Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.

Identifieur interne : 000222 ( Main/Corpus ); précédent : 000221; suivant : 000223

Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.

Auteurs : Md Mosfeq-Ul Hasan ; Fanglu Ma ; Zakaria Hossain Prodhan ; Feng Li ; Hao Shen ; Yadong Chen ; Xuede Wang

Source :

RBID : pubmed:30200561

English descriptors

Abstract

Drought stress significantly limits cotton growth and production due to the necessity of water at every stage of crop growth. Hence, it is essential to identify tolerant genetic resources and understand the mechanisms of drought tolerance in economically and socially important plants such as cotton. In this study, molecular and physio-biochemical investigations were conducted by analyzing different parameters by following standard protocols in three different cotton species, namely TM-1 (Gossypium hirsutum), Zhongmian-16 (Gossypium arboreum), and Pima4-S (Gossypium barbadense). Drought stress significantly decreased plant growth, chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), maximum photochemical efficiency of PSII (Fv/Fm), and relative water content. TM-1 resulted in more tolerance than the other two species. The accumulation of proline, soluble proteins, soluble sugars, hydrogen peroxide (H₂O₂), and superoxide radicals (O₂-) increased significantly in TM-1. In addition, TM-1 maintained the integrity of the chloroplast structure under drought conditions. The relative expression level of drought-responsive genes including coding for transcription factors and other regulatory proteins or enzymes controlling genes (ERF, ERFB, DREB, WRKY6, ZFP1, FeSOD, CuZnSOD, MAPKKK17, P5CR, and PRP5) were higher in TM-1 under drought, conferring a more tolerant status than in Zhongmian-16 and Pima4-S. The findings of this research could be utilized for predicting a tolerant cotton genotype as well as evaluating prospective cotton species in the variety development program.

