Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria.

Identifieur interne : 000094 ( Main/Corpus ); précédent : 000093; suivant : 000095

Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria.

Auteurs : Sean P A. Ritter ; Allison C. Lewis ; Shelby L. Vincent ; Li Ling Lo ; Ana Paula Almeida Cunha ; Danuta Chamot ; Ingo Ensminger ; George S. Espie ; George W. Owttrim

Source :

RBID : pubmed:31669584

English descriptors

Abstract

BACKGROUND

Bacteria routinely utilize two-component signal transduction pathways to sense and alter gene expression in response to environmental cues. While cyanobacteria express numerous two-component systems, these pathways do not regulate all of the genes within many of the identified abiotic stress-induced regulons.

METHODS

Electron transport inhibitors combined with western analysis and measurement of chlorophyll a fluorescent yield, using pulse amplitude modulation fluorometry, were used to detect the effect of a diverse range of abiotic stresses on the redox status of the photosynthetic electron transport chain and the accumulation and degradation of the Synechocystis sp. PCC 6803 DEAD box RNA helicase, CrhR.

RESULTS

Alterations in CrhR abundance were tightly correlated with the redox poise of the electron transport chain between Q

CONCLUSIONS

The results provide evidence for an alternative, convergent sensing mechanism mediated through the redox poise of Q

GENERAL SIGNIFICANCE

The potential for a related system in Staphylococcus aureus and higher plant chloroplasts suggest convergent sensing mechanisms may be evolutionarily conserved and occur more widely than anticipated.


