Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

(11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling.

Identifieur interne : 000020 ( PubMed/Corpus ); précédent : 000019; suivant : 000021

(11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling.

Auteurs : Veerle De Schepper ; Jonas Bühler ; Michael Thorpe ; Gerhard Roeb ; Gregor Huber ; Dagmar Van Dusschoten ; Siegfried Jahnke ; Kathy Steppe

Source :

RBID : pubmed:23785380

Abstract

Carbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope (11)C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.) trees were labeled with (11)C by supplying (11)CO2-gas to a leaf cuvette. Magnetic resonance imaging gave an indication of the plant structure, while PET registered the tracer flow in a stem region downstream from the labeled branches. After repeated pulse labeling, phloem translocation was shown to be sectorial in the stem: leaf orthostichy determined the position of the phloem sieve tubes containing labeled (11)C. The observed pathway remained unchanged for days. Tracer time-series derived from each pulse and analysed with a mechanistic model showed for two adjacent heights in the stem a similar velocity but different loss of recent assimilates. With either complete or partial girdling of bark within the monitored region, transport immediately stopped and then resumed in a new location in the stem cross-section, demonstrating the plasticity of sectoriality. One day after partial girdling, the loss of tracer along the interrupted transport pathway increased, while the velocity was enhanced in a non-girdled sector for several days. These findings suggest that lateral sugar transport was enhanced after wounding by a change in the lateral sugar transport path and the axial transport resumed with the development of new conductive tissue.

