Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom.

Identifieur interne : 000162 ( Main/Exploration ); précédent : 000161; suivant : 000163

Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom.

Auteurs : Avia Mizrachi [Israël] ; Shiri Graff Van Creveld [Israël] ; Orr H. Shapiro [Israël] ; Shilo Rosenwasser [Israël] ; Assaf Vardi [Israël]

Source :

RBID : pubmed:31232691

Descripteurs français

English descriptors

Abstract

Diatoms are photosynthetic microorganisms of great ecological and biogeochemical importance, forming vast blooms in aquatic ecosystems. However, we are still lacking fundamental understanding of how individual cells sense and respond to diverse stress conditions, and what acclimation strategies are employed during bloom dynamics. We investigated cellular responses to environmental stress at the single-cell level using the redox sensor roGFP targeted to various organelles in the diatom Phaeodactylum tricornutum. We detected cell-to-cell variability using flow cytometry cell sorting and a microfluidics system for live imaging of oxidation dynamics. Chloroplast-targeted roGFP exhibited a light-dependent, bi-stable oxidation pattern in response to H2O2 and high light, revealing distinct subpopulations of sensitive oxidized cells and resilient reduced cells. Early oxidation in the chloroplast preceded commitment to cell death, and can be used for sensing stress cues and regulating cell fate. We propose that light-dependent metabolic heterogeneity regulates diatoms' sensitivity to environmental stressors in the ocean.

