Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light.

Identifieur interne : 000159 ( Main/Corpus ); précédent : 000158; suivant : 000160

Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light.

Auteurs : Igor S. Suslichenko ; Alexander N. Tikhonov

Source :

RBID : pubmed:30896038

English descriptors

Abstract

In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m-2 ·s-1 , LL) or to high light (~ 1000 μmol photons·m-2 ·s-1 , HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ]0 /[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ]0 /[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.

DOI: 10.1002/1873-3468.13366
PubMed: 30896038

Links to Exploration step

pubmed:30896038

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light.</title>
<author>
<name sortKey="Suslichenko, Igor S" sort="Suslichenko, Igor S" uniqKey="Suslichenko I" first="Igor S" last="Suslichenko">Igor S. Suslichenko</name>
<affiliation>
<nlm:affiliation>Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tikhonov, Alexander N" sort="Tikhonov, Alexander N" uniqKey="Tikhonov A" first="Alexander N" last="Tikhonov">Alexander N. Tikhonov</name>
<affiliation>
<nlm:affiliation>Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30896038</idno>
<idno type="pmid">30896038</idno>
<idno type="doi">10.1002/1873-3468.13366</idno>
<idno type="wicri:Area/Main/Corpus">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000159</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light.</title>
<author>
<name sortKey="Suslichenko, Igor S" sort="Suslichenko, Igor S" uniqKey="Suslichenko I" first="Igor S" last="Suslichenko">Igor S. Suslichenko</name>
<affiliation>
<nlm:affiliation>Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tikhonov, Alexander N" sort="Tikhonov, Alexander N" uniqKey="Tikhonov A" first="Alexander N" last="Tikhonov">Alexander N. Tikhonov</name>
<affiliation>
<nlm:affiliation>Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (radiation effects)</term>
<term>Chlorophyll (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Chloroplasts (radiation effects)</term>
<term>Commelinaceae (metabolism)</term>
<term>Commelinaceae (physiology)</term>
<term>Commelinaceae (radiation effects)</term>
<term>Dose-Response Relationship, Radiation (MeSH)</term>
<term>Electron Transport (radiation effects)</term>
<term>Kinetics (MeSH)</term>
<term>Light (MeSH)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Plastoquinone (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
<term>Photosystem II Protein Complex</term>
<term>Plastoquinone</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Commelinaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Commelinaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Acclimatization</term>
<term>Chloroplasts</term>
<term>Commelinaceae</term>
<term>Electron Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dose-Response Relationship, Radiation</term>
<term>Kinetics</term>
<term>Light</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m
<sup>-2</sup>
·s
<sup>-1</sup>
, LL) or to high light (~ 1000 μmol photons·m
<sup>-2</sup>
·s
<sup>-1</sup>
, HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ]
<sub>0</sub>
/[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ]
<sub>0</sub>
/[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30896038</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>593</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light.</ArticleTitle>
<Pagination>
<MedlinePgn>788-798</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/1873-3468.13366</ELocationID>
<Abstract>
<AbstractText>In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m
<sup>-2</sup>
·s
<sup>-1</sup>
, LL) or to high light (~ 1000 μmol photons·m
<sup>-2</sup>
·s
<sup>-1</sup>
, HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ]
<sub>0</sub>
/[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ]
<sub>0</sub>
/[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.</AbstractText>
<CopyrightInformation>© 2019 Federation of European Biochemical Societies.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suslichenko</LastName>
<ForeName>Igor S</ForeName>
<Initials>IS</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tikhonov</LastName>
<ForeName>Alexander N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>18-04-00214</GrantID>
<Agency>Russian Foundation for Basic Research</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OAC30J69CN</RegistryNumber>
<NameOfSubstance UI="D010971">Plastoquinone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034821" MajorTopicYN="N">Commelinaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004307" MajorTopicYN="N">Dose-Response Relationship, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010971" MajorTopicYN="N">Plastoquinone</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">fluorescence</Keyword>
<Keyword MajorTopicYN="Y">light acclimation</Keyword>
<Keyword MajorTopicYN="Y">photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">photosystem II</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30896038</ArticleId>
<ArticleId IdType="doi">10.1002/1873-3468.13366</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000159 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000159 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30896038
   |texte=   Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30896038" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020