Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0002050 ( Pmc/Corpus ); précédent : 0002049; suivant : 0002051 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Microscale Model for Combined CO
<sub>2</sub>
Diffusion and Photosynthesis in Leaves</title>
<author>
<name sortKey="Ho, Quang Tri" sort="Ho, Quang Tri" uniqKey="Ho Q" first="Quang Tri" last="Ho">Quang Tri Ho</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verboven, Pieter" sort="Verboven, Pieter" uniqKey="Verboven P" first="Pieter" last="Verboven">Pieter Verboven</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Xinyou" sort="Yin, Xinyou" uniqKey="Yin X" first="Xinyou" last="Yin">Xinyou Yin</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Struik, Paul C" sort="Struik, Paul C" uniqKey="Struik P" first="Paul C." last="Struik">Paul C. Struik</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nicolai, Bart M" sort="Nicolai, Bart M" uniqKey="Nicolai B" first="Bart M." last="Nicolaï">Bart M. Nicolaï</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23144870</idno>
<idno type="pmc">3492360</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492360</idno>
<idno type="RBID">PMC:3492360</idno>
<idno type="doi">10.1371/journal.pone.0048376</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000205</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Microscale Model for Combined CO
<sub>2</sub>
Diffusion and Photosynthesis in Leaves</title>
<author>
<name sortKey="Ho, Quang Tri" sort="Ho, Quang Tri" uniqKey="Ho Q" first="Quang Tri" last="Ho">Quang Tri Ho</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verboven, Pieter" sort="Verboven, Pieter" uniqKey="Verboven P" first="Pieter" last="Verboven">Pieter Verboven</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Xinyou" sort="Yin, Xinyou" uniqKey="Yin X" first="Xinyou" last="Yin">Xinyou Yin</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Struik, Paul C" sort="Struik, Paul C" uniqKey="Struik P" first="Paul C." last="Struik">Paul C. Struik</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nicolai, Bart M" sort="Nicolai, Bart M" uniqKey="Nicolai B" first="Bart M." last="Nicolaï">Bart M. Nicolaï</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Transport of CO
<sub>2</sub>
in leaves was investigated by combining a 2-D, microscale CO
<sub>2</sub>
transport model with photosynthesis kinetics in wheat (
<italic>Triticum aestivum</italic>
L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO
<sub>2.</sub>
The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO
<sub>2</sub>
levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO
<sub>2</sub>
concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO
<sub>2</sub>
diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Flexas, J" uniqKey="Flexas J">J Flexas</name>
</author>
<author>
<name sortKey="Diaz Espejo, A" uniqKey="Diaz Espejo A">A Diaz-Espejo</name>
</author>
<author>
<name sortKey="Galmes, J" uniqKey="Galmes J">J Galmes</name>
</author>
<author>
<name sortKey="Kaldenhoff, R" uniqKey="Kaldenhoff R">R Kaldenhoff</name>
</author>
<author>
<name sortKey="Medrano, H" uniqKey="Medrano H">H Medrano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flexas, J" uniqKey="Flexas J">J Flexas</name>
</author>
<author>
<name sortKey="Ribas Carb, M" uniqKey="Ribas Carb M">M Ribas-Carbό</name>
</author>
<author>
<name sortKey="Diaz Espejo, A" uniqKey="Diaz Espejo A">A Diaz-Espejo</name>
</author>
<author>
<name sortKey="Galmes, J" uniqKey="Galmes J">J Galmes</name>
</author>
<author>
<name sortKey="Medrano, H" uniqKey="Medrano H">H Medrano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tholen, D" uniqKey="Tholen D">D Tholen</name>
</author>
<author>
<name sortKey="Zhu, X G" uniqKey="Zhu X">X-G Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
<author>
<name sortKey="Sharkey, Td" uniqKey="Sharkey T">TD Sharkey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernacchi, Cj" uniqKey="Bernacchi C">CJ Bernacchi</name>
</author>
<author>
<name sortKey="Portis, Ar" uniqKey="Portis A">AR Portis</name>
</author>
<author>
<name sortKey="Nakano, H" uniqKey="Nakano H">H Nakano</name>
</author>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Long, Sp" uniqKey="Long S">SP Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goudriaan, J" uniqKey="Goudriaan J">J Goudriaan</name>
</author>
<author>
<name sortKey="Van Laar, Hh" uniqKey="Van Laar H">HH van Laar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bongi, G" uniqKey="Bongi G">G Bongi</name>
</author>
<author>
<name sortKey="Loreto, F" uniqKey="Loreto F">F Loreto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Marco, G" uniqKey="Di Marco G">G Di Marco</name>
</author>
<author>
<name sortKey="Manes, F" uniqKey="Manes F">F Manes</name>
</author>
<author>
<name sortKey="Tricoli, D" uniqKey="Tricoli D">D Tricoli</name>
</author>
<author>
