Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis.

Identifieur interne : 000130 ( Main/Exploration ); précédent : 000129; suivant : 000131

Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis.

Auteurs : Kinia Ameztoy [Espagne] ; Marouane Baslam [Japon] ; Ángela María Sánchez-L Pez [Espagne] ; Francisco José Mu Oz [Espagne] ; Abdellatif Bahaji [Espagne] ; Goizeder Almagro [Espagne] ; Pablo García-G Mez [Espagne] ; Edurne Baroja-Fernández [Espagne] ; Nuria De Diego [République tchèque] ; Jan F. Humplík [République tchèque] ; Lydia Ugena [République tchèque] ; Lukáš Spíchal [République tchèque] ; Karel Doležal [République tchèque] ; Kentaro Kaneko [Japon] ; Toshiaki Mitsui [Japon] ; Francisco Javier Cejudo [Espagne] ; Javier Pozueta-Romero [Espagne]

Source :

RBID : pubmed:31222760

Descripteurs français

English descriptors

Abstract

Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.

DOI: 10.1111/pce.13601
PubMed: 31222760


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis.</title>
<author>
<name sortKey="Ameztoy, Kinia" sort="Ameztoy, Kinia" uniqKey="Ameztoy K" first="Kinia" last="Ameztoy">Kinia Ameztoy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baslam, Marouane" sort="Baslam, Marouane" uniqKey="Baslam M" first="Marouane" last="Baslam">Marouane Baslam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181</wicri:regionArea>
<wicri:noRegion>950-2181</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanchez L Pez, Angela Maria" sort="Sanchez L Pez, Angela Maria" uniqKey="Sanchez L Pez A" first="Ángela María" last="Sánchez-L Pez">Ángela María Sánchez-L Pez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mu Oz, Francisco Jose" sort="Mu Oz, Francisco Jose" uniqKey="Mu Oz F" first="Francisco José" last="Mu Oz">Francisco José Mu Oz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bahaji, Abdellatif" sort="Bahaji, Abdellatif" uniqKey="Bahaji A" first="Abdellatif" last="Bahaji">Abdellatif Bahaji</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Almagro, Goizeder" sort="Almagro, Goizeder" uniqKey="Almagro G" first="Goizeder" last="Almagro">Goizeder Almagro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia G Mez, Pablo" sort="Garcia G Mez, Pablo" uniqKey="Garcia G Mez P" first="Pablo" last="García-G Mez">Pablo García-G Mez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baroja Fernandez, Edurne" sort="Baroja Fernandez, Edurne" uniqKey="Baroja Fernandez E" first="Edurne" last="Baroja-Fernández">Edurne Baroja-Fernández</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Diego, Nuria" sort="De Diego, Nuria" uniqKey="De Diego N" first="Nuria" last="De Diego">Nuria De Diego</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Humplik, Jan F" sort="Humplik, Jan F" uniqKey="Humplik J" first="Jan F" last="Humplík">Jan F. Humplík</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ugena, Lydia" sort="Ugena, Lydia" uniqKey="Ugena L" first="Lydia" last="Ugena">Lydia Ugena</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spichal, Lukas" sort="Spichal, Lukas" uniqKey="Spichal L" first="Lukáš" last="Spíchal">Lukáš Spíchal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dolezal, Karel" sort="Dolezal, Karel" uniqKey="Dolezal K" first="Karel" last="Doležal">Karel Doležal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaneko, Kentaro" sort="Kaneko, Kentaro" uniqKey="Kaneko K" first="Kentaro" last="Kaneko">Kentaro Kaneko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181</wicri:regionArea>
<wicri:noRegion>950-2181</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mitsui, Toshiaki" sort="Mitsui, Toshiaki" uniqKey="Mitsui T" first="Toshiaki" last="Mitsui">Toshiaki Mitsui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181</wicri:regionArea>
<wicri:noRegion>950-2181</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cejudo, Francisco Javier" sort="Cejudo, Francisco Javier" uniqKey="Cejudo F" first="Francisco Javier" last="Cejudo">Francisco Javier Cejudo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pozueta Romero, Javier" sort="Pozueta Romero, Javier" uniqKey="Pozueta Romero J" first="Javier" last="Pozueta-Romero">Javier Pozueta-Romero</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31222760</idno>
<idno type="pmid">31222760</idno>
<idno type="doi">10.1111/pce.13601</idno>
<idno type="wicri:Area/Main/Corpus">000134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000134</idno>
<idno type="wicri:Area/Main/Curation">000134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000134</idno>
<idno type="wicri:Area/Main/Exploration">000134</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis.</title>
<author>
<name sortKey="Ameztoy, Kinia" sort="Ameztoy, Kinia" uniqKey="Ameztoy K" first="Kinia" last="Ameztoy">Kinia Ameztoy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baslam, Marouane" sort="Baslam, Marouane" uniqKey="Baslam M" first="Marouane" last="Baslam">Marouane Baslam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181</wicri:regionArea>