DOI: 10.1016/j.bbagen.2019.129462
PubMed: 31669584

Links to Exploration step

pubmed:31669584

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria.</title>
<author>
<name sortKey="Ritter, Sean P A" sort="Ritter, Sean P A" uniqKey="Ritter S" first="Sean P A" last="Ritter">Sean P A. Ritter</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Allison C" sort="Lewis, Allison C" uniqKey="Lewis A" first="Allison C" last="Lewis">Allison C. Lewis</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany. Electronic address: lewis@mpi-cbg.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vincent, Shelby L" sort="Vincent, Shelby L" uniqKey="Vincent S" first="Shelby L" last="Vincent">Shelby L. Vincent</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lo, Li Ling" sort="Lo, Li Ling" uniqKey="Lo L" first="Li Ling" last="Lo">Li Ling Lo</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cunha, Ana Paula Almeida" sort="Cunha, Ana Paula Almeida" uniqKey="Cunha A" first="Ana Paula Almeida" last="Cunha">Ana Paula Almeida Cunha</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chamot, Danuta" sort="Chamot, Danuta" uniqKey="Chamot D" first="Danuta" last="Chamot">Danuta Chamot</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ensminger, Ingo" sort="Ensminger, Ingo" uniqKey="Ensminger I" first="Ingo" last="Ensminger">Ingo Ensminger</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Espie, George S" sort="Espie, George S" uniqKey="Espie G" first="George S" last="Espie">George S. Espie</name>
<affiliation>
<nlm:affiliation>Department of Cell and Systems Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Owttrim, George W" sort="Owttrim, George W" uniqKey="Owttrim G" first="George W" last="Owttrim">George W. Owttrim</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada. Electronic address: gowttrim@ualberta.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31669584</idno>
<idno type="pmid">31669584</idno>
<idno type="doi">10.1016/j.bbagen.2019.129462</idno>
<idno type="wicri:Area/Main/Corpus">000094</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000094</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria.</title>
<author>
<name sortKey="Ritter, Sean P A" sort="Ritter, Sean P A" uniqKey="Ritter S" first="Sean P A" last="Ritter">Sean P A. Ritter</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Allison C" sort="Lewis, Allison C" uniqKey="Lewis A" first="Allison C" last="Lewis">Allison C. Lewis</name>
<affiliation>
<nlm:affiliation>Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany. Electronic address: lewis@mpi-cbg.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vincent, Shelby L" sort="Vincent, Shelby L" uniqKey="Vincent S" first="Shelby L" last="Vincent">Shelby L. Vincent</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lo, Li Ling" sort="Lo, Li Ling" uniqKey="Lo L" first="Li Ling" last="Lo">Li Ling Lo</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cunha, Ana Paula Almeida" sort="Cunha, Ana Paula Almeida" uniqKey="Cunha A" first="Ana Paula Almeida" last="Cunha">Ana Paula Almeida Cunha</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chamot, Danuta" sort="Chamot, Danuta" uniqKey="Chamot D" first="Danuta" last="Chamot">Danuta Chamot</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ensminger, Ingo" sort="Ensminger, Ingo" uniqKey="Ensminger I" first="Ingo" last="Ensminger">Ingo Ensminger</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Espie, George S" sort="Espie, George S" uniqKey="Espie G" first="George S" last="Espie">George S. Espie</name>
<affiliation>
<nlm:affiliation>Department of Cell and Systems Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Owttrim, George W" sort="Owttrim, George W" uniqKey="Owttrim G" first="George W" last="Owttrim">George W. Owttrim</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada. Electronic address: gowttrim@ualberta.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta. General subjects</title>
<idno type="eISSN">1872-8006</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chlorophyll A (biosynthesis)</term>
<term>Cyanobacteria (genetics)</term>
<term>Cytochrome b6f Complex (chemistry)</term>
<term>Cytochrome b6f Complex (genetics)</term>
<term>DEAD-box RNA Helicases (chemistry)</term>
<term>DEAD-box RNA Helicases (genetics)</term>
<term>Electron Transport (genetics)</term>
<term>Gene Expression Regulation, Bacterial (genetics)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>RNA Processing, Post-Transcriptional (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Chlorophyll A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cytochrome b6f Complex</term>
<term>DEAD-box RNA Helicases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cyanobacteria</term>
<term>Cytochrome b6f Complex</term>
<term>DEAD-box RNA Helicases</term>
<term>Electron Transport</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Photosynthesis</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Bacteria routinely utilize two-component signal transduction pathways to sense and alter gene expression in response to environmental cues. While cyanobacteria express numerous two-component systems, these pathways do not regulate all of the genes within many of the identified abiotic stress-induced regulons.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Electron transport inhibitors combined with western analysis and measurement of chlorophyll a fluorescent yield, using pulse amplitude modulation fluorometry, were used to detect the effect of a diverse range of abiotic stresses on the redox status of the photosynthetic electron transport chain and the accumulation and degradation of the Synechocystis sp. PCC 6803 DEAD box RNA helicase, CrhR.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Alterations in CrhR abundance were tightly correlated with the redox poise of the electron transport chain between Q</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The results provide evidence for an alternative, convergent sensing mechanism mediated through the redox poise of Q</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>GENERAL SIGNIFICANCE</b>
</p>
<p>The potential for a related system in Staphylococcus aureus and higher plant chloroplasts suggest convergent sensing mechanisms may be evolutionarily conserved and occur more widely than anticipated.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31669584</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-8006</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1864</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta. General subjects</Title>
<ISOAbbreviation>Biochim Biophys Acta Gen Subj</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>129462</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0304-4165(19)30248-X</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbagen.2019.129462</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Bacteria routinely utilize two-component signal transduction pathways to sense and alter gene expression in response to environmental cues. While cyanobacteria express numerous two-component systems, these pathways do not regulate all of the genes within many of the identified abiotic stress-induced regulons.</AbstractText>
<AbstractText Label="METHODS">Electron transport inhibitors combined with western analysis and measurement of chlorophyll a fluorescent yield, using pulse amplitude modulation fluorometry, were used to detect the effect of a diverse range of abiotic stresses on the redox status of the photosynthetic electron transport chain and the accumulation and degradation of the Synechocystis sp. PCC 6803 DEAD box RNA helicase, CrhR.</AbstractText>
<AbstractText Label="RESULTS">Alterations in CrhR abundance were tightly correlated with the redox poise of the electron transport chain between Q
<sub>A</sub>
and cytochrome b
<sub>6</sub>
f, with reduction favoring CrhR accumulation.</AbstractText>
<AbstractText Label="CONCLUSIONS">The results provide evidence for an alternative, convergent sensing mechanism mediated through the redox poise of Q
<sub>B</sub>
/PQH
<sub>2</sub>
that senses multiple, divergent forms of abiotic stress and regulates accumulation of CrhR. The RNA helicase activity of CrhR could then function as a post-translational effector to regulate downstream gene expression.</AbstractText>
<AbstractText Label="GENERAL SIGNIFICANCE">The potential for a related system in Staphylococcus aureus and higher plant chloroplasts suggest convergent sensing mechanisms may be evolutionarily conserved and occur more widely than anticipated.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ritter</LastName>
<ForeName>Sean P A</ForeName>
<Initials>SPA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lewis</LastName>
<ForeName>Allison C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany. Electronic address: lewis@mpi-cbg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vincent</LastName>
<ForeName>Shelby L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lo</LastName>
<ForeName>Li Ling</ForeName>
<Initials>LL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cunha</LastName>
<ForeName>Ana Paula Almeida</ForeName>
<Initials>APA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chamot</LastName>
<ForeName>Danuta</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ensminger</LastName>
<ForeName>Ingo</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Espie</LastName>
<ForeName>George S</ForeName>
<Initials>GS</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Systems Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Owttrim</LastName>
<ForeName>George W</ForeName>
<Initials>GW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada. Electronic address: gowttrim@ualberta.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta Gen Subj</MedlineTA>
<NlmUniqueID>101731726</NlmUniqueID>
<ISSNLinking>0304-4165</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9035-40-9</RegistryNumber>
<NameOfSubstance UI="D045346">Cytochrome b6f Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D053487">DEAD-box RNA Helicases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YF5Q9EJC8Y</RegistryNumber>
<NameOfSubstance UI="D000077194">Chlorophyll A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000077194" MajorTopicYN="N">Chlorophyll A</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000458" MajorTopicYN="N">Cyanobacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045346" MajorTopicYN="N">Cytochrome b6f Complex</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053487" MajorTopicYN="N">DEAD-box RNA Helicases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012323" MajorTopicYN="N">RNA Processing, Post-Transcriptional</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Convergent sensing abiotic stress</Keyword>
<Keyword MajorTopicYN="Y">CrhR DEAD box RNA helicase</Keyword>
<Keyword MajorTopicYN="Y">Photosynthetic electron transport</Keyword>
<Keyword MajorTopicYN="Y">Pulse amplitude modulation fluorometry (PAM)</Keyword>
<Keyword MajorTopicYN="Y">Redox poise plastoquinone pool</Keyword>
<Keyword MajorTopicYN="Y">Synechocystis sp. PCC 6803</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31669584</ArticleId>
<ArticleId IdType="pii">S0304-4165(19)30248-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbagen.2019.129462</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000094 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000094 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31669584
   |texte=   Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31669584" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020