<name sortKey="Vitale, E" uniqKey="Vitale E">E Vitale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harley, Pc" uniqKey="Harley P">PC Harley</name>
</author>
<author>
<name sortKey="Loreto, F" uniqKey="Loreto F">F Loreto</name>
</author>
<author>
<name sortKey="Di Marco, G" uniqKey="Di Marco G">G Di Marco</name>
</author>
<author>
<name sortKey="Sharkey, Td" uniqKey="Sharkey T">TD Sharkey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X Yin</name>
</author>
<author>
<name sortKey="Struik, Pc" uniqKey="Struik P">PC Struik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loreto, F" uniqKey="Loreto F">F Loreto</name>
</author>
<author>
<name sortKey="Harley, Pc" uniqKey="Harley P">PC Harley</name>
</author>
<author>
<name sortKey="Di Marco, G" uniqKey="Di Marco G">G Di Marco</name>
</author>
<author>
<name sortKey="Sharkey, Td" uniqKey="Sharkey T">TD Sharkey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Setchell, Ba" uniqKey="Setchell B">BA Setchell</name>
</author>
<author>
<name sortKey="Hudson, Gs" uniqKey="Hudson G">GS Hudson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Hudson, Gs" uniqKey="Hudson G">GS Hudson</name>
</author>
<author>
<name sortKey="Andrews, Tj" uniqKey="Andrews T">TJ Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X Yin</name>
</author>
<author>
<name sortKey="Struik, Pc" uniqKey="Struik P">PC Struik</name>
</author>
<author>
<name sortKey="Romero, P" uniqKey="Romero P">P Romero</name>
</author>
<author>
<name sortKey="Harbinson, J" uniqKey="Harbinson J">J Harbinson</name>
</author>
<author>
<name sortKey="Evers, Jb" uniqKey="Evers J">JB Evers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Centritto, M" uniqKey="Centritto M">M Centritto</name>
</author>
<author>
<name sortKey="Loreto, F" uniqKey="Loreto F">F Loreto</name>
</author>
<author>
<name sortKey="Chartzoulakis, K" uniqKey="Chartzoulakis K">K Chartzoulakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Kaldenhoff, R" uniqKey="Kaldenhoff R">R Kaldenhoff</name>
</author>
<author>
<name sortKey="Genty, B" uniqKey="Genty B">B Genty</name>
</author>
<author>
<name sortKey="Terashima, I" uniqKey="Terashima I">I Terashima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tholen, D" uniqKey="Tholen D">D Tholen</name>
</author>
<author>
<name sortKey="Boom, C" uniqKey="Boom C">C Boom</name>
</author>
<author>
<name sortKey="Noguchi, K" uniqKey="Noguchi K">K Noguchi</name>
</author>
<author>
<name sortKey="Ueda, S" uniqKey="Ueda S">S Ueda</name>
</author>
<author>
<name sortKey="Katase, T" uniqKey="Katase T">T Katase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terashima, I" uniqKey="Terashima I">I Terashima</name>
</author>
<author>
<name sortKey="Hanba, Yt" uniqKey="Hanba Y">YT Hanba</name>
</author>
<author>
<name sortKey="Tholen, D" uniqKey="Tholen D">D Tholen</name>
</author>
<author>
<name sortKey="Niinemets, U" uniqKey="Niinemets U">U Niinemets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vesala, T" uniqKey="Vesala T">T Vesala</name>
</author>
<author>
<name sortKey="Ahonen, T" uniqKey="Ahonen T">T Ahonen</name>
</author>
<author>
<name sortKey="Hari, P" uniqKey="Hari P">P Hari</name>
</author>
<author>
<name sortKey="Krissinel, E" uniqKey="Krissinel E">E Krissinel</name>
</author>
<author>
<name sortKey="Shokhirev, N" uniqKey="Shokhirev N">N Shokhirev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aalto, T" uniqKey="Aalto T">T Aalto</name>
</author>
<author>
<name sortKey="Juurola, E" uniqKey="Juurola E">E Juurola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uehlein, N" uniqKey="Uehlein N">N Uehlein</name>
</author>
<author>
<name sortKey="Otto, B" uniqKey="Otto B">B Otto</name>
</author>
<author>
<name sortKey="Hanson, Dt" uniqKey="Hanson D">DT Hanson</name>
</author>
<author>
<name sortKey="Fischer, M" uniqKey="Fischer M">M Fischer</name>
</author>
<author>
<name sortKey="Mcdowell, N" uniqKey="Mcdowell N">N McDowell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Qt" uniqKey="Ho Q">QT Ho</name>
</author>
<author>
<name sortKey="Verboven, P" uniqKey="Verboven P">P Verboven</name>
</author>
<author>
<name sortKey="Mebatsion, Hk" uniqKey="Mebatsion H">HK Mebatsion</name>
</author>
<author>
<name sortKey="Verlinden, Be" uniqKey="Verlinden B">BE Verlinden</name>
</author>
<author>
<name sortKey="Vandewalle, S" uniqKey="Vandewalle S">S Vandewalle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Qt" uniqKey="Ho Q">QT Ho</name>
</author>
<author>
<name sortKey="Verboven, P" uniqKey="Verboven P">P Verboven</name>
</author>
<author>
<name sortKey="Verlinden, Be" uniqKey="Verlinden B">BE Verlinden</name>
</author>
<author>
<name sortKey="Herremans, E" uniqKey="Herremans E">E Herremans</name>
</author>
<author>
<name sortKey="Wevers, M" uniqKey="Wevers M">M Wevers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Qt" uniqKey="Ho Q">QT Ho</name>
</author>
<author>
<name sortKey="Verboven, P" uniqKey="Verboven P">P Verboven</name>
</author>
<author>