<wicri:noRegion>950-2181</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanchez L Pez, Angela Maria" sort="Sanchez L Pez, Angela Maria" uniqKey="Sanchez L Pez A" first="Ángela María" last="Sánchez-L Pez">Ángela María Sánchez-L Pez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mu Oz, Francisco Jose" sort="Mu Oz, Francisco Jose" uniqKey="Mu Oz F" first="Francisco José" last="Mu Oz">Francisco José Mu Oz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bahaji, Abdellatif" sort="Bahaji, Abdellatif" uniqKey="Bahaji A" first="Abdellatif" last="Bahaji">Abdellatif Bahaji</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Almagro, Goizeder" sort="Almagro, Goizeder" uniqKey="Almagro G" first="Goizeder" last="Almagro">Goizeder Almagro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia G Mez, Pablo" sort="Garcia G Mez, Pablo" uniqKey="Garcia G Mez P" first="Pablo" last="García-G Mez">Pablo García-G Mez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baroja Fernandez, Edurne" sort="Baroja Fernandez, Edurne" uniqKey="Baroja Fernandez E" first="Edurne" last="Baroja-Fernández">Edurne Baroja-Fernández</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Diego, Nuria" sort="De Diego, Nuria" uniqKey="De Diego N" first="Nuria" last="De Diego">Nuria De Diego</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Humplik, Jan F" sort="Humplik, Jan F" uniqKey="Humplik J" first="Jan F" last="Humplík">Jan F. Humplík</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ugena, Lydia" sort="Ugena, Lydia" uniqKey="Ugena L" first="Lydia" last="Ugena">Lydia Ugena</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spichal, Lukas" sort="Spichal, Lukas" uniqKey="Spichal L" first="Lukáš" last="Spíchal">Lukáš Spíchal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dolezal, Karel" sort="Dolezal, Karel" uniqKey="Dolezal K" first="Karel" last="Doležal">Karel Doležal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371</wicri:regionArea>
<wicri:noRegion>CZ-78371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaneko, Kentaro" sort="Kaneko, Kentaro" uniqKey="Kaneko K" first="Kentaro" last="Kaneko">Kentaro Kaneko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181</wicri:regionArea>
<wicri:noRegion>950-2181</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mitsui, Toshiaki" sort="Mitsui, Toshiaki" uniqKey="Mitsui T" first="Toshiaki" last="Mitsui">Toshiaki Mitsui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181</wicri:regionArea>
<wicri:noRegion>950-2181</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cejudo, Francisco Javier" sort="Cejudo, Francisco Javier" uniqKey="Cejudo F" first="Francisco Javier" last="Cejudo">Francisco Javier Cejudo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pozueta Romero, Javier" sort="Pozueta Romero, Javier" uniqKey="Pozueta Romero J" first="Javier" last="Pozueta-Romero">Javier Pozueta-Romero</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté forale de Navarre</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Alternaria (MeSH)</term>
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cytokinins (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Protein Processing, Post-Translational (drug effects)</term>
<term>Proteome (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Volatile Organic Compounds (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (métabolisme)</term>
<term>Alternaria (MeSH)</term>
<term>Arabidopsis (effets des médicaments et des substances chimiques)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Composés organiques volatils (pharmacologie)</term>
<term>Cytokinine (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Arabidopsis Proteins</term>
<term>Cytokinins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Arabidopsis</term>
<term>Photosynthesis</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Arabidopsis</term>
<term>Cytokinine</term>
<term>Protéines d'Arabidopsis</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Composés organiques volatils</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alternaria</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alternaria</term>
<term>Protéome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31222760</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>2627-2644</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13601</ELocationID>
<Abstract>
<AbstractText>Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ameztoy</LastName>
<ForeName>Kinia</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baslam</LastName>
<ForeName>Marouane</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sánchez-López</LastName>
<ForeName>Ángela María</ForeName>
<Initials>ÁM</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muñoz</LastName>
<ForeName>Francisco José</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bahaji</LastName>