DOI: 10.3389/fpls.2013.00200
PubMed: 23785380

Links to Exploration step

pubmed:23785380

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">(11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling.</title>
<author>
<name sortKey="De Schepper, Veerle" sort="De Schepper, Veerle" uniqKey="De Schepper V" first="Veerle" last="De Schepper">Veerle De Schepper</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buhler, Jonas" sort="Buhler, Jonas" uniqKey="Buhler J" first="Jonas" last="Bühler">Jonas Bühler</name>
</author>
<author>
<name sortKey="Thorpe, Michael" sort="Thorpe, Michael" uniqKey="Thorpe M" first="Michael" last="Thorpe">Michael Thorpe</name>
</author>
<author>
<name sortKey="Roeb, Gerhard" sort="Roeb, Gerhard" uniqKey="Roeb G" first="Gerhard" last="Roeb">Gerhard Roeb</name>
</author>
<author>
<name sortKey="Huber, Gregor" sort="Huber, Gregor" uniqKey="Huber G" first="Gregor" last="Huber">Gregor Huber</name>
</author>
<author>
<name sortKey="Van Dusschoten, Dagmar" sort="Van Dusschoten, Dagmar" uniqKey="Van Dusschoten D" first="Dagmar" last="Van Dusschoten">Dagmar Van Dusschoten</name>
</author>
<author>
<name sortKey="Jahnke, Siegfried" sort="Jahnke, Siegfried" uniqKey="Jahnke S" first="Siegfried" last="Jahnke">Siegfried Jahnke</name>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23785380</idno>
<idno type="pmid">23785380</idno>
<idno type="doi">10.3389/fpls.2013.00200</idno>
<idno type="wicri:Area/PubMed/Corpus">000020</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">(11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling.</title>
<author>
<name sortKey="De Schepper, Veerle" sort="De Schepper, Veerle" uniqKey="De Schepper V" first="Veerle" last="De Schepper">Veerle De Schepper</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buhler, Jonas" sort="Buhler, Jonas" uniqKey="Buhler J" first="Jonas" last="Bühler">Jonas Bühler</name>
</author>
<author>
<name sortKey="Thorpe, Michael" sort="Thorpe, Michael" uniqKey="Thorpe M" first="Michael" last="Thorpe">Michael Thorpe</name>
</author>
<author>
<name sortKey="Roeb, Gerhard" sort="Roeb, Gerhard" uniqKey="Roeb G" first="Gerhard" last="Roeb">Gerhard Roeb</name>
</author>
<author>
<name sortKey="Huber, Gregor" sort="Huber, Gregor" uniqKey="Huber G" first="Gregor" last="Huber">Gregor Huber</name>
</author>
<author>
<name sortKey="Van Dusschoten, Dagmar" sort="Van Dusschoten, Dagmar" uniqKey="Van Dusschoten D" first="Dagmar" last="Van Dusschoten">Dagmar Van Dusschoten</name>
</author>
<author>
<name sortKey="Jahnke, Siegfried" sort="Jahnke, Siegfried" uniqKey="Jahnke S" first="Siegfried" last="Jahnke">Siegfried Jahnke</name>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope (11)C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.) trees were labeled with (11)C by supplying (11)CO2-gas to a leaf cuvette. Magnetic resonance imaging gave an indication of the plant structure, while PET registered the tracer flow in a stem region downstream from the labeled branches. After repeated pulse labeling, phloem translocation was shown to be sectorial in the stem: leaf orthostichy determined the position of the phloem sieve tubes containing labeled (11)C. The observed pathway remained unchanged for days. Tracer time-series derived from each pulse and analysed with a mechanistic model showed for two adjacent heights in the stem a similar velocity but different loss of recent assimilates. With either complete or partial girdling of bark within the monitored region, transport immediately stopped and then resumed in a new location in the stem cross-section, demonstrating the plasticity of sectoriality. One day after partial girdling, the loss of tracer along the interrupted transport pathway increased, while the velocity was enhanced in a non-girdled sector for several days. These findings suggest that lateral sugar transport was enhanced after wounding by a change in the lateral sugar transport path and the axial transport resumed with the development of new conductive tissue.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23785380</PMID>
<DateCreated>
<Year>2013</Year>
<Month>06</Month>
<Day>20</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>08</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>(11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling.</ArticleTitle>
<Pagination>
<MedlinePgn>200</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2013.00200</ELocationID>
<Abstract>
<AbstractText>Carbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope (11)C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.) trees were labeled with (11)C by supplying (11)CO2-gas to a leaf cuvette. Magnetic resonance imaging gave an indication of the plant structure, while PET registered the tracer flow in a stem region downstream from the labeled branches. After repeated pulse labeling, phloem translocation was shown to be sectorial in the stem: leaf orthostichy determined the position of the phloem sieve tubes containing labeled (11)C. The observed pathway remained unchanged for days. Tracer time-series derived from each pulse and analysed with a mechanistic model showed for two adjacent heights in the stem a similar velocity but different loss of recent assimilates. With either complete or partial girdling of bark within the monitored region, transport immediately stopped and then resumed in a new location in the stem cross-section, demonstrating the plasticity of sectoriality. One day after partial girdling, the loss of tracer along the interrupted transport pathway increased, while the velocity was enhanced in a non-girdled sector for several days. These findings suggest that lateral sugar transport was enhanced after wounding by a change in the lateral sugar transport path and the axial transport resumed with the development of new conductive tissue.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Schepper</LastName>
<ForeName>Veerle</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bühler</LastName>
<ForeName>Jonas</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thorpe</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roeb</LastName>
<ForeName>Gerhard</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Gregor</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van Dusschoten</LastName>
<ForeName>Dagmar</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jahnke</LastName>
<ForeName>Siegfried</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Steppe</LastName>
<ForeName>Kathy</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2003 Apr;131(4):1509-10</RefSource>
<PMID Version="1">12692310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2003 Apr;131(4):1518-28</RefSource>
<PMID Version="1">12692312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2003 Nov;23(16):1137-46</RefSource>
<PMID Version="1">14522719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2006 Sep;29(9):1715-29</RefSource>
<PMID Version="1">16913861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2008 Jul;28(7):1121-6</RefSource>
<PMID Version="1">18450576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Apr;63(7):2645-53</RefSource>
<PMID Version="1">22268159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Aug;59(4):634-44</RefSource>
<PMID Version="1">19392708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2010 Jan;30(1):89-102</RefSource>
<PMID Version="1">19955192</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Biol. 2010 Feb 7;55(3):635-46</RefSource>
<PMID Version="1">20071758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2010 Feb;33(2):259-71</RefSource>
<PMID Version="1">19930129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 2011 Feb 7;270(1):70-9</RefSource>
<PMID Version="1">21056579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Jun;147(2):912-21</RefSource>
<PMID Version="1">18417638</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3684848</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Quercus robur L.</Keyword>
<Keyword MajorTopicYN="N">assimilates</Keyword>
<Keyword MajorTopicYN="N">girdle</Keyword>
<Keyword MajorTopicYN="N">tracer model</Keyword>
<Keyword MajorTopicYN="N">translocation</Keyword>
<Keyword MajorTopicYN="N">wounding</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23785380</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2013.00200</ArticleId>
<ArticleId IdType="pmc">PMC3684848</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23785380
   |texte=   (11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23785380" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CheneBelgiqueV2 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024