<name sortKey="Verlinden, Be" uniqKey="Verlinden B">BE Verlinden</name>
</author>
<author>
<name sortKey="Nicolai, Bm" uniqKey="Nicolai B">BM Nicolaï</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Berry, Ja" uniqKey="Berry J">JA Berry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leuning, R" uniqKey="Leuning R">R Leuning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
<author>
<name sortKey="Heinrich Lieth, J" uniqKey="Heinrich Lieth J">J Heinrich Lieth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharkey, Td" uniqKey="Sharkey T">TD Sharkey</name>
</author>
<author>
<name sortKey="Bernachhi, Cj" uniqKey="Bernachhi C">CJ Bernachhi</name>
</author>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
<author>
<name sortKey="Singsaas, El" uniqKey="Singsaas E">EL Singsaas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X Yin</name>
</author>
<author>
<name sortKey="Struik, Pc" uniqKey="Struik P">PC Struik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morison, Jil" uniqKey="Morison J">JIL Morison</name>
</author>
<author>
<name sortKey="Jarvis, Pg" uniqKey="Jarvis P">PG Jarvis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Fromm, J" uniqKey="Fromm J">J Fromm</name>
</author>
<author>
<name sortKey="Schmidhalter, U" uniqKey="Schmidhalter U">U Schmidhalter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parkhurst, Df" uniqKey="Parkhurst D">DF Parkhurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parkhurst, Df" uniqKey="Parkhurst D">DF Parkhurst</name>
</author>
<author>
<name sortKey="Mott, Ka" uniqKey="Mott K">KA Mott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dreyer, E" uniqKey="Dreyer E">E Dreyer</name>
</author>
<author>
<name sortKey="Le Roux, X" uniqKey="Le Roux X">X Le Roux</name>
</author>
<author>
<name sortKey="Montpied, P" uniqKey="Montpied P">P Montpied</name>
</author>
<author>
<name sortKey="Daudet, Af" uniqKey="Daudet A">AF Daudet</name>
</author>
<author>
<name sortKey="Masson, F" uniqKey="Masson F">F Masson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medlyn, Be" uniqKey="Medlyn B">BE Medlyn</name>
</author>
<author>
<name sortKey="Dreyer, E" uniqKey="Dreyer E">E Dreyer</name>
</author>
<author>
<name sortKey="Ellsworth, D" uniqKey="Ellsworth D">D Ellsworth</name>
</author>
<author>
<name sortKey="Forstreuter, M" uniqKey="Forstreuter M">M Forstreuter</name>
</author>
<author>
<name sortKey="Harley, Pc" uniqKey="Harley P">PC Harley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Archontoulis, Sv" uniqKey="Archontoulis S">SV Archontoulis</name>
</author>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X Yin</name>
</author>
<author>
<name sortKey="Vos, J" uniqKey="Vos J">J Vos</name>
</author>
<author>
<name sortKey="Danalatos, Ng" uniqKey="Danalatos N">NG Danalatos</name>
</author>
<author>
<name sortKey="Struik, Pc" uniqKey="Struik P">PC Struik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Pury, Dgg" uniqKey="De Pury D">DGG De Pury</name>
</author>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badger, Mr" uniqKey="Badger M">MR Badger</name>
</author>
<author>
<name sortKey="Collatz, Gj" uniqKey="Collatz G">GJ Collatz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gillon, Js" uniqKey="Gillon J">JS Gillon</name>
</author>
<author>
<name sortKey="Yakir, D" uniqKey="Yakir D">D Yakir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fabre, N" uniqKey="Fabre N">N Fabre</name>
</author>
<author>
<name sortKey="Reiter, Im" uniqKey="Reiter I">IM Reiter</name>
</author>
<author>
<name sortKey="Becuwe Linka, N" uniqKey="Becuwe Linka N">N Becuwe-Linka</name>
</author>
<author>
<name sortKey="Genty, B" uniqKey="Genty B">B Genty</name>
</author>
<author>
<name sortKey="Rumeau, D" uniqKey="Rumeau D">D Rumeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutknecht, J" uniqKey="Gutknecht J">J Gutknecht</name>
</author>
<author>
<name sortKey="Bisson, Ma" uniqKey="Bisson M">MA Bisson</name>
</author>
<author>
<name sortKey="Tosteson, Fc" uniqKey="Tosteson F">FC Tosteson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terashima, I" uniqKey="Terashima I">I Terashima</name>
</author>
<author>
<name sortKey="Hanba, Yt" uniqKey="Hanba Y">YT Hanba</name>
</author>
<author>
<name sortKey="Tazoe, Y" uniqKey="Tazoe Y">Y Tazoe</name>
</author>
<author>
<name sortKey="Vyas, P" uniqKey="Vyas P">P Vyas</name>
</author>
<author>
<name sortKey="Yano, S" uniqKey="Yano S">S Yano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Vogelmann, Tc" uniqKey="Vogelmann T">TC Vogelmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Vogelmann, Tc" uniqKey="Vogelmann T">TC Vogelmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colman, B" uniqKey="Colman B">B Colman</name>
</author>
<author>
<name sortKey="Espie, Gs" uniqKey="Espie G">GS Espie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lloyd, J" uniqKey="Lloyd J">J Lloyd</name>
</author>
<author>
<name sortKey="Syvertsen, Jp" uniqKey="Syvertsen J">JP Syvertsen</name>