DOI: 10.3390/ijms19092636
PubMed: 30200561
PubMed Central: PMC6163957

Links to Exploration step

pubmed:30200561

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.</title>
<author>
<name sortKey="Hasan, Md Mosfeq Ul" sort="Hasan, Md Mosfeq Ul" uniqKey="Hasan M" first="Md Mosfeq-Ul" last="Hasan">Md Mosfeq-Ul Hasan</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. hasanmd12@hotmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Examination Control Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh. hasanmd12@hotmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Fanglu" sort="Ma, Fanglu" uniqKey="Ma F" first="Fanglu" last="Ma">Fanglu Ma</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. 21516038@zju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prodhan, Zakaria Hossain" sort="Prodhan, Zakaria Hossain" uniqKey="Prodhan Z" first="Zakaria Hossain" last="Prodhan">Zakaria Hossain Prodhan</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. rajugenetics2003@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Feng" sort="Li, Feng" uniqKey="Li F" first="Feng" last="Li">Feng Li</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. seawind-1@zju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Hao" sort="Shen, Hao" uniqKey="Shen H" first="Hao" last="Shen">Hao Shen</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. shenhao1721@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yadong" sort="Chen, Yadong" uniqKey="Chen Y" first="Yadong" last="Chen">Yadong Chen</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. sdaucyd@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xuede" sort="Wang, Xuede" uniqKey="Wang X" first="Xuede" last="Wang">Xuede Wang</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. xdwang@zju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30200561</idno>
<idno type="pmid">30200561</idno>
<idno type="doi">10.3390/ijms19092636</idno>
<idno type="pmc">PMC6163957</idno>
<idno type="wicri:Area/Main/Corpus">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.</title>
<author>
<name sortKey="Hasan, Md Mosfeq Ul" sort="Hasan, Md Mosfeq Ul" uniqKey="Hasan M" first="Md Mosfeq-Ul" last="Hasan">Md Mosfeq-Ul Hasan</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. hasanmd12@hotmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Examination Control Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh. hasanmd12@hotmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Fanglu" sort="Ma, Fanglu" uniqKey="Ma F" first="Fanglu" last="Ma">Fanglu Ma</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. 21516038@zju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prodhan, Zakaria Hossain" sort="Prodhan, Zakaria Hossain" uniqKey="Prodhan Z" first="Zakaria Hossain" last="Prodhan">Zakaria Hossain Prodhan</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. rajugenetics2003@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Feng" sort="Li, Feng" uniqKey="Li F" first="Feng" last="Li">Feng Li</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. seawind-1@zju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Hao" sort="Shen, Hao" uniqKey="Shen H" first="Hao" last="Shen">Hao Shen</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. shenhao1721@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yadong" sort="Chen, Yadong" uniqKey="Chen Y" first="Yadong" last="Chen">Yadong Chen</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. sdaucyd@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xuede" sort="Wang, Xuede" uniqKey="Wang X" first="Xuede" last="Wang">Xuede Wang</name>
<affiliation>
<nlm:affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. xdwang@zju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chlorophyll (metabolism)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gossypium (classification)</term>
<term>Gossypium (genetics)</term>
<term>Gossypium (growth & development)</term>
<term>Lipid Peroxidation (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Lipid Peroxidation</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought stress significantly limits cotton growth and production due to the necessity of water at every stage of crop growth. Hence, it is essential to identify tolerant genetic resources and understand the mechanisms of drought tolerance in economically and socially important plants such as cotton. In this study, molecular and physio-biochemical investigations were conducted by analyzing different parameters by following standard protocols in three different cotton species, namely TM-1 (
<i>Gossypium hirsutum</i>
), Zhongmian-16 (
<i>Gossypium arboreum</i>
), and Pima4-S (
<i>Gossypium barbadense</i>
). Drought stress significantly decreased plant growth, chlorophyll content, net photosynthetic rate (
<i>P</i>
<sub>n</sub>
), stomatal conductance (
<i>Gs</i>
), maximum photochemical efficiency of PSII (
<i>Fv</i>
/
<i>Fm</i>
), and relative water content. TM-1 resulted in more tolerance than the other two species. The accumulation of proline, soluble proteins, soluble sugars, hydrogen peroxide (H₂O₂), and superoxide radicals (O₂
<sup></sup>
<sup>-</sup>
) increased significantly in TM-1. In addition, TM-1 maintained the integrity of the chloroplast structure under drought conditions. The relative expression level of drought-responsive genes including coding for transcription factors and other regulatory proteins or enzymes controlling genes (
<i>ERF</i>
,
<i>ERFB</i>
,
<i>DREB</i>
,
<i>WRKY6</i>
,
<i>ZFP1</i>
,
<i>FeSOD</i>
,
<i>CuZnSOD</i>
,
<i>MAPKKK17</i>
,
<i>P5CR</i>
, and
<i>PRP5</i>
) were higher in TM-1 under drought, conferring a more tolerant status than in Zhongmian-16 and Pima4-S. The findings of this research could be utilized for predicting a tolerant cotton genotype as well as evaluating prospective cotton species in the variety development program.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30200561</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2018</Year>
<Month>Sep</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E2636</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms19092636</ELocationID>
<Abstract>
<AbstractText>Drought stress significantly limits cotton growth and production due to the necessity of water at every stage of crop growth. Hence, it is essential to identify tolerant genetic resources and understand the mechanisms of drought tolerance in economically and socially important plants such as cotton. In this study, molecular and physio-biochemical investigations were conducted by analyzing different parameters by following standard protocols in three different cotton species, namely TM-1 (
<i>Gossypium hirsutum</i>
), Zhongmian-16 (
<i>Gossypium arboreum</i>
), and Pima4-S (
<i>Gossypium barbadense</i>
). Drought stress significantly decreased plant growth, chlorophyll content, net photosynthetic rate (
<i>P</i>
<sub>n</sub>
), stomatal conductance (
<i>Gs</i>
), maximum photochemical efficiency of PSII (
<i>Fv</i>
/
<i>Fm</i>
), and relative water content. TM-1 resulted in more tolerance than the other two species. The accumulation of proline, soluble proteins, soluble sugars, hydrogen peroxide (H₂O₂), and superoxide radicals (O₂
<sup></sup>
<sup>-</sup>
) increased significantly in TM-1. In addition, TM-1 maintained the integrity of the chloroplast structure under drought conditions. The relative expression level of drought-responsive genes including coding for transcription factors and other regulatory proteins or enzymes controlling genes (
<i>ERF</i>
,
<i>ERFB</i>
,
