Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.

Identifieur interne : 000555 ( Main/Corpus ); précédent : 000554; suivant : 000556

Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.

Auteurs : Dongchu Guo ; Zhouzhou Fan ; Shuyu Lu ; Yongjiao Ma ; Xiaohong Nie ; Fangping Tong ; Xiawei Peng

Source :

RBID : pubmed:30760787

English descriptors

Abstract

Mining and smelting activities are the major sources of antimony (Sb) contamination. The soil around Xikuangshan (XKS), one of the largest Sb mines in the world, has been contaminated with high concentrations of Sb and other associated metals, and has attracted extensive scholarly attention. Phytoremediation is considered a promising method for removing heavy metals, and the diversity and structure of rhizosphere microorganisms may change during the phytoremediation process. The rhizosphere microbiome is involved in soil energy transfer, nutrient cycling, and resistance and detoxification of metal elements. Thus, changes in this microbiome are worthy of investigation using high-throughput sequencing techniques. Our study in Changlongjie and Lianmeng around XKS revealed that microbial diversity indices in the rhizospheres of Broussonetia papyrifera and Ligustrum lucidum were significantly higher than in bulk soil, indicating that plants affect microbial communities. Additionally, most of the bacteria that were enriched in the rhizosphere belonged to the Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. In Changlongjie and Lianmeng, the diversity and abundance of the microbial community in the B. papyrifera rhizosphere were higher than in L. lucidum. In parallel, the soil pH of the B. papyrifera rhizosphere increased significantly in acidic soil and decreased significantly in near-neutral soil. Redundancy analyses indicated that pH was likely the main factor affecting the overall bacterial community compositions, followed by moisture content, Sb, arsenic (As), and chromium (Cr).