</author>
<author>
<name sortKey="Kriedemann, Pe" uniqKey="Kriedemann P">PE Kriedemann</name>
</author>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syvertsen, Jp" uniqKey="Syvertsen J">JP Syvertsen</name>
</author>
<author>
<name sortKey="Lloyd, J" uniqKey="Lloyd J">J Lloyd</name>
</author>
<author>
<name sortKey="Mcconchie, C" uniqKey="Mcconchie C">C McConchie</name>
</author>
<author>
<name sortKey="Kriedemann, Pe" uniqKey="Kriedemann P">PE Kriedemann</name>
</author>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pieruschka, R" uniqKey="Pieruschka R">R Pieruschka</name>
</author>
<author>
<name sortKey="Schurr, U" uniqKey="Schurr U">U Schurr</name>
</author>
<author>
<name sortKey="Jahnke, S" uniqKey="Jahnke S">S Jahnke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morison, Jil" uniqKey="Morison J">JIL Morison</name>
</author>
<author>
<name sortKey="Gallouet, E" uniqKey="Gallouet E">E Gallouet</name>
</author>
<author>
<name sortKey="Lawson, T" uniqKey="Lawson T">T Lawson</name>
</author>
<author>
<name sortKey="Cornic, G" uniqKey="Cornic G">G Cornic</name>
</author>
<author>
<name sortKey="Herbin, R" uniqKey="Herbin R">R Herbin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morison, Jil" uniqKey="Morison J">JIL Morison</name>
</author>
<author>
<name sortKey="Lawson, T" uniqKey="Lawson T">T Lawson</name>
</author>
<author>
<name sortKey="Cornic, G" uniqKey="Cornic G">G Cornic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuroki, S" uniqKey="Kuroki S">S Kuroki</name>
</author>
<author>
<name sortKey="Oshita, S" uniqKey="Oshita S">S Oshita</name>
</author>
<author>
<name sortKey="Sotome, I" uniqKey="Sotome I">I Sotome</name>
</author>
<author>
<name sortKey="Kawagoe, Y" uniqKey="Kawagoe Y">Y Kawagoe</name>
</author>
<author>
<name sortKey="Seo, Y" uniqKey="Seo Y">Y Seo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendoza, F" uniqKey="Mendoza F">F Mendoza</name>
</author>
<author>
<name sortKey="Verboven, P" uniqKey="Verboven P">P Verboven</name>
</author>
<author>
<name sortKey="Mebatsion, Hk" uniqKey="Mebatsion H">HK Mebatsion</name>
</author>
<author>
<name sortKey="Kerckhofs, G" uniqKey="Kerckhofs G">G Kerckhofs</name>
</author>
<author>
<name sortKey="Wevers, M" uniqKey="Wevers M">M Wevers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verboven, P" uniqKey="Verboven P">P Verboven</name>
</author>
<author>
<name sortKey="Kerckhofs, G" uniqKey="Kerckhofs G">G Kerckhofs</name>
</author>
<author>
<name sortKey="Mebatsion, Hk" uniqKey="Mebatsion H">HK Mebatsion</name>
</author>
<author>
<name sortKey="Ho, Qt" uniqKey="Ho Q">QT Ho</name>
</author>
<author>
<name sortKey="Temst, K" uniqKey="Temst K">K Temst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaiser, H" uniqKey="Kaiser H">H Kaiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terashima, I" uniqKey="Terashima I">I Terashima</name>
</author>
<author>
<name sortKey="Fujita, T" uniqKey="Fujita T">T Fujita</name>
</author>
<author>
<name sortKey="Inoue, T" uniqKey="Inoue T">T Inoue</name>
</author>
<author>
<name sortKey="Chow, Ws" uniqKey="Chow W">WS Chow</name>
</author>
<author>
<name sortKey="Oguchi, R" uniqKey="Oguchi R">R Oguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verboven, P" uniqKey="Verboven P">P Verboven</name>
</author>
<author>
<name sortKey="Pedersen, O" uniqKey="Pedersen O">O Pedersen</name>
</author>
<author>
<name sortKey="Herremans, E" uniqKey="Herremans E">E Herremans</name>
</author>
<author>
<name sortKey="Ho, Qt" uniqKey="Ho Q">QT Ho</name>
</author>
<author>
<name sortKey="Nicolai, Bm" uniqKey="Nicolai B">BM Nicolaï</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terashima, I" uniqKey="Terashima I">I Terashima</name>
</author>
<author>
<name sortKey="Saeki, T" uniqKey="Saeki T">T Saeki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogelmann, Tc" uniqKey="Vogelmann T">TC Vogelmann</name>
</author>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharkey, Td" uniqKey="Sharkey T">TD Sharkey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X Yin</name>
</author>
<author>
<name sortKey="Van Oijen, M" uniqKey="Van Oijen M">M van Oijen</name>
</author>
<author>
<name sortKey="Schapendonk, Ahcm" uniqKey="Schapendonk A">AHCM Schapendonk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rezvani Moghaddam, P" uniqKey="Rezvani Moghaddam P">P Rezvani Moghaddam</name>
</author>
<author>
<name sortKey="Wilman, D" uniqKey="Wilman D">D Wilman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dupuy, L" uniqKey="Dupuy L">L Dupuy</name>
</author>
<author>
<name sortKey="Mackenzie, J" uniqKey="Mackenzie J">J Mackenzie</name>
</author>
<author>
<name sortKey="Haseloff, J" uniqKey="Haseloff J">J Haseloff</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="James, Ra" uniqKey="James R">RA James</name>
</author>
<author>
<name sortKey="Munns, R" uniqKey="Munns R">R Munns</name>