<ForeName>Abdellatif</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Almagro</LastName>
<ForeName>Goizeder</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García-Gómez</LastName>
<ForeName>Pablo</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baroja-Fernández</LastName>
<ForeName>Edurne</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Diego</LastName>
<ForeName>Nuria</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Humplík</LastName>
<ForeName>Jan F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ugena</LastName>
<ForeName>Lydia</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spíchal</LastName>
<ForeName>Lukáš</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doležal</LastName>
<ForeName>Karel</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaneko</LastName>
<ForeName>Kentaro</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mitsui</LastName>
<ForeName>Toshiaki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cejudo</LastName>
<ForeName>Francisco Javier</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pozueta-Romero</LastName>
<ForeName>Javier</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-0335-9663</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003583">Cytokinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="C000612940">NTRC protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000528" MajorTopicYN="Y">Alternaria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003583" MajorTopicYN="N">Cytokinins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">growth promotion</Keyword>
<Keyword MajorTopicYN="Y">hormone signalling</Keyword>
<Keyword MajorTopicYN="Y">microbial volatile compounds</Keyword>
<Keyword MajorTopicYN="Y">photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">plant-microbe interactions</Keyword>
<Keyword MajorTopicYN="Y">redox proteomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31222760</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13601</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Akter, S., Huang, J., Bodra, N., de Smet, B., Wahni, K., Rombaut, D., … Messens, J. (2015). DYn-2 based identification of Arabidopsis sulfenomes. Molecular and Cellular Proteomics, 14(5), 1183-1200. https://doi.org/10.1074/mcp.M114.046896</Citation>
</Reference>
<Reference>
<Citation>Aliverti, A., Piubelli, L., Zanetti, G., Curti, B., Lübberstedt, T., & Herrmann, R. G. (1993). The role of cysteine residues of spinach ferredoxin-NADP+ reductase as assessed by site-directed mutagenesis. Biochemistry, 32(25), 6374-6380. https://doi.org/10.1021/bi00076a010</Citation>
</Reference>
<Reference>
<Citation>Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701</Citation>
</Reference>
<Reference>
<Citation>Bahaji, A., Baroja-Fernández, E., Ricarte-Bermejo, A., Sánchez-López, Á. M., Muñoz, F. J., Romero, J. M., … Pozueta-Romero, J. (2015). Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis. Plant Science, 238(4), 135-147.</Citation>
</Reference>
<Reference>
<Citation>Baslam, M., Baroja-Fernández, E., Ricarte-Bermejo, A., Sánchez-López, Á. M., Aranjuelo, I., Bahaji, A., … Pozueta-Romero, J. (2017). Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves. PLoS ONE, 12(2), e0171245. https://doi.org/10.1371/journal.pone.0171245</Citation>
</Reference>
<Reference>
<Citation>Bhargava, A., Clabaugh, I., To, J. P., Maxwell, B. B., Chiang, Y.-H., Schaller, G. E., … Kieber, J. J. (2013). Identification of cytokinin responsive genes using microarray meta-analysis and RNA-seq in Arabidopsis. Plant Physiology, 162(1), 272-294. https://doi.org/10.1104/pp.113.217026</Citation>
</Reference>
<Reference>
<Citation>Brandes, H. K., Larimer, F. W., & Hartman, F. C. (1996). The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. Journal of Biological Chemistry, 271(7), 3333-3335. https://doi.org/10.1074/jbc.271.7.3333</Citation>
</Reference>
<Reference>
<Citation>Brenner, W. G., & Schmülling, T. (2015). Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Frontiers in Plant Science, 6, 29.</Citation>
</Reference>
<Reference>
<Citation>Buchanan, B. B., & Balmer, Y. (2005). Redox regulation: A broadening horizon. Annual Review of Plant Biology, 56(1), 187-220. https://doi.org/10.1146/annurev.arplant.56.032604.144246</Citation>
</Reference>
<Reference>
<Citation>Carrillo, L. R., Froehlich, J. E., Cruz, J. A., Savage, L. J., & Kramer, D. M. (2016). Multi-level regulation of the chloroplast ATP synthase: The chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant Journal, 87(6), 654-663. https://doi.org/10.1111/tpj.13226</Citation>
</Reference>
<Reference>
<Citation>Caspar, T., Preiss, J., Kakefuda, G., Lin, T.-P., Somerville, C., & Benbow, L. (1991). Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiology, 95(4), 1181-1188. https://doi.org/10.1104/pp.95.4.1181</Citation>
</Reference>
<Reference>