<i>DREB</i>
,
<i>WRKY6</i>
,
<i>ZFP1</i>
,
<i>FeSOD</i>
,
<i>CuZnSOD</i>
,
<i>MAPKKK17</i>
,
<i>P5CR</i>
, and
<i>PRP5</i>
) were higher in TM-1 under drought, conferring a more tolerant status than in Zhongmian-16 and Pima4-S. The findings of this research could be utilized for predicting a tolerant cotton genotype as well as evaluating prospective cotton species in the variety development program.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hasan</LastName>
<ForeName>Md Mosfeq-Ul</ForeName>
<Initials>MM</Initials>
<Identifier Source="ORCID">0000-0003-2104-2931</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. hasanmd12@hotmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Examination Control Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh. hasanmd12@hotmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Fanglu</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. 21516038@zju.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prodhan</LastName>
<ForeName>Zakaria Hossain</ForeName>
<Initials>ZH</Initials>
<Identifier Source="ORCID">0000-0002-4218-3218</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. rajugenetics2003@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. seawind-1@zju.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. shenhao1721@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yadong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. sdaucyd@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xuede</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China. xdwang@zju.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31671763,31471567</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2017C32077</GrantID>
<Agency>Science Technology Department of Zhejiang Province in China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003368" MajorTopicYN="N">Gossypium</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="Y">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">abiotic stress</Keyword>
<Keyword MajorTopicYN="N">antioxidant defense</Keyword>
<Keyword MajorTopicYN="N">cotton</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">drought tolerance</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30200561</ArticleId>
<ArticleId IdType="pii">ijms19092636</ArticleId>
<ArticleId IdType="doi">10.3390/ijms19092636</ArticleId>
<ArticleId IdType="pmc">PMC6163957</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Feb;49(2):178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1949 Jan;24(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16654194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Jul 1;39(13):4938-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16053095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Nov;103(3):771-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8022935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Oct;85(2):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jul;49(5):473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12090623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 May 03;14(5):9643-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Jan 31;18(1):118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28143399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Feb 01;12(2):e1005833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26829043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Feb;37(2):300-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015 Dec;6:260-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1305-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):62-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Feb;63:49-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23232247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Jul;34(7):1109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25712013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jul 15;168(11):1303-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21388704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(411):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15569705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;105:121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6727660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Jan;281(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19002717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Mar 01;14(3):4885-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23455464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1141-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Dec;53(379):2401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Feb;59(2):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Oct;15(10):983-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2015 Mar;252(2):423-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25149149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Apr;65(7-8):1150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Aug;25(8):2944-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Jul;151(3):257-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24506225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jan;116(1):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2007 Oct 1;59(2):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 10;8:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28239385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2018 Apr;162(4):439-454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29027659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Jun;28(6):947-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18381275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Mar;15(3):271-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28055133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1954 Jul;57(3):508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13181867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Trace Elem Res. 2012 May;146(2):246-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Jun;115:126-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28364709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Aug;48(8):663-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20605723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 May 15;123(Pt 10):1644-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 17;9(4):e95642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Expr. 2002;10(4):137-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12173742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 05;8:1492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28928754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Nov;60:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Aug;8(8):1323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8776899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Nov;218(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Feb;15(2):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jun;20(6):1693-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jan;47(1):141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Aug 15;16(16):4806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):377-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi J Biol Sci. 2012 Jul;19(3):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23961193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30200561
   |texte=   Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30200561" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020