Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.

Identifieur interne : 000063 ( Main/Exploration ); précédent : 000062; suivant : 000064

The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.

Auteurs : Hiba Simaan [Israël] ; Samer Shalaby [Israël, États-Unis] ; Maor Hatoel [Israël] ; Olga Karinski [Israël] ; Orit Goldshmidt-Tran [Israël] ; Benjamin A. Horwitz [Israël]

Source :

RBID : pubmed:31312934

Descripteurs français

English descriptors

Abstract

Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.

DOI: 10.1007/s00294-019-01012-7
PubMed: 31312934


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.</title>
<author>
<name sortKey="Simaan, Hiba" sort="Simaan, Hiba" uniqKey="Simaan H" first="Hiba" last="Simaan">Hiba Simaan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shalaby, Samer" sort="Shalaby, Samer" uniqKey="Shalaby S" first="Samer" last="Shalaby">Samer Shalaby</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Rockefeller University, New York, NY, 10065, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rockefeller University, New York, NY, 10065</wicri:regionArea>
<wicri:noRegion>10065</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hatoel, Maor" sort="Hatoel, Maor" uniqKey="Hatoel M" first="Maor" last="Hatoel">Maor Hatoel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karinski, Olga" sort="Karinski, Olga" uniqKey="Karinski O" first="Olga" last="Karinski">Olga Karinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldshmidt Tran, Orit" sort="Goldshmidt Tran, Orit" uniqKey="Goldshmidt Tran O" first="Orit" last="Goldshmidt-Tran">Orit Goldshmidt-Tran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horwitz, Benjamin A" sort="Horwitz, Benjamin A" uniqKey="Horwitz B" first="Benjamin A" last="Horwitz">Benjamin A. Horwitz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel. horwitz@technion.ac.il.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31312934</idno>
<idno type="pmid">31312934</idno>
<idno type="doi">10.1007/s00294-019-01012-7</idno>
<idno type="wicri:Area/Main/Corpus">000390</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000390</idno>
<idno type="wicri:Area/Main/Curation">000390</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000390</idno>
<idno type="wicri:Area/Main/Exploration">000390</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.</title>
<author>
<name sortKey="Simaan, Hiba" sort="Simaan, Hiba" uniqKey="Simaan H" first="Hiba" last="Simaan">Hiba Simaan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shalaby, Samer" sort="Shalaby, Samer" uniqKey="Shalaby S" first="Samer" last="Shalaby">Samer Shalaby</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Rockefeller University, New York, NY, 10065, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rockefeller University, New York, NY, 10065</wicri:regionArea>
<wicri:noRegion>10065</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hatoel, Maor" sort="Hatoel, Maor" uniqKey="Hatoel M" first="Maor" last="Hatoel">Maor Hatoel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karinski, Olga" sort="Karinski, Olga" uniqKey="Karinski O" first="Olga" last="Karinski">Olga Karinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldshmidt Tran, Orit" sort="Goldshmidt Tran, Orit" uniqKey="Goldshmidt Tran O" first="Orit" last="Goldshmidt-Tran">Orit Goldshmidt-Tran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horwitz, Benjamin A" sort="Horwitz, Benjamin A" uniqKey="Horwitz B" first="Benjamin A" last="Horwitz">Benjamin A. Horwitz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel. horwitz@technion.ac.il.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="eISSN">1432-0983</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (physiology)</term>
<term>Biomarkers (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Phenols (metabolism)</term>
<term>Plant Diseases (microbiology)</term>
<term>Transcription Factor AP-1 (metabolism)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Ascomycota (physiologie)</term>
<term>Biologie informatique (méthodes)</term>
<term>Facteur de transcription AP-1 (métabolisme)</term>
<term>Gene Ontology (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Marqueurs biologiques (MeSH)</term>
<term>Phénols (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Zea mays (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phenols</term>
<term>Transcription Factor AP-1</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biomarkers</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de transcription AP-1</term>
<term>Phénols</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation</term>
<term>Gene Ontology</term>
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Gene Ontology</term>
<term>Interactions hôte-pathogène</term>
<term>Marqueurs biologiques</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31312934</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.</ArticleTitle>
<Pagination>
<MedlinePgn>187-203</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00294-019-01012-7</ELocationID>
<Abstract>
<AbstractText>Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Simaan</LastName>
<ForeName>Hiba</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shalaby</LastName>
<ForeName>Samer</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Rockefeller University, New York, NY, 10065, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hatoel</LastName>
<ForeName>Maor</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karinski</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goldshmidt-Tran</LastName>
<ForeName>Orit</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horwitz</LastName>
<ForeName>Benjamin A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel. horwitz@technion.ac.il.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>332/13</GrantID>
<Agency>Israel Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018808">Transcription Factor AP-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018808" MajorTopicYN="N">Transcription Factor AP-1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cell death</Keyword>
<Keyword MajorTopicYN="N">Cochliobolus heterostrophus</Keyword>
<Keyword MajorTopicYN="N">Detoxification</Keyword>
<Keyword MajorTopicYN="N">Ferulic acid</Keyword>
<Keyword MajorTopicYN="N">Pathogen</Keyword>
<Keyword MajorTopicYN="N">Phenolic</Keyword>
<Keyword MajorTopicYN="N">Plant</Keyword>
<Keyword MajorTopicYN="N">Stress</Keyword>
<Keyword MajorTopicYN="N">Tolerance</Keyword>
<Keyword MajorTopicYN="N">Transcription factor</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31312934</ArticleId>
<ArticleId IdType="doi">10.1007/s00294-019-01012-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00294-019-01012-7</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Simaan, Hiba" sort="Simaan, Hiba" uniqKey="Simaan H" first="Hiba" last="Simaan">Hiba Simaan</name>
</noRegion>
<name sortKey="Goldshmidt Tran, Orit" sort="Goldshmidt Tran, Orit" uniqKey="Goldshmidt Tran O" first="Orit" last="Goldshmidt-Tran">Orit Goldshmidt-Tran</name>
<name sortKey="Hatoel, Maor" sort="Hatoel, Maor" uniqKey="Hatoel M" first="Maor" last="Hatoel">Maor Hatoel</name>
<name sortKey="Horwitz, Benjamin A" sort="Horwitz, Benjamin A" uniqKey="Horwitz B" first="Benjamin A" last="Horwitz">Benjamin A. Horwitz</name>
<name sortKey="Karinski, Olga" sort="Karinski, Olga" uniqKey="Karinski O" first="Olga" last="Karinski">Olga Karinski</name>
<name sortKey="Shalaby, Samer" sort="Shalaby, Samer" uniqKey="Shalaby S" first="Samer" last="Shalaby">Samer Shalaby</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Shalaby, Samer" sort="Shalaby, Samer" uniqKey="Shalaby S" first="Samer" last="Shalaby">Samer Shalaby</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31312934
   |texte=   The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31312934" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020