</author>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Trejo, C" uniqKey="Trejo C">C Trejo</name>
</author>
<author>
<name sortKey="Miller, C" uniqKey="Miller C">C Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warren, Cr" uniqKey="Warren C">CR Warren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Genty, B" uniqKey="Genty B">B Genty</name>
</author>
<author>
<name sortKey="Briantais, J" uniqKey="Briantais J">J Briantais</name>
</author>
<author>
<name sortKey="Baker, N" uniqKey="Baker N">N Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geers, C" uniqKey="Geers C">C Geers</name>
</author>
<author>
<name sortKey="Gros, G" uniqKey="Gros G">G Gros</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23144870</article-id>
<article-id pub-id-type="pmc">3492360</article-id>
<article-id pub-id-type="publisher-id">PONE-D-12-09782</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0048376</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Plant Biochemistry</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Ecology</subject>
<subj-group>
<subject>Ecological Metrics</subject>
<subj-group>
<subject>Photosynthetic Efficiency</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Plant Ecology</subject>
<subj-group>
<subject>Plant-Environment Interactions</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Biochemistry</subject>
<subj-group>
<subject>Photosynthesis</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Plant Ecology</subject>
<subj-group>
<subject>Plant-Environment Interactions</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Plants</subject>
<subj-group>
<subject>Leafs</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Plant Physiology</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>A Microscale Model for Combined CO
<sub>2</sub>
Diffusion and Photosynthesis in Leaves</article-title>
<alt-title alt-title-type="running-head">CO
<sub>2</sub>
Diffusion and Photosynthesis in Leaves</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ho</surname>
<given-names>Quang Tri</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Verboven</surname>
<given-names>Pieter</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yin</surname>
<given-names>Xinyou</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Struik</surname>
<given-names>Paul C.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nicolaï</surname>
<given-names>Bart M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Leuven, Belgium</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Bauerle</surname>
<given-names>William</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Colorado State University, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>bart.nicolai@biw.kuleuven.be</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
Wageningen based authors have contributed to this work within the programme BioSolar Cells. Quang Tri Ho is a postdoctoral fellow of the Research Fund Flanders (FWO Vlaanderen). This does not alter the authors‚ adherence to all the PLOS ONE policies on sharing data and materials.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: BMN QTH PV XY PCS. Performed the experiments: XY PCS. Analyzed the data: QTH PV BMN. Contributed reagents/materials/analysis tools: BMN QTH PV XY PCS. Wrote the paper: BMN QTH PV XY PCS.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>11</month>
<year>2012</year>
</pub-date>
<volume>7</volume>
<issue>11</issue>
<elocation-id>e48376</elocation-id>
<history>
<date date-type="received">
<day>6</day>
<month>4</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>9</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-year>2012</copyright-year>
<copyright-holder>Ho et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Transport of CO
<sub>2</sub>
in leaves was investigated by combining a 2-D, microscale CO
<sub>2</sub>
transport model with photosynthesis kinetics in wheat (
<italic>Triticum aestivum</italic>
L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO
<sub>2.</sub>
The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO
<sub>2</sub>
levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO
<sub>2</sub>
concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO
<sub>2</sub>
diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure.</p>
</abstract>
<funding-group>
<funding-statement>The authors wish to thank the Research Council of the K.U. Leuven (OT 08/023), the Research Fund Flanders (project G.0603.08), and the Institute for the Promotion of Innovation by Science and Technology in Flanders (project IWT-050633) for financial support. Wageningen based authors have contributed to this work within the programme BioSolar Cells. Quang Tri Ho is a postdoctoral fellow of the Research Fund Flanders (FWO Vlaanderen). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="15"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Photosynthesis is amongst the most important metabolic processes in plants. During photosynthesis, CO
