Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.

Identifieur interne : 000167 ( Main/Exploration ); précédent : 000166; suivant : 000168

Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.

Auteurs : Shuqi Guo [République populaire de Chine] ; Yunxiao Wang [République populaire de Chine] ; Wei Wang [République populaire de Chine] ; Hongbo Hu [République populaire de Chine] ; Xuehong Zhang [République populaire de Chine]

Source :

RBID : pubmed:32430011

Descripteurs français

English descriptors

Abstract

BACKGROUND

2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway.

RESULT

In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe

CONCLUSION

In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources.


DOI: 10.1186/s12934-020-01364-7
PubMed: 32430011
PubMed Central: PMC7236291


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.</title>
<author>
<name sortKey="Guo, Shuqi" sort="Guo, Shuqi" uniqKey="Guo S" first="Shuqi" last="Guo">Shuqi Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yunxiao" sort="Wang, Yunxiao" uniqKey="Wang Y" first="Yunxiao" last="Wang">Yunxiao Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Hongbo" sort="Hu, Hongbo" uniqKey="Hu H" first="Hongbo" last="Hu">Hongbo Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Experimental, Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Experimental, Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xuehong" sort="Zhang, Xuehong" uniqKey="Zhang X" first="Xuehong" last="Zhang">Xuehong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. xuehzhang@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32430011</idno>
<idno type="pmid">32430011</idno>
<idno type="doi">10.1186/s12934-020-01364-7</idno>
<idno type="pmc">PMC7236291</idno>
<idno type="wicri:Area/Main/Corpus">000120</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000120</idno>
<idno type="wicri:Area/Main/Curation">000120</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000120</idno>
<idno type="wicri:Area/Main/Exploration">000120</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.</title>
<author>
<name sortKey="Guo, Shuqi" sort="Guo, Shuqi" uniqKey="Guo S" first="Shuqi" last="Guo">Shuqi Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yunxiao" sort="Wang, Yunxiao" uniqKey="Wang Y" first="Yunxiao" last="Wang">Yunxiao Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Hongbo" sort="Hu, Hongbo" uniqKey="Hu H" first="Hongbo" last="Hu">Hongbo Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Experimental, Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Experimental, Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xuehong" sort="Zhang, Xuehong" uniqKey="Zhang X" first="Xuehong" last="Zhang">Xuehong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. xuehzhang@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial cell factories</title>
<idno type="eISSN">1475-2859</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetaminophen (metabolism)</term>
<term>Arylamine N-Acetyltransferase (genetics)</term>
<term>Arylamine N-Acetyltransferase (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biosynthetic Pathways (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Industrial Microbiology (MeSH)</term>
<term>Metabolic Engineering (MeSH)</term>
<term>Pseudomonas chlororaphis (enzymology)</term>
<term>Pseudomonas chlororaphis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétaminophène (métabolisme)</term>
<term>Arylamine N-acetyltransferase (génétique)</term>
<term>Arylamine N-acetyltransferase (métabolisme)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Génie métabolique (MeSH)</term>
<term>Microbiologie industrielle (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Pseudomonas chlororaphis (enzymologie)</term>
<term>Pseudomonas chlororaphis (génétique)</term>
<term>Voies de biosynthèse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arylamine N-Acetyltransferase</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetaminophen</term>
<term>Arylamine N-Acetyltransferase</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Pseudomonas chlororaphis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Pseudomonas chlororaphis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pseudomonas chlororaphis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arylamine N-acetyltransferase</term>
<term>Protéines bactériennes</term>
<term>Pseudomonas chlororaphis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acétaminophène</term>
<term>Arylamine N-acetyltransferase</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Genes, Bacterial</term>
<term>Industrial Microbiology</term>
<term>Metabolic Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes bactériens</term>
<term>Génie métabolique</term>
<term>Microbiologie industrielle</term>
<term>Voies de biosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULT</b>
</p>
<p>In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32430011</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1475-2859</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Microbial cell factories</Title>
<ISOAbbreviation>Microb Cell Fact</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.</ArticleTitle>
<Pagination>
<MedlinePgn>105</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12934-020-01364-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway.</AbstractText>
<AbstractText Label="RESULT" NlmCategory="RESULTS">In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe
<sup>3+</sup>
to the KB medium, the production of AAP reached 1209.58 mg/L in the engineered strain P3ΔphzBΔlonΔpykAΔrsmE using a shaking-flask culture. This is the highest microbial-based AAP production achieved to date.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Shuqi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yunxiao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Hongbo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>National Experimental, Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xuehong</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2398-3105</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. xuehzhang@sjtu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>No. 2019YFA09004302</GrantID>