<Citation>Ceccarelli, E. A., Arakaki, A. K., Cortez, N., & Carrillo, N. (2004). Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochimica et Biophysica Acta, 1698(2), 155-165. https://doi.org/10.1016/j.bbapap.2003.12.005</Citation>
</Reference>
<Reference>
<Citation>Chen, J., Wu, F. H., Wang, W. H., Zheng, C. J., Lin, G. H., Dong, X. J., … Zheng, H. L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62(13), 4481-4493. https://doi.org/10.1093/jxb/err145</Citation>
</Reference>
<Reference>
<Citation>Chiadmi, M., Navaza, A., Miginiac-Maslow, M., Jacquot, J. P., & Cherfils, J. (1999). Redox signalling in the chloroplast: Structure of oxidized pea fructose-1,6-bisphosphate phosphatase. The EMBO Journal, 18(23), 6809-6815. https://doi.org/10.1093/emboj/18.23.6809</Citation>
</Reference>
<Reference>
<Citation>Cortleven, A., & Valcke, R. (2012). Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: Lessons from cytokinin. Physiologia Plantarum, 144(4), 394-408. https://doi.org/10.1111/j.1399-3054.2011.01558.x</Citation>
</Reference>
<Reference>
<Citation>Couturier, J., Chibani, K., Jacquot, J.-P., & Rouhier, N. (2013). Cysteine-based redox regulation and signaling in plants. Frontiers in Plant Science, 4, 105.</Citation>
</Reference>
<Reference>
<Citation>Da, Q., Wang, P., Wang, M., Sun, T., Jin, H., Liu, B., … Wang, H.-B. (2017). Thioredoxin and NADPH-dependent thioredoxin reductase C regulation of tetrapyrrole biosynthesis. Plant Physiology, 175(2), 652-666. https://doi.org/10.1104/pp.16.01500</Citation>
</Reference>
<Reference>
<Citation>De Smet, B., Willems, P., Fernandez-Fernandez, A. D., Alseekh, S., Fernie, A. R., Messens, J., & Van Breusegem, F. (2019). In vivo detection of protein cysteine sulfenylation in plastids. Plant Journal, 97(4), 765-778. https://doi.org/10.1111/tpj.14146</Citation>
</Reference>
<Reference>
<Citation>Delaplace, P., Delory, B. M., Baudson, C., Mendaluk-Saunier de Cazenave, M., Spaepen, S., Varin, S., … du Jardin, P. (2015). Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biology, 15, 195.</Citation>
</Reference>
<Reference>
<Citation>Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., … Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6, 6279. https://doi.org/10.1038/ncomms7279</Citation>
</Reference>
<Reference>
<Citation>Dorfer, V., Pichler, P., Stranzl, T., Stadlmann, J., Taus, T., Winkler, S., & Mechtler, K. (2014). MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. Journal of Proteome Research, 13(8), 3679-3684. https://doi.org/10.1021/pr500202e</Citation>
</Reference>
<Reference>
<Citation>Du, S.-Y., Zhang, X.-F., Lu, Z., Xin, Q., Wu, Z., Jiang, T., … Zhang, D.-P. (2012). Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Molecular Biology, 80, 519-537. https://doi.org/10.1007/s11103-012-9965-3</Citation>
</Reference>
<Reference>
<Citation>Dunford, R. P., Durrant, M. C., Catley, M. A., & Dyer, T. A. (1998). Location of redox-active cysteins in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase. Photosynthesis Research, 58(58), 221-230. https://doi.org/10.1023/A:1006178826976</Citation>
</Reference>
<Reference>
<Citation>Ezquer, I., Li, J., Ovecka, M., Baroja-Fernández, E., Muñoz, F. J., Montero, M., … Pozueta-Romero, J. (2010). Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant and Cell Physiology, 51(10), 1674-1693. https://doi.org/10.1093/pcp/pcq126</Citation>
</Reference>
<Reference>
<Citation>Fares, A., Rossignol, M., & Peltier, J. B. (2011). Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochemical and Biophysical Research Communications, 416, 331-336. https://doi.org/10.1016/j.bbrc.2011.11.036</Citation>
</Reference>
<Reference>
<Citation>Floková, K., Tarkowská, D., Miersch, O., Strnad, M., Wasternack, C., & Novák, O. (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry, 105, 147-157. https://doi.org/10.1016/j.phytochem.2014.05.015</Citation>
</Reference>
<Reference>
<Citation>Fukao, Y., Ferjani, A., Tomioka, R., Nagasaki, N., Kurata, R., Nishimori, Y., … Maeshima, M. (2011). iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiology, 155(4), 1893-1907. https://doi.org/10.1104/pp.110.169730</Citation>
</Reference>
<Reference>
<Citation>García-Gómez, P., Almagro, G., Sánchez-López, Á. M., Bahaji, A., Ameztoy, K., Ricarte-Bermejo, A., … Pozueta-Romero, J. (2019). Volatile compounds other than CO2 emitted by different microorganisms promote distinct post-transcriptionally regulated responses in Arabidopsis. Plant, Cell & Environment, 42(5), 1729-1746. https://doi.org/10.1111/pce.13490</Citation>
</Reference>
<Reference>
<Citation>Garnica-Vergara, A., Barrera-Ortiz, S., Muñoz-Parra, E., Raya-González, J., Méndez-Bravo, A., Macías-Rodríguez, L., … López-Bucio, J. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209(4), 1496-1512. https://doi.org/10.1111/nph.13725</Citation>
</Reference>
<Reference>
<Citation>Guo, J., Gaffrey, M. J., Su, D., Liu, T., Camp, D. G., Smith, R. D., & Qian, W.-J. (2014). Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nature Protocols, 9(1), 64-75. https://doi.org/10.1038/nprot.2013.161</Citation>