DOI: 10.7554/eLife.47732
PubMed: 31232691
PubMed Central: PMC6682412


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom.</title>
<author>
<name sortKey="Mizrachi, Avia" sort="Mizrachi, Avia" uniqKey="Mizrachi A" first="Avia" last="Mizrachi">Avia Mizrachi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graff Van Creveld, Shiri" sort="Graff Van Creveld, Shiri" uniqKey="Graff Van Creveld S" first="Shiri" last="Graff Van Creveld">Shiri Graff Van Creveld</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shapiro, Orr H" sort="Shapiro, Orr H" uniqKey="Shapiro O" first="Orr H" last="Shapiro">Orr H. Shapiro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion</wicri:regionArea>
<wicri:noRegion>Rishon LeZion</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosenwasser, Shilo" sort="Rosenwasser, Shilo" uniqKey="Rosenwasser S" first="Shilo" last="Rosenwasser">Shilo Rosenwasser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vardi, Assaf" sort="Vardi, Assaf" uniqKey="Vardi A" first="Assaf" last="Vardi">Assaf Vardi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31232691</idno>
<idno type="pmid">31232691</idno>
<idno type="doi">10.7554/eLife.47732</idno>
<idno type="pmc">PMC6682412</idno>
<idno type="wicri:Area/Main/Corpus">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000132</idno>
<idno type="wicri:Area/Main/Curation">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000132</idno>
<idno type="wicri:Area/Main/Exploration">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom.</title>
<author>
<name sortKey="Mizrachi, Avia" sort="Mizrachi, Avia" uniqKey="Mizrachi A" first="Avia" last="Mizrachi">Avia Mizrachi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graff Van Creveld, Shiri" sort="Graff Van Creveld, Shiri" uniqKey="Graff Van Creveld S" first="Shiri" last="Graff Van Creveld">Shiri Graff Van Creveld</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shapiro, Orr H" sort="Shapiro, Orr H" uniqKey="Shapiro O" first="Orr H" last="Shapiro">Orr H. Shapiro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion</wicri:regionArea>
<wicri:noRegion>Rishon LeZion</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosenwasser, Shilo" sort="Rosenwasser, Shilo" uniqKey="Rosenwasser S" first="Shilo" last="Rosenwasser">Shilo Rosenwasser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vardi, Assaf" sort="Vardi, Assaf" uniqKey="Vardi A" first="Assaf" last="Vardi">Assaf Vardi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Survival (drug effects)</term>
<term>Cell Survival (radiation effects)</term>
<term>Chloroplasts (metabolism)</term>
<term>Diatoms (drug effects)</term>
<term>Diatoms (physiology)</term>
<term>Diatoms (radiation effects)</term>
<term>Hydrogen Peroxide (toxicity)</term>
<term>Light (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chloroplastes (métabolisme)</term>
<term>Diatomées (effets des médicaments et des substances chimiques)</term>
<term>Diatomées (effets des radiations)</term>
<term>Diatomées (physiologie)</term>
<term>Lumière (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (toxicité)</term>
<term>Stress physiologique (MeSH)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Survie cellulaire (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
<term>Diatoms</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Diatomées</term>
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Diatomées</term>
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloroplastes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Diatomées</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Diatoms</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Cell Survival</term>
<term>Diatoms</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Oxidation-Reduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Lumière</term>
<term>Oxydoréduction</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Diatoms are photosynthetic microorganisms of great ecological and biogeochemical importance, forming vast blooms in aquatic ecosystems. However, we are still lacking fundamental understanding of how individual cells sense and respond to diverse stress conditions, and what acclimation strategies are employed during bloom dynamics. We investigated cellular responses to environmental stress at the single-cell level using the redox sensor roGFP targeted to various organelles in the diatom
<i>Phaeodactylum tricornutum</i>
. We detected cell-to-cell variability using flow cytometry cell sorting and a microfluidics system for live imaging of oxidation dynamics. Chloroplast-targeted roGFP exhibited a light-dependent, bi-stable oxidation pattern in response to H
<sub>2</sub>
O
<sub>2</sub>
and high light, revealing distinct subpopulations of sensitive oxidized cells and resilient reduced cells. Early oxidation in the chloroplast preceded commitment to cell death, and can be used for sensing stress cues and regulating cell fate. We propose that light-dependent metabolic heterogeneity regulates diatoms' sensitivity to environmental stressors in the ocean.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31232691</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-084X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>eLife</Title>
<ISOAbbreviation>Elife</ISOAbbreviation>
</Journal>
<ArticleTitle>Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.47732</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e47732</ELocationID>
<Abstract>
<AbstractText>Diatoms are photosynthetic microorganisms of great ecological and biogeochemical importance, forming vast blooms in aquatic ecosystems. However, we are still lacking fundamental understanding of how individual cells sense and respond to diverse stress conditions, and what acclimation strategies are employed during bloom dynamics. We investigated cellular responses to environmental stress at the single-cell level using the redox sensor roGFP targeted to various organelles in the diatom
<i>Phaeodactylum tricornutum</i>
. We detected cell-to-cell variability using flow cytometry cell sorting and a microfluidics system for live imaging of oxidation dynamics. Chloroplast-targeted roGFP exhibited a light-dependent, bi-stable oxidation pattern in response to H
<sub>2</sub>
O
<sub>2</sub>
and high light, revealing distinct subpopulations of sensitive oxidized cells and resilient reduced cells. Early oxidation in the chloroplast preceded commitment to cell death, and can be used for sensing stress cues and regulating cell fate. We propose that light-dependent metabolic heterogeneity regulates diatoms' sensitivity to environmental stressors in the ocean.</AbstractText>
<CopyrightInformation>© 2019, Mizrachi et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mizrachi</LastName>
<ForeName>Avia</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-7724-9275</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graff van Creveld</LastName>
<ForeName>Shiri</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-3445-3046</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shapiro</LastName>
<ForeName>Orr H</ForeName>
<Initials>OH</Initials>
<Identifier Source="ORCID">0000-0002-3222-9809</Identifier>
<AffiliationInfo>
<Affiliation>Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosenwasser</LastName>
<ForeName>Shilo</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-8565-9979</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vardi</LastName>
<ForeName>Assaf</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-7079-0234</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>712233</GrantID>
<Agency>Israel Science Foundation</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Elife</MedlineTA>
<NlmUniqueID>101579614</NlmUniqueID>
<ISSNLinking>2050-084X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017377" MajorTopicYN="N">Diatoms</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ROS</Keyword>
<Keyword MajorTopicYN="Y">cell fate</Keyword>