<sub>2</sub>
diffuses from the atmosphere into the leaf and finally to the site of carboxylation in the chloroplast stroma
<xref ref-type="bibr" rid="pone.0048376-Flexas1">[1]</xref>
. There is increasing evidence that diffusive resistances in the leaf are a limiting factor for photosynthesis
<xref ref-type="bibr" rid="pone.0048376-Flexas2">[2]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
.</p>
<p>Fick's first law of diffusion has been used to describe the net CO
<sub>2</sub>
flux from the external environment through the intercellular space towards the cells
<xref ref-type="bibr" rid="pone.0048376-Farquhar1">[4]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Bernacchi1">[5]</xref>
. It postulates that gas moves from places of high concentration to places of low concentration with a rate proportional to the gradient in concentration. The stomatal conductance (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e001.jpg"></inline-graphic>
</inline-formula>
) determines the gas exchange from the phyllosphere into the intercellular air space. The stomatal conductance for CO
<sub>2</sub>
has been estimated based on the water vapour release from the leaf given the fact that water and CO
<sub>2</sub>
share the same gaseous diffusion pathway
<xref ref-type="bibr" rid="pone.0048376-Goudriaan1">[6]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer1">[7]</xref>
. The mesophyll conductance (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e002.jpg"></inline-graphic>
</inline-formula>
) is defined as the conductance for the transfer of CO
<sub>2</sub>
from the intercellular air space (
<italic>C</italic>
<sub>i</sub>
) to the site of carboxylation in the mesophyll cells (
<italic>C</italic>
<sub>c</sub>
). Both
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e003.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e004.jpg"></inline-graphic>
</inline-formula>
are apparent parameters rather than physical constants as they implicitly incorporate microstructural and biochemical features of the tissue, cells and organelles that are involved in the gas transport mechanism.</p>
<p>Several methods have been developed to estimate
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e005.jpg"></inline-graphic>
</inline-formula>
. The most common method is to use a combination of gas exchange and chlorophyll fluorescence measurements
<xref ref-type="bibr" rid="pone.0048376-Bongi1">[8]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-DiMarco1">[9]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Harley1">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Evans1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin1">[12]</xref>
. It has been shown that
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e006.jpg"></inline-graphic>
</inline-formula>
is sufficiently small to significantly decrease
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e007.jpg"></inline-graphic>
</inline-formula>
, relative to
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e008.jpg"></inline-graphic>
</inline-formula>
, thereby limiting photosynthesis
<xref ref-type="bibr" rid="pone.0048376-Flexas1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Harley1">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Loreto1">[13]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Evans2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer2">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer3">[16]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
. Many physiological and leaf microstructural features have been found to correlate with
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e009.jpg"></inline-graphic>
</inline-formula>
, including photosynthetic potential
<xref ref-type="bibr" rid="pone.0048376-Loreto1">[13]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer4">[18]</xref>
, stomatal conductance
<xref ref-type="bibr" rid="pone.0048376-Loreto1">[13]</xref>
, and mesophyll surface area exposed to intercellular air spaces
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer4">[18]</xref>
. Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
showed that the resistances of the cell wall and chloroplast envelope were the most important cellular limitations to photosynthesis. Further, in early reports (e.g.,
<xref ref-type="bibr" rid="pone.0048376-Loreto1">[13]</xref>
)
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e010.jpg"></inline-graphic>
</inline-formula>
was considered constant for a given leaf at a given temperature. Recent evidence, however, suggests that
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e011.jpg"></inline-graphic>
</inline-formula>
is variable
<xref ref-type="bibr" rid="pone.0048376-Centritto1">[19]</xref>
, and a response of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e012.jpg"></inline-graphic>
</inline-formula>
to CO
<sub>2</sub>