</Reference>
<Reference>
<Citation>Gutierrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., Reyes de la Cruz, H., & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51(1), 75-83.</Citation>
</Reference>
<Reference>
<Citation>Haldrup, A., Naver, H., & Scheller, H. V. (1999). The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant Journal, 17(6), 689-698. https://doi.org/10.1046/j.1365-313X.1999.00419.x</Citation>
</Reference>
<Reference>
<Citation>He, Y., Cook, C. W., Ahn, S. M., Jing, L., Yang, Z., Crawford, N. M., & Pei, Z. (2008). Transition nitric oxide represses the Arabidopsis floral transition. Science, 305(5692), 1968-1971.</Citation>
</Reference>
<Reference>
<Citation>Hu, J., Huang, X., Chen, L., Sun, X., Lu, C., Zhang, L., … Zuo, J. (2015). Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiology, 167(4), 1731-1746. https://doi.org/10.1104/pp.15.00026</Citation>
</Reference>
<Reference>
<Citation>Humplík, J. F., Bergougnoux, V., Jandová, M., Šimura, J., Pěnčík, A., Tomanec, O., … Fellner, M. (2015). Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.). PLoS ONE, 10(2), e0117793. https://doi.org/10.1371/journal.pone.0117793</Citation>
</Reference>
<Reference>
<Citation>Hung, R., Lee, S., & Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6(1), 19-26. https://doi.org/10.1016/j.funeco.2012.09.005</Citation>
</Reference>
<Reference>
<Citation>Johnson, G. N. (2005). Cyclic electron transport in C3 plants: Fact or artefact. Journal of Experimental Botany, 56(411), 407-416. https://doi.org/10.1093/jxb/eri106</Citation>
</Reference>
<Reference>
<Citation>Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6, 151.</Citation>
</Reference>
<Reference>
<Citation>Karamoko, M., Gabilly, S. T., & Hamel, P. P. (2013). Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Frontiers in Plant Science, 4, 476.</Citation>
</Reference>
<Reference>
<Citation>Keech, O., Gardeström, P., Kleczkowski, L. A., & Rouhier, N. (2017). The redox control of photorespiration: From biochemical and physiological aspects to biotechnological considerations. Plant, Cell & Environment, 40(4), 553-569. https://doi.org/10.1111/pce.12713</Citation>
</Reference>
<Reference>
<Citation>Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168</Citation>
</Reference>
<Reference>
<Citation>Kirchsteiger, K., Ferrández, J., Pascual, M. B., González, M., & Cejudo, F. J. (2012). NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. The Plant Cell, 24(4), 1534-1548. https://doi.org/10.1105/tpc.111.092304</Citation>
</Reference>
<Reference>
<Citation>Kirchsteiger, K., Pulido, P., González, M., & Cejudo, F. J. (2009). NADPH thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thaliana. Molecular Plant, 2(2), 298-307. https://doi.org/10.1093/mp/ssn082</Citation>
</Reference>
<Reference>
<Citation>Koskela, M. M., Dahlström, K. M., Goñi, G., Lehtimäki, N., Nurmi, M., Velazquez-Campoy, A., … Mulo, P. (2018). Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases. Physiologia Plantarum, 162(2), 177-190. https://doi.org/10.1111/ppl.12621</Citation>
</Reference>
<Reference>
<Citation>Krall, J. P., & Edwards, G. E. (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum, 86(1), 180-187. https://doi.org/10.1111/j.1399-3054.1992.tb01328.x</Citation>
</Reference>
<Reference>
<Citation>Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schöttler, M. A., … Dietz, K. J. (2006). Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant Journal, 45(6), 968-981. https://doi.org/10.1111/j.1365-313X.2006.02665.x</Citation>
</Reference>
<Reference>
<Citation>Lazár, D. (2015). Parameters of photosynthetic energy partitioning. Journal of Plant Physiology, 175, 131-147. https://doi.org/10.1016/j.jplph.2014.10.021</Citation>
</Reference>
<Reference>
<Citation>Lepistö, A., Kangasja, S., & Luomala, E. (2009). Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiology, 149(3), 1261-1276. https://doi.org/10.1104/pp.108.133777</Citation>
</Reference>
<Reference>
<Citation>Lepistö, A., Pakula, E., Toivola, J., Krieger-Liszkay, A., Vignols, F., & Rintamäki, E. (2013). Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 64(12), 3843-3854. https://doi.org/10.1093/jxb/ert216</Citation>
</Reference>
<Reference>
<Citation>Li, J., Ezquer, I., Bahaji, A., Montero, M., Ovecka, M., Baroja-Fernández, E., … Pozueta-Romero, J. (2011). Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. Molecular Plant-Microbe Interactions, 24(10), 1165-1178. https://doi.org/10.1094/MPMI-05-11-0112</Citation>
</Reference>
<Reference>
<Citation>Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1</Citation>
</Reference>
<Reference>
<Citation>Lintala, M., Allahverdiyeva, Y., Kidron, H., Piippo, M., Battchikova, N., Suorsa, M., … Mulo, P. (2007). Structural and functional characterization of ferredoxin-NADP+ oxidoreductase using knock-out mutants of Arabidopsis. The Plant Journal, 49(6), 1041-1052. https://doi.org/10.1111/j.1365-313X.2006.03014.x</Citation>