<Agency>The National Key Scientific Research Projects</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>No. 31670033</GrantID>
<Agency>The National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microb Cell Fact</MedlineTA>
<NlmUniqueID>101139812</NlmUniqueID>
<ISSNLinking>1475-2859</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>362O9ITL9D</RegistryNumber>
<NameOfSubstance UI="D000082">Acetaminophen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.5</RegistryNumber>
<NameOfSubstance UI="D001191">Arylamine N-Acetyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000082" MajorTopicYN="N">Acetaminophen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001191" MajorTopicYN="N">Arylamine N-Acetyltransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="Y">Biosynthetic Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007218" MajorTopicYN="N">Industrial Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="Y">Metabolic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070096" MajorTopicYN="N">Pseudomonas chlororaphis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">2-Acetamidophenol</Keyword>
<Keyword MajorTopicYN="N">Aromatic chemicals</Keyword>
<Keyword MajorTopicYN="N">Arylamine N-acetyltransferase</Keyword>
<Keyword MajorTopicYN="N">Biosynthesis</Keyword>
<Keyword MajorTopicYN="N">Pseudomonas chlororaphis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32430011</ArticleId>
<ArticleId IdType="doi">10.1186/s12934-020-01364-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12934-020-01364-7</ArticleId>
<ArticleId IdType="pmc">PMC7236291</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Cell Fact. 2018 Nov 10;17(1):174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30414616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2012 May 17;8(6):536-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22596205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Mar;189(5):2155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2019 Oct;60:296-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31207345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 May;17(5):557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2017 Oct;101(19):7165-7175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28871340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Sep;78(17):6203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2018 Apr 20;7(4):1131-1142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29608278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Feb;202:33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26700756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2007 Mar 20;8:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2012 Sep 13;11:127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22973998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2018 Jul 25;17(1):117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30045743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Dec;20(6):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2019 Jan;450(1-2):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Sep;97(17):7767-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2019 Feb 26;18(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30808357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Jan 15;385(Pt 2):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2000 Sep;54(3):376-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell Int. 2014 Nov 30;14(1):133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25663820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2016 Jul 28;15(1):131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27470070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2015 Nov;32:30-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26369437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2019 Sep;287:121484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31121443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2016 Nov 21;60(12):7505-7508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27671064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2014 May 22;12(5):3046-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24857962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2017 Aug;35(8):785-796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28645530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammation. 2017 Aug;40(4):1177-1190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28474155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2019 Feb;273:196-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30447620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jun;69(6):3165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Dec 17;130(50):17053-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19053436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Lett. 2016 May 20;18(10):2495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27145204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2017 Aug;101(16):6375-6383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28601894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 07;6:27393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27273243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Guo, Shuqi" sort="Guo, Shuqi" uniqKey="Guo S" first="Shuqi" last="Guo">Shuqi Guo</name>
</noRegion>
<name sortKey="Hu, Hongbo" sort="Hu, Hongbo" uniqKey="Hu H" first="Hongbo" last="Hu">Hongbo Hu</name>
<name sortKey="Hu, Hongbo" sort="Hu, Hongbo" uniqKey="Hu H" first="Hongbo" last="Hu">Hongbo Hu</name>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<name sortKey="Wang, Yunxiao" sort="Wang, Yunxiao" uniqKey="Wang Y" first="Yunxiao" last="Wang">Yunxiao Wang</name>
<name sortKey="Zhang, Xuehong" sort="Zhang, Xuehong" uniqKey="Zhang X" first="Xuehong" last="Zhang">Xuehong Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000167 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000167 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32430011
   |texte=   Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32430011" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020