DOI: 10.1038/s41598-018-38360-2
PubMed: 30760787
PubMed Central: PMC6374380

Links to Exploration step

pubmed:30760787

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.</title>
<author>
<name sortKey="Guo, Dongchu" sort="Guo, Dongchu" uniqKey="Guo D" first="Dongchu" last="Guo">Dongchu Guo</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Zhouzhou" sort="Fan, Zhouzhou" uniqKey="Fan Z" first="Zhouzhou" last="Fan">Zhouzhou Fan</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shuyu" sort="Lu, Shuyu" uniqKey="Lu S" first="Shuyu" last="Lu">Shuyu Lu</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Yongjiao" sort="Ma, Yongjiao" uniqKey="Ma Y" first="Yongjiao" last="Ma">Yongjiao Ma</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nie, Xiaohong" sort="Nie, Xiaohong" uniqKey="Nie X" first="Xiaohong" last="Nie">Xiaohong Nie</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tong, Fangping" sort="Tong, Fangping" uniqKey="Tong F" first="Fangping" last="Tong">Fangping Tong</name>
<affiliation>
<nlm:affiliation>Hunan Academy of Forestry, Hunan, 410004, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peng, Xiawei" sort="Peng, Xiawei" uniqKey="Peng X" first="Xiawei" last="Peng">Xiawei Peng</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China. xiaweipeng@163.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30760787</idno>
<idno type="pmid">30760787</idno>
<idno type="doi">10.1038/s41598-018-38360-2</idno>
<idno type="pmc">PMC6374380</idno>
<idno type="wicri:Area/Main/Corpus">000555</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000555</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.</title>
<author>
<name sortKey="Guo, Dongchu" sort="Guo, Dongchu" uniqKey="Guo D" first="Dongchu" last="Guo">Dongchu Guo</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Zhouzhou" sort="Fan, Zhouzhou" uniqKey="Fan Z" first="Zhouzhou" last="Fan">Zhouzhou Fan</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shuyu" sort="Lu, Shuyu" uniqKey="Lu S" first="Shuyu" last="Lu">Shuyu Lu</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Yongjiao" sort="Ma, Yongjiao" uniqKey="Ma Y" first="Yongjiao" last="Ma">Yongjiao Ma</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nie, Xiaohong" sort="Nie, Xiaohong" uniqKey="Nie X" first="Xiaohong" last="Nie">Xiaohong Nie</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tong, Fangping" sort="Tong, Fangping" uniqKey="Tong F" first="Fangping" last="Tong">Fangping Tong</name>
<affiliation>
<nlm:affiliation>Hunan Academy of Forestry, Hunan, 410004, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peng, Xiawei" sort="Peng, Xiawei" uniqKey="Peng X" first="Xiawei" last="Peng">Xiawei Peng</name>
<affiliation>
<nlm:affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China. xiaweipeng@163.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony (analysis)</term>
<term>Arsenic (analysis)</term>
<term>Bacteria (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>China (MeSH)</term>
<term>Environmental Restoration and Remediation (methods)</term>
<term>Metals, Heavy (analysis)</term>
<term>Microbiota (MeSH)</term>
<term>Mining (MeSH)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Antimony</term>
<term>Arsenic</term>
<term>Metals, Heavy</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Environmental Restoration and Remediation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacteria</term>
<term>Biodegradation, Environmental</term>
<term>Microbiota</term>
<term>Mining</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mining and smelting activities are the major sources of antimony (Sb) contamination. The soil around Xikuangshan (XKS), one of the largest Sb mines in the world, has been contaminated with high concentrations of Sb and other associated metals, and has attracted extensive scholarly attention. Phytoremediation is considered a promising method for removing heavy metals, and the diversity and structure of rhizosphere microorganisms may change during the phytoremediation process. The rhizosphere microbiome is involved in soil energy transfer, nutrient cycling, and resistance and detoxification of metal elements. Thus, changes in this microbiome are worthy of investigation using high-throughput sequencing techniques. Our study in Changlongjie and Lianmeng around XKS revealed that microbial diversity indices in the rhizospheres of Broussonetia papyrifera and Ligustrum lucidum were significantly higher than in bulk soil, indicating that plants affect microbial communities. Additionally, most of the bacteria that were enriched in the rhizosphere belonged to the Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. In Changlongjie and Lianmeng, the diversity and abundance of the microbial community in the B. papyrifera rhizosphere were higher than in L. lucidum. In parallel, the soil pH of the B. papyrifera rhizosphere increased significantly in acidic soil and decreased significantly in near-neutral soil. Redundancy analyses indicated that pH was likely the main factor affecting the overall bacterial community compositions, followed by moisture content, Sb, arsenic (As), and chromium (Cr).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30760787</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.</ArticleTitle>
<Pagination>
<MedlinePgn>1947</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-38360-2</ELocationID>
<Abstract>
<AbstractText>Mining and smelting activities are the major sources of antimony (Sb) contamination. The soil around Xikuangshan (XKS), one of the largest Sb mines in the world, has been contaminated with high concentrations of Sb and other associated metals, and has attracted extensive scholarly attention. Phytoremediation is considered a promising method for removing heavy metals, and the diversity and structure of rhizosphere microorganisms may change during the phytoremediation process. The rhizosphere microbiome is involved in soil energy transfer, nutrient cycling, and resistance and detoxification of metal elements. Thus, changes in this microbiome are worthy of investigation using high-throughput sequencing techniques. Our study in Changlongjie and Lianmeng around XKS revealed that microbial diversity indices in the rhizospheres of Broussonetia papyrifera and Ligustrum lucidum were significantly higher than in bulk soil, indicating that plants affect microbial communities. Additionally, most of the bacteria that were enriched in the rhizosphere belonged to the Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. In Changlongjie and Lianmeng, the diversity and abundance of the microbial community in the B. papyrifera rhizosphere were higher than in L. lucidum. In parallel, the soil pH of the B. papyrifera rhizosphere increased significantly in acidic soil and decreased significantly in near-neutral soil. Redundancy analyses indicated that pH was likely the main factor affecting the overall bacterial community compositions, followed by moisture content, Sb, arsenic (As), and chromium (Cr).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Dongchu</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Zhouzhou</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shuyu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Yongjiao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Xiaohong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Fangping</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Hunan Academy of Forestry, Hunan, 410004, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Xiawei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China. xiaweipeng@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9IT35J3UV3</RegistryNumber>
<NameOfSubstance UI="D000965">Antimony</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000965" MajorTopicYN="N">Antimony</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052918" MajorTopicYN="N">Environmental Restoration and Remediation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008906" MajorTopicYN="N">Mining</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30760787</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-38360-2</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-38360-2</ArticleId>
<ArticleId IdType="pmc">PMC6374380</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2003 Oct;5(10):896-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14510843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Feb;61(2):610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2006 Sep 15;368(2-3):456-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Geochem Health. 2007 Jun;29(3):209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Jun;153(3):497-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 May;72(2):157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18348897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Dec;2(12):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Apr;3(4):442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Aug;3(8):992-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Oct;4(10):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2012 Apr 1;421-422:41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21741676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e27310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Nov;82(2):341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22486608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e40059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Nov 2;586(21):3843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23022563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soil Biol Biochem. 2013 May;60(100):182-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23645938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Environ. 2013;28(2):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23666539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2013 Oct 1;73(19):5905-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):996-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2015 Aug;25(8):1205-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25876600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 22;7:343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27047461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2016 Aug;215:141-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27182975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 15;6:27756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27302652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2018 Jan;25(1):141-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28039624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2018 Apr;253:64-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29328936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2018 Aug;25(22):22106-22119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29802615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1997 Nov 28;107(3):131-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9448748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000555 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000555 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30760787
   |texte=   Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30760787" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020