</Reference>
<Reference>
<Citation>Liu, P., Zhang, H., Wang, H., & Xia, Y. (2014). Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Proteomics, 14(6), 750-762. https://doi.org/10.1002/pmic.201300307</Citation>
</Reference>
<Reference>
<Citation>Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393-2401. https://doi.org/10.1093/jxb/erg262</Citation>
</Reference>
<Reference>
<Citation>Michelet, L., Zaffagnini, M., Morisse, S., Sparla, F., Pérez-Pérez, M. E., Francia, F., … Lemaire, S. D. (2013). Redox regulation of the Calvin-Benson cycle: Something old, something new. Frontiers in Plant Science, 4, 479.</Citation>
</Reference>
<Reference>
<Citation>Molina-Favero, C., Creus, C. M., Simontacchi, M., Puntarulo, S., & Lamattina, L. (2008). Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions, 21(7), 1001-1009. https://doi.org/10.1094/MPMI-21-7-1001</Citation>
</Reference>
<Reference>
<Citation>Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.-H., Liu, Y.-X., … Sheen, J. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 300(5617), 332-336. https://doi.org/10.1126/science.1080585</Citation>
</Reference>
<Reference>
<Citation>Morales, F., Abadia, A., & Abadia, J. (1991). Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiology, 97(3), 886-893. https://doi.org/10.1104/pp.97.3.886</Citation>
</Reference>
<Reference>
<Citation>Motohashi, K., & Hisabori, T. (2006). HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. Journal of Biological Chemistry, 281(46), 35039-35047. https://doi.org/10.1074/jbc.M605938200</Citation>
</Reference>
<Reference>
<Citation>Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., & Sato, F. (2005). Functional dissection of two Arabidopsis PsbO proteins PsbO1 and PsbO2. FEBS Journal, 272(9), 2165-2175. https://doi.org/10.1111/j.1742-4658.2005.04636.x</Citation>
</Reference>
<Reference>
<Citation>Naranjo, B., Mignée, C., Krieger-Liszkay, A., Hornero-Méndez, D., Gallardo-Guerrero, L., Cejudo, F. J., & Lindahl, M. (2016). The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant, Cell and Environment, 39(4), 804-822. https://doi.org/10.1111/pce.12652</Citation>
</Reference>
<Reference>
<Citation>Nemhauser, J. L., Hong, F., & Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126(3), 467-475. https://doi.org/10.1016/j.cell.2006.05.050</Citation>
</Reference>
<Reference>
<Citation>Nguyen, H. M., Sako, K., Matsui, A., Suzuki, Y., Mostofa, M. G., Ha, C. V., … Seki, M. (2017). Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Frontiers in Plant Science, 8, 1001.</Citation>
</Reference>
<Reference>
<Citation>Nikkanen, L., Toivola, J., & Rintamäki, E. (2016). Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant, Cell and Environment, 39(8), 1691-1705. https://doi.org/10.1111/pce.12718</Citation>
</Reference>
<Reference>
<Citation>Novák, O., Hauserová, E., Amakorová, P., Dolezal, K., & Strnad, M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69(11), 2214-2224. https://doi.org/10.1016/j.phytochem.2008.04.022</Citation>
</Reference>
<Reference>
<Citation>Ögren, E., & Evans, J. R. (1993). Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversion. Planta, 189(2), 182-190.</Citation>
</Reference>
<Reference>
<Citation>Ojeda, V., Pérez-Ruiz, J. M., & Cejudo, F. J. (2018). 2-Cys peroxiredoxins participate in the oxidation of chloroplast enzymes in the dark. Molecular Plant, 11(11), 1377-1388. https://doi.org/10.1016/j.molp.2018.09.005</Citation>
</Reference>
<Reference>
<Citation>Ojeda, V., Pérez-Ruiz, J. M., González, M.-C., Nájera, V. A., Sahrawy, M., Serrato, A. J., … Cejudo, F. J. (2017). NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiology, 174(3), 1436-1488. https://doi.org/10.1104/pp.17.00481</Citation>
</Reference>
<Reference>
<Citation>Parker, J., Zhu, N., Zhu, M., & Chen, S. (2012). Profiling thiol redox proteome using isotope tagging mass spectrometry. Journal of Visualized Experiments, 21(61), 3766-3772.</Citation>
</Reference>
<Reference>
<Citation>Pérez-Ruiz, J. M., Guinea, M., Puerto-Galán, L., & Cejudo, F. J. (2014). NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Molecular Plant, 7(7), 1252-1255. https://doi.org/10.1093/mp/ssu032</Citation>
</Reference>
<Reference>
<Citation>Pérez-Ruiz, J. M., Naranjo, B., Ojeda, V., Guinea, M., & Cejudo, F. J. (2017). NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences of the United States of America, 114(45), 12069-12074. https://doi.org/10.1073/pnas.1706003114</Citation>
</Reference>
<Reference>
<Citation>Pérez-Ruiz, J. M., Spınola, C., Kirchsteiger, K., Moreno, J., Sahrawy, M., Pe, J. M., & Cejudo, F. J. (2006). Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. The Plant Cell, 18(9), 2356-2368. https://doi.org/10.1105/tpc.106.041541</Citation>
</Reference>
<Reference>
