Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modification of Activity of the Thylakoid H+/K+ Antiporter KEA3 Disturbs ∆pH-Dependent Regulation of Photosynthesis.

Identifieur interne : 000155 ( Main/Exploration ); précédent : 000154; suivant : 000156

Modification of Activity of the Thylakoid H+/K+ Antiporter KEA3 Disturbs ∆pH-Dependent Regulation of Photosynthesis.

Auteurs : Caijuan Wang [Japon] ; Toshiharu Shikanai [Japon]

Source :

RBID : pubmed:31427465

Descripteurs français

English descriptors

Abstract

The thylakoid K+ efflux antiporter 3 (KEA3) is required for regulating components of the proton motive force (pmf), proton concentration gradient (ΔpH), and membrane potential (Δψ). The Arabidopsis (Arabidopsis thaliana) disturbed proton gradient regulation mutant (dpgr) is a dominant allele of KEA3, conferring disturbed transport activity. Here, we show that overexpressing the DPGR-type KEA3 (DPGRox) retarded plant growth, whereas overexpressing the wild-type KEA3 (KEA3ox) did not. In KEA3ox lines, the contribution of Δψ to pmf was enhanced, but in DPGRox lines, the size of pmf was reduced. In DPGRox plants, proton conductivity of the thylakoid membrane (gH+) was elevated under high light, implying disturbed stoichiometry of H+/K+ antiport through DPGR-type KEA3 rather than simply enhanced activity. The ΔpH-dependent regulation consisting of thermal dissipation of excessively absorbed light energy and downregulation of cytochrome b6f complex activity was severely and mildly affected in DPGRox and KEA3ox plants, respectively. Consequently, photosystem I was sensitive to fluctuating light in both transgenic plants. Both photosystems were sensitive to constant high light and were slightly photodamaged even at standard growth light intensity in DPGRox plants. KEA3 regulates the components of pmf and optimizes the operation of ∆pH-dependent regulation of electron transport.