and irradiance has indeed been found, resembling the response of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e013.jpg"></inline-graphic>
</inline-formula>
to CO
<sub>2</sub>
and irradiance
<xref ref-type="bibr" rid="pone.0048376-Flexas1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
. The kinetics of change of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e014.jpg"></inline-graphic>
</inline-formula>
in response to CO
<sub>2</sub>
have been demonstrated by observing the rate of change of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e015.jpg"></inline-graphic>
</inline-formula>
for different environmental variables, but a general mechanistic basis of the response has been difficult to formulate
<xref ref-type="bibr" rid="pone.0048376-Flexas2">[2]</xref>
. This might be due to the fact that Fick's first law of diffusion does not account for the spatial distribution of the gas exchange in relation to microstructural features such as cell arrangement, size or cell wall thickness. Moreover, chloroplast movement in the cytoplasm, carbonic anhydrase (CA) activity in different cellular organelles and the amount and role of cooporins in the membranes may contribute in facilitating CO
<sub>2</sub>
uptake
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Tholen2">[21]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Terashima1">[22]</xref>
.</p>
<p>Correlations of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e016.jpg"></inline-graphic>
</inline-formula>
with leaf microstructural properties have not always been clear
<xref ref-type="bibr" rid="pone.0048376-Flexas2">[2]</xref>
. One reason is probably that mostly single structural properties were considered in these studies described by simple parameters, such as leaf porosity or leaf mass per area. However, leaf microstructure is a complex assembly of cells of varying sizes and with tortuous connections, interlaced with distorted intercellular spaces that will affect the actual diffusion pathway in the leaf. Insight in the relation between these microstructural features and photosynthesis requires a detailed model that incorporates the microstructural geometry of the leaf. Microscale exchange of CO
<sub>2</sub>
in leaves has been investigated using theoretical models
<xref ref-type="bibr" rid="pone.0048376-Vesala1">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Aalto1">[24]</xref>
. In these studies, tissue models were constructed by means of basic geometrical elements such as spheres and cylinders. However, these models were relatively crude compared to the actual irregular microstructure of the tissue. Also, they did not take into account the exchange barriers of biological membranes which recently were shown to be important
<xref ref-type="bibr" rid="pone.0048376-Uehlein1">[25]</xref>
. Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
very recently developed a 3-D model for gas transport in a single generic C
<sub>3</sub>
mesophyll cell. The model incorporated reaction diffusion equations for CO
<sub>2</sub>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e017.jpg"></inline-graphic>
</inline-formula>
and included all cellular microstructural features of the CO
<sub>2</sub>
transport pathway and associated reactions. However, being a model for CO
<sub>2</sub>
transport within a single cell, it does not consider potential resistances within the intercellular space and, more importantly, any additional resistances due to cells being attached to each other and possibly reducing the exchange surface for CO
<sub>2</sub>
considerably.</p>
<p>Recently, a mathematical microscale gas exchange model was developed to describe gas movements in fruit tissue through the intercellular space and cells by the authors
<xref ref-type="bibr" rid="pone.0048376-Ho1">[26]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Ho2">[27]</xref>
. The gas exchange model was based on the actual microscale geometry of the fruit tissue and accounted for both gas diffusion as well as respiration kinetics. The model was used to evaluate the effect of ambient conditions, fruit size and maturity on the intracellular O
<sub>2</sub>
and CO
<sub>2</sub>
concentrations in fruit in relation to the occurrence of anaerobis via
<italic>in silico</italic>
analysis
<xref ref-type="bibr" rid="pone.0048376-Ho2">[27]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Ho3">[28]</xref>
. In principle this model could also be used to describe microscale gas exchange in leaf tissue if the rate equations for leaf photosynthesis would be incorporated. The latter have been constructed by Farquhar, von Caemmerer and Berry
<xref ref-type="bibr" rid="pone.0048376-Farquhar2">[29]</xref>
– the so-called FvCB model – which has been widely used for describing C
<sub>3</sub>
photosynthesis. This biochemical model has also been coupled to a simple (lumped) CO
<sub>2</sub>
exchange model