<Citation>Petersson, U. A., Kieselbach, T., García-Cerdán, J. G., & Schröder, W. P. (2006). The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Letters, 580(26), 6055-6061. https://doi.org/10.1016/j.febslet.2006.10.001</Citation>
</Reference>
<Reference>
<Citation>Piechulla, B., Lemfack, M. C., & Kai, M. (2017). Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell & Environment, 40(10), 2042-2067. https://doi.org/10.1111/pce.13011</Citation>
</Reference>
<Reference>
<Citation>Puerto-Galán, L., Pérez-Ruiz, J. M., Guinea, M., & Cejudo, F. J. (2015). The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 66(10), 2957-2966. https://doi.org/10.1093/jxb/eru512</Citation>
</Reference>
<Reference>
<Citation>Pulido, P., Spínola, M. C., Kirchsteiger, K., Guinea, M., Pascual, M. B., Sahrawy, M., … Cejudo, F. J. (2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 61(14), 4043-4054. https://doi.org/10.1093/jxb/erq218</Citation>
</Reference>
<Reference>
<Citation>Queval, G., & Noctor, G. (2007). A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry, 363(1), 58-69. https://doi.org/10.1016/j.ab.2007.01.005</Citation>
</Reference>
<Reference>
<Citation>Richter, A. S., Peter, E., Rothbart, M., Schlicke, H., Toivola, J., Rintamäki, E., & Grimm, B. (2013). Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiology, 162(1), 63-73. https://doi.org/10.1104/pp.113.217141</Citation>
</Reference>
<Reference>
<Citation>Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57(1), 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441</Citation>
</Reference>
<Reference>
<Citation>Rouhier, N., Gelhaye, E., Gualberto, J., Jordy, M., de Fray, E., Hirasawa, M., … Jacquot, J.-P. (2004). Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiology, 134(3), 1027-1038. https://doi.org/10.1104/pp.103.035865</Citation>
</Reference>
<Reference>
<Citation>Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927-4932. https://doi.org/10.1073/pnas.0730845100</Citation>
</Reference>
<Reference>
<Citation>Sánchez-López, Á. M., Bahaji, A., de Diego, N., Baslam, M., Li, J., Muñoz, F. J., … Novák, O. (2016). Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiology, 172(3), 1989-2001. https://doi.org/10.1104/pp.16.00945</Citation>
</Reference>
<Reference>
<Citation>Sánchez-López, Á. M., Baslam, M., de Diego, N., Muñoz, F. J., Bahaji, A., Almagro, G., … Novák, O. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant, Cell & Environment, 39(12), 2592-2608. https://doi.org/10.1111/pce.12759</Citation>
</Reference>
<Reference>
<Citation>Schürmann, P., & Buchanan, B. B. (2008). The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxidants and Redox Signaling, 10(7), 1235-1274. https://doi.org/10.1089/ars.2007.1931</Citation>
</Reference>
<Reference>
<Citation>Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C., & Cejudo, F. J. (2004). A novel NADPH thioredoxin reductase, localised in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. Journal of Biological Chemistry, 279(42), 43821-43827. https://doi.org/10.1074/jbc.M404696200</Citation>
</Reference>
<Reference>
<Citation>Shang, Y., Yan, L., Liu, Z.-Q., Cao, Z., Mei, C., Xin, Q., … Zhang, D.-P. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. The Plant Cell, 22(6), 1909-1935. https://doi.org/10.1105/tpc.110.073874</Citation>
</Reference>
<Reference>
<Citation>Shen, Y.-Y., Wang, X.-F., Wu, F.-Q., Du, S.-Y., Cao, Z., Shang, Y., … Fan, R. C. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443(7113), 823-826. https://doi.org/10.1038/nature05176</Citation>
</Reference>
<Reference>
<Citation>Shiraya, T., Mori, T., Maruyama, T., Sasaki, M., Takamatsu, T., Oikawa, K., … Mitsui, T. (2015). Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnology Journal, 13(9), 1251-1263. https://doi.org/10.1111/pbi.12314</Citation>
</Reference>
<Reference>
<Citation>Stenbaek, A., Hansson, A., Wulff, R. P., Hansson, M., Dietz, K. J., & Jensen, P. E. (2008). NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS Letters, 582(18), 2773-2778. https://doi.org/10.1016/j.febslet.2008.07.006</Citation>
</Reference>
<Reference>
<Citation>Takahashi, M., Furuhashi, T., Ishikawa, N., Horiguchi, G., Sakamoto, A., Tsukaya, H., & Morikawa, H. (2014). Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytologist, 201(4), 1304-1315. https://doi.org/10.1111/nph.12609</Citation>
</Reference>
<Reference>
<Citation>Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). MapMan: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37(6), 914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x</Citation>
</Reference>
<Reference>
<Citation>Thormählen, I., Meitzel, T., Groysman, J., Öchsner, A. B., von Roepenack-Lahaye, E., Naranjo, B., … Geigenberger, P. (2015). Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiology, 169(3), 1766-1786. https://doi.org/10.1104/pp.15.01122</Citation>
</Reference>
<Reference>