DOI: 10.1104/pp.19.00766
PubMed: 31427465
PubMed Central: PMC6776848


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modification of Activity of the Thylakoid H
<sup>+</sup>
/K
<sup>+</sup>
Antiporter KEA3 Disturbs ∆pH-Dependent Regulation of Photosynthesis.</title>
<author>
<name sortKey="Wang, Caijuan" sort="Wang, Caijuan" uniqKey="Wang C" first="Caijuan" last="Wang">Caijuan Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Botany, Graduate School of Science, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shikanai, Toshiharu" sort="Shikanai, Toshiharu" uniqKey="Shikanai T" first="Toshiharu" last="Shikanai">Toshiharu Shikanai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan shikanai@pmg.bot.kyoto-u.ac.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Department of Botany, Graduate School of Science, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31427465</idno>
<idno type="pmid">31427465</idno>
<idno type="doi">10.1104/pp.19.00766</idno>
<idno type="pmc">PMC6776848</idno>
<idno type="wicri:Area/Main/Corpus">000113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000113</idno>
<idno type="wicri:Area/Main/Curation">000113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000113</idno>
<idno type="wicri:Area/Main/Exploration">000113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modification of Activity of the Thylakoid H
<sup>+</sup>
/K
<sup>+</sup>
Antiporter KEA3 Disturbs ∆pH-Dependent Regulation of Photosynthesis.</title>
<author>
<name sortKey="Wang, Caijuan" sort="Wang, Caijuan" uniqKey="Wang C" first="Caijuan" last="Wang">Caijuan Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Botany, Graduate School of Science, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shikanai, Toshiharu" sort="Shikanai, Toshiharu" uniqKey="Shikanai T" first="Toshiharu" last="Shikanai">Toshiharu Shikanai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan shikanai@pmg.bot.kyoto-u.ac.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Department of Botany, Graduate School of Science, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Point Mutation (MeSH)</term>
<term>Potassium-Hydrogen Antiporters (metabolism)</term>
<term>Thylakoids (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiports des ions potassium-hydrogène (métabolisme)</term>
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Mutation ponctuelle (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Thylacoïdes (métabolisme)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Potassium-Hydrogen Antiporters</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antiports des ions potassium-hydrogène</term>
<term>Arabidopsis</term>
<term>Protéines d'Arabidopsis</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Transport</term>
<term>Photosynthesis</term>
<term>Point Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation ponctuelle</term>
<term>Photosynthèse</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thylakoid K
<sup>+</sup>
efflux antiporter 3 (KEA3) is required for regulating components of the proton motive force (pmf), proton concentration gradient (ΔpH), and membrane potential (Δψ). The Arabidopsis (
<i>Arabidopsis thaliana</i>
) disturbed proton gradient regulation mutant (
<i>dpgr</i>
) is a dominant allele of
<i>KEA3</i>
, conferring disturbed transport activity. Here, we show that overexpressing the DPGR-type KEA3 (DPGRox) retarded plant growth, whereas overexpressing the wild-type KEA3 (KEA3ox) did not. In KEA3ox lines, the contribution of Δψ to pmf was enhanced, but in DPGRox lines, the size of pmf was reduced. In DPGRox plants, proton conductivity of the thylakoid membrane (
<i>g</i>
<sub>H</sub>
<sup>+</sup>
) was elevated under high light, implying disturbed stoichiometry of H
<sup>+</sup>
/K
<sup>+</sup>
antiport through DPGR-type KEA3 rather than simply enhanced activity. The ΔpH-dependent regulation consisting of thermal dissipation of excessively absorbed light energy and downregulation of cytochrome
<i>b</i>
<sub>6</sub>
<i>f</i>
complex activity was severely and mildly affected in DPGRox and KEA3ox plants, respectively. Consequently, photosystem I was sensitive to fluctuating light in both transgenic plants. Both photosystems were sensitive to constant high light and were slightly photodamaged even at standard growth light intensity in DPGRox plants. KEA3 regulates the components of pmf and optimizes the operation of ∆pH-dependent regulation of electron transport.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31427465</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>181</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Modification of Activity of the Thylakoid H
<sup>+</sup>
/K
<sup>+</sup>
Antiporter KEA3 Disturbs ∆pH-Dependent Regulation of Photosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>762-773</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.19.00766</ELocationID>
<Abstract>
<AbstractText>The thylakoid K
<sup>+</sup>
efflux antiporter 3 (KEA3) is required for regulating components of the proton motive force (pmf), proton concentration gradient (ΔpH), and membrane potential (Δψ). The Arabidopsis (
<i>Arabidopsis thaliana</i>
) disturbed proton gradient regulation mutant (
<i>dpgr</i>
) is a dominant allele of
<i>KEA3</i>
, conferring disturbed transport activity. Here, we show that overexpressing the DPGR-type KEA3 (DPGRox) retarded plant growth, whereas overexpressing the wild-type KEA3 (KEA3ox) did not. In KEA3ox lines, the contribution of Δψ to pmf was enhanced, but in DPGRox lines, the size of pmf was reduced. In DPGRox plants, proton conductivity of the thylakoid membrane (
<i>g</i>
<sub>H</sub>
<sup>+</sup>
) was elevated under high light, implying disturbed stoichiometry of H
<sup>+</sup>
/K
<sup>+</sup>
antiport through DPGR-type KEA3 rather than simply enhanced activity. The ΔpH-dependent regulation consisting of thermal dissipation of excessively absorbed light energy and downregulation of cytochrome
<i>b</i>
<sub>6</sub>
<i>f</i>
complex activity was severely and mildly affected in DPGRox and KEA3ox plants, respectively. Consequently, photosystem I was sensitive to fluctuating light in both transgenic plants. Both photosystems were sensitive to constant high light and were slightly photodamaged even at standard growth light intensity in DPGRox plants. KEA3 regulates the components of pmf and optimizes the operation of ∆pH-dependent regulation of electron transport.</AbstractText>
<CopyrightInformation>© 2019 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Caijuan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shikanai</LastName>
<ForeName>Toshiharu</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-6154-4728</Identifier>
<AffiliationInfo>
<Affiliation>Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan shikanai@pmg.bot.kyoto-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000589494">KEA3 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027961">Potassium-Hydrogen Antiporters</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027961" MajorTopicYN="N">Potassium-Hydrogen Antiporters</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31427465</ArticleId>
<ArticleId IdType="pii">pp.19.00766</ArticleId>
<ArticleId IdType="doi">10.1104/pp.19.00766</ArticleId>
<ArticleId IdType="pmc">PMC6776848</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant. 2017 Jan 9;10(1):20-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27575692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1986 Jan;9(1-2):211-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24442298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Oct 04;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27697149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Jul;180(3):1322-1335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31053658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1999 Oct;79(4):1127-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Feb;179(2):588-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30464024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Jan;8(1):e22741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23221748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Nov;117(1-3):471-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Feb 22;2:16012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 09;7:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jul;57(7):1557-1567</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27335350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2016 Oct;58(10):848-858</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26947269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1560-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19118124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Feb 25;255(4):1458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7354039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Jul 11;9(1):10040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31296940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2014 Apr;94(2):519-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24692355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1999 Nov;40(11):1134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10635116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jun 1;68(12):3115-3128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(12):3385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17872921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):235-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 3;288(18):13156-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):273-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1961 Jul 8;191:144-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13771349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Oct;116(2-3):511-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23695653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Mar 7;9(3):356-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26597501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 May 24;7:11654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27216227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Nov;106(1-2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20632109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 9;114(19):4960-4965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 4;342(6154):114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(411):395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Feb;89(3):540-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:239-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12789-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Nov 13;5:5439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1847(9):931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25481109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):1903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Aug;85(2):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16075322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Wang, Caijuan" sort="Wang, Caijuan" uniqKey="Wang C" first="Caijuan" last="Wang">Caijuan Wang</name>
</region>
<name sortKey="Shikanai, Toshiharu" sort="Shikanai, Toshiharu" uniqKey="Shikanai T" first="Toshiharu" last="Shikanai">Toshiharu Shikanai</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31427465
   |texte=   Modification of Activity of the Thylakoid H+/K+ Antiporter KEA3 Disturbs ∆pH-Dependent Regulation of Photosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31427465" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020