<Keyword MajorTopicYN="Y">chloroplast</Keyword>
<Keyword MajorTopicYN="Y">diatom</Keyword>
<Keyword MajorTopicYN="Y">ecology</Keyword>
<Keyword MajorTopicYN="Y">infectious disease</Keyword>
<Keyword MajorTopicYN="Y">microbiology</Keyword>
<Keyword MajorTopicYN="Y">phenotypic variability</Keyword>
<Keyword MajorTopicYN="Y">single-cell</Keyword>
</KeywordList>
<CoiStatement>AM, SG, OS, SR, AV No competing interests declared</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31232691</ArticleId>
<ArticleId IdType="doi">10.7554/eLife.47732</ArticleId>
<ArticleId IdType="pii">47732</ArticleId>
<ArticleId IdType="pmc">PMC6682412</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2015 Aug 20;524(7565):366-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26168400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 Feb;9(2):385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25083933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Jan 19;65(2):285-295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27989441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2011 Dec;21(6):768-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22051606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jun 29;8(1):49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Jul;10(7):1742-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26784355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2012;10(5):e1001325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Mar;4(3):e60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 24;461(7263):537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Sep 23;9(18):1061-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 2;338(6107):628-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(3):1120-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25452289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 May;39(5):951-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26264148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26960998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20146805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1962 Apr;8:229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13902807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Sep 8;165(13):1390-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 May;12(5):1199-1209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29335635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jun 7;340(6137):1223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jun;16(6):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 23;543(7646):555-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28297706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2008 Aug;231(2):299-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18778428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25192936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Jul 11;26(13):R594-R607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27404255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Feb;9(2):360-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1576-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26802122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2740-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 14;459(7244):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 May 09;1(6):16055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2015 Aug;13(8):497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26145732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rev Mar Sci. 2015;7:341-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25251265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2011 Jul;162(3):462-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21600845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1516-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26929361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phycol. 2018 Jun;54(3):329-341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Dec 5;13(12):5510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25372880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Oct 17;135(2):216-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Oct;172(2):968-979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27503604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Jan;11(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27623332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Jun 05;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29869985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Nov;20(11):754-766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Nov 12;143(4):606-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21074051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 May 31;189(5):777-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27255485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jan;14(1):67-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21453404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Feb;161(2):853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 9;300(5621):944-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12738853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Oct 15;12(20):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12401172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(2):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24345283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Feb;11(2):121-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24481215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 8;9(1):74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29311545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):941-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17651371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Mar 04;7:10860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26940983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 May 15;3:17066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28504699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Dec;89:1154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2018 Oct;45:30-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29477028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2017 May 30;2:17065</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28555622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plankton Res. 2018 Nov;40(6):667-677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30487659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Nov 1;47(9):1282-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19486941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 May;1840(5):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2018 Aug;10(4):412-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29411545</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Mizrachi, Avia" sort="Mizrachi, Avia" uniqKey="Mizrachi A" first="Avia" last="Mizrachi">Avia Mizrachi</name>
</noRegion>
<name sortKey="Graff Van Creveld, Shiri" sort="Graff Van Creveld, Shiri" uniqKey="Graff Van Creveld S" first="Shiri" last="Graff Van Creveld">Shiri Graff Van Creveld</name>
<name sortKey="Rosenwasser, Shilo" sort="Rosenwasser, Shilo" uniqKey="Rosenwasser S" first="Shilo" last="Rosenwasser">Shilo Rosenwasser</name>
<name sortKey="Rosenwasser, Shilo" sort="Rosenwasser, Shilo" uniqKey="Rosenwasser S" first="Shilo" last="Rosenwasser">Shilo Rosenwasser</name>
<name sortKey="Shapiro, Orr H" sort="Shapiro, Orr H" uniqKey="Shapiro O" first="Orr H" last="Shapiro">Orr H. Shapiro</name>
<name sortKey="Vardi, Assaf" sort="Vardi, Assaf" uniqKey="Vardi A" first="Assaf" last="Vardi">Assaf Vardi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31232691
   |texte=   Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31232691" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020