<Citation>Tsuzuki, T., Takahashi, K., Inoue, S., Okigaki, Y., Tomiyama, M., Hossain, M. A., … Kinoshita, T. (2011). Mg-chelatase H subunit affects ABA signalling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. Journal of Plant Research, 124(4), 527-538. https://doi.org/10.1007/s10265-011-0426-x</Citation>
</Reference>
<Reference>
<Citation>Valerio, C., Costa, A., Marri, L., Issakidis-bourguet, E., Pupillo, P., Trost, P., & Sparla, F. (2010). Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. Journal of Experimental Botany, 62(2), 545-555. https://doi.org/10.1093/jxb/erq288</Citation>
</Reference>
<Reference>
<Citation>Ventriglia, T., Kuhn, M. L., Ruiz, M. T., Ribeiro-Pedro, M., Valverde, F., Ballicora, M. A., … Romero, J. M. (2008). Two Arabidopsis ADP-glucose pyrophophorylase large subunits (APL1 and APL2) are catalytic. Plant Physiology, 148(1), 65-76. https://doi.org/10.1104/pp.108.122846</Citation>
</Reference>
<Reference>
<Citation>Villeret, V., Huang, S., Zhang, Y., Xue, Y., & Lipscomb, W. N. (1995). Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 Å resolution. Biochemistry, 34(13), 4299-4306. https://doi.org/10.1021/bi00013a019</Citation>
</Reference>
<Reference>
<Citation>von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153(4), 376-387. https://doi.org/10.1007/BF00384257</Citation>
</Reference>
<Reference>
<Citation>Wu, F.-Q., Xin, Q., Cao, Z., Liu, Z.-Q., Du, S.-Y., Mei, C., … Zhang, X. F. (2009). The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis. Plant Physiology, 150(4), 1940-1954. https://doi.org/10.1104/pp.109.140731</Citation>
</Reference>
<Reference>
<Citation>Yoshida, K., & Hisabori, T. (2016). Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proceedings of the National Academy of Sciences of the United States of America, 113, 3867-3976.</Citation>
</Reference>
<Reference>
<Citation>Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., & Paré, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant Journal, 56(2), 264-273. https://doi.org/10.1111/j.1365-313X.2008.03593.x</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>Japon</li>
<li>République tchèque</li>
</country>
<region>
<li>Andalousie</li>
<li>Communauté forale de Navarre</li>
</region>
</list>
<tree>
<country name="Espagne">
<region name="Communauté forale de Navarre">
<name sortKey="Ameztoy, Kinia" sort="Ameztoy, Kinia" uniqKey="Ameztoy K" first="Kinia" last="Ameztoy">Kinia Ameztoy</name>
</region>
<name sortKey="Almagro, Goizeder" sort="Almagro, Goizeder" uniqKey="Almagro G" first="Goizeder" last="Almagro">Goizeder Almagro</name>
<name sortKey="Bahaji, Abdellatif" sort="Bahaji, Abdellatif" uniqKey="Bahaji A" first="Abdellatif" last="Bahaji">Abdellatif Bahaji</name>
<name sortKey="Baroja Fernandez, Edurne" sort="Baroja Fernandez, Edurne" uniqKey="Baroja Fernandez E" first="Edurne" last="Baroja-Fernández">Edurne Baroja-Fernández</name>
<name sortKey="Cejudo, Francisco Javier" sort="Cejudo, Francisco Javier" uniqKey="Cejudo F" first="Francisco Javier" last="Cejudo">Francisco Javier Cejudo</name>
<name sortKey="Garcia G Mez, Pablo" sort="Garcia G Mez, Pablo" uniqKey="Garcia G Mez P" first="Pablo" last="García-G Mez">Pablo García-G Mez</name>
<name sortKey="Mu Oz, Francisco Jose" sort="Mu Oz, Francisco Jose" uniqKey="Mu Oz F" first="Francisco José" last="Mu Oz">Francisco José Mu Oz</name>
<name sortKey="Pozueta Romero, Javier" sort="Pozueta Romero, Javier" uniqKey="Pozueta Romero J" first="Javier" last="Pozueta-Romero">Javier Pozueta-Romero</name>
<name sortKey="Sanchez L Pez, Angela Maria" sort="Sanchez L Pez, Angela Maria" uniqKey="Sanchez L Pez A" first="Ángela María" last="Sánchez-L Pez">Ángela María Sánchez-L Pez</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Baslam, Marouane" sort="Baslam, Marouane" uniqKey="Baslam M" first="Marouane" last="Baslam">Marouane Baslam</name>
</noRegion>
<name sortKey="Kaneko, Kentaro" sort="Kaneko, Kentaro" uniqKey="Kaneko K" first="Kentaro" last="Kaneko">Kentaro Kaneko</name>
<name sortKey="Mitsui, Toshiaki" sort="Mitsui, Toshiaki" uniqKey="Mitsui T" first="Toshiaki" last="Mitsui">Toshiaki Mitsui</name>
</country>
<country name="République tchèque">
<noRegion>
<name sortKey="De Diego, Nuria" sort="De Diego, Nuria" uniqKey="De Diego N" first="Nuria" last="De Diego">Nuria De Diego</name>
</noRegion>
<name sortKey="Dolezal, Karel" sort="Dolezal, Karel" uniqKey="Dolezal K" first="Karel" last="Doležal">Karel Doležal</name>
<name sortKey="Humplik, Jan F" sort="Humplik, Jan F" uniqKey="Humplik J" first="Jan F" last="Humplík">Jan F. Humplík</name>
<name sortKey="Spichal, Lukas" sort="Spichal, Lukas" uniqKey="Spichal L" first="Lukáš" last="Spíchal">Lukáš Spíchal</name>
<name sortKey="Ugena, Lydia" sort="Ugena, Lydia" uniqKey="Ugena L" first="Lydia" last="Ugena">Lydia Ugena</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31222760
   |texte=   Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31222760" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020