humains</term>
<term>Mutation faux-sens</term>
<term>Phytochélatines</term>
<term>Substitution d'acide aminé</term>
<term>Techniques de knock-out de gènes</term>
<term>Transporteurs ABC</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19054771</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>12</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2009</Year>
<Month>Feb</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.</ArticleTitle>
<Pagination>
<MedlinePgn>4936-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M808130200</ELocationID>
<Abstract>
<AbstractText>Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prévéral</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Commissariat à l'Energie Atomique (CEA) Cadarache, Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire des Echanges Membranaires et Signalisation, the CNRS, UMR Biologie Végétale et de Microbiologie Environnementales.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gayet</LastName>
<ForeName>Landry</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moldes</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mounicou</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gruet</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reynaud</LastName>
<ForeName>Florie</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lobinski</LastName>
<ForeName>Ryszard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Verbavatz</LastName>
<ForeName>Jean-Marc</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vavasseur</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Forestier</LastName>
<ForeName>Cyrille</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>12</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018528">ATP-Binding Cassette Transporters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002614">Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C489670">hmt1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98726-08-0</RegistryNumber>
<NameOfSubstance UI="D054811">Phytochelatins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.-</RegistryNumber>
<NameOfSubstance UI="D019881">Aminoacyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.15</RegistryNumber>
<NameOfSubstance UI="C093784">glutathione gamma-glutamylcysteinyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.3</RegistryNumber>
<NameOfSubstance UI="C477864">HMA4 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018528" MajorTopicYN="N">ATP-Binding Cassette Transporters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019881" MajorTopicYN="N">Aminoacyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002614" MajorTopicYN="N">Chelating Agents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054811" MajorTopicYN="Y">Phytochelatins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19054771</ArticleId>
<ArticleId IdType="pii">M808130200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M808130200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Forestier, Cyrille" sort="Forestier, Cyrille" uniqKey="Forestier C" first="Cyrille" last="Forestier">Cyrille Forestier</name>
<name sortKey="Gayet, Landry" sort="Gayet, Landry" uniqKey="Gayet L" first="Landry" last="Gayet">Landry Gayet</name>
<name sortKey="Gruet, Antoine" sort="Gruet, Antoine" uniqKey="Gruet A" first="Antoine" last="Gruet">Antoine Gruet</name>
<name sortKey="Hoffmann, Jonathan" sort="Hoffmann, Jonathan" uniqKey="Hoffmann J" first="Jonathan" last="Hoffmann">Jonathan Hoffmann</name>
<name sortKey="Lobinski, Ryszard" sort="Lobinski, Ryszard" uniqKey="Lobinski R" first="Ryszard" last="Lobinski">Ryszard Lobinski</name>
<name sortKey="Moldes, Cristina" sort="Moldes, Cristina" uniqKey="Moldes C" first="Cristina" last="Moldes">Cristina Moldes</name>
<name sortKey="Mounicou, Sandra" sort="Mounicou, Sandra" uniqKey="Mounicou S" first="Sandra" last="Mounicou">Sandra Mounicou</name>
<name sortKey="Preveral, Sandra" sort="Preveral, Sandra" uniqKey="Preveral S" first="Sandra" last="Prévéral">Sandra Prévéral</name>
<name sortKey="Reynaud, Florie" sort="Reynaud, Florie" uniqKey="Reynaud F" first="Florie" last="Reynaud">Florie Reynaud</name>
<name sortKey="Vavasseur, Alain" sort="Vavasseur, Alain" uniqKey="Vavasseur A" first="Alain" last="Vavasseur">Alain Vavasseur</name>
<name sortKey="Verbavatz, Jean Marc" sort="Verbavatz, Jean Marc" uniqKey="Verbavatz J" first="Jean-Marc" last="Verbavatz">Jean-Marc Verbavatz</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002032 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002032 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19054771
   |texte=   A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19054771" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020