<xref ref-type="bibr" rid="pone.0048376-Leuning1">[30]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Kim1">[31]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Sharkey1">[32]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin3">[33]</xref>
. Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
have recently shown how to use combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of the FvCB model.</p>
<p>The objectives of this article were (i) to develop a microscale model for CO
<sub>2</sub>
exchange through the leaf by coupling a detailed biophysical model of gas diffusion that incorporates the actual microstructure of the leaf to the biochemical FvCB model of photosynthesis; (ii) to validate the model with independent data, (iii) to quantify the importance of the different pathways of gas exchange; and (iv) to analyze the response of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e018.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e019.jpg"></inline-graphic>
</inline-formula>
to environmental factors such as CO
<sub>2</sub>
and irradiance. Wheat (
<italic>Triticum aestivum</italic>
L.) leaf was chosen as a model system.</p>
</sec>
<sec id="s2">
<title>Results</title>
<sec id="s2a">
<title>Microscopic gas concentration distribution</title>
<p>Mesophyll tissue contains a loose arrangement of cells in a large intercellular space. However, cells inevitably touch each other, thereby reducing the gas exchange surface area and introducing an additional, local resistance to CO
<sub>2</sub>
transport. This would translate into local CO
<sub>2</sub>
concentration gradients. We decided to carry out some simulations to test this hypothesis with a microscale model that combines a diffusion model for CO
<sub>2</sub>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e020.jpg"></inline-graphic>
</inline-formula>
with the FvCB model for CO
<sub>2</sub>
fixation in the chloroplasts and incorporates the actual 2-D leaf tissue microstructure.</p>
<p>The CO
<sub>2</sub>
distribution computed by the microscale model for the wheat leaf corresponding to ambient conditions of 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
, 1000 µmol m
<sup>−2</sup>
s
<sup>−1 </sup>
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e021.jpg"></inline-graphic>
</inline-formula>
and 25°C is shown in
<xref ref-type="fig" rid="pone-0048376-g001">Figure 1</xref>
. The meaning and units of all symbols are given in
<xref ref-type="table" rid="pone-0048376-t001">Table 1</xref>
. As expected, the CO
<sub>2</sub>
concentration in the pores is considerably higher than inside the mesophyll cells. However, the concentration in the intercellular space is definitely not uniform, probably due to the relatively compact mesophyll tissue microstructure of wheat leaves compared to that of other species. Further, relatively large CO
<sub>2</sub>
gradients can be observed within cell clusters. For this particular mesophyll tissue, the resistance to CO
<sub>2</sub>
transport is clearly not negligible.</p>
<fig id="pone-0048376-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Computed CO
<sub>2</sub>
distribution in wheat leaf.</title>
<p>The ambient conditions were 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e022.jpg"></inline-graphic>
</inline-formula>
 = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e023.jpg"></inline-graphic>
</inline-formula>
 = 25°C. Concentrations are expressed in µmol m
<sup>−3</sup>
.</p>
</caption>
<graphic xlink:href="pone.0048376.g001"></graphic>
</fig>
<table-wrap id="pone-0048376-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.t001</object-id>
<label>Table 1</label>
<caption>
<title>List of model variables, their symbols and definitions.</title>
</caption>
<alternatives>
<graphic id="pone-0048376-t001-1" xlink:href="pone.0048376.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Variable</td>
<td align="left" rowspan="1" colspan="1">Definition</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e024.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Gross photosynthesis rate (µmol CO
<sub>2</sub>
m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e025.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Gross volumetric photosynthesis rate of chloroplast (µmol CO
<sub>2</sub>
m
<sup>−3</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e026.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Measured net photosynthesis rate (µmol CO
<sub>2</sub>
m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e027.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Mean net photosynthesis rate computed from microscale model (µmol CO
<sub>2</sub>
m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e028.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Net hydration of CO
<sub>2</sub>
to
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e029.jpg"></inline-graphic>
</inline-formula>
(mol m
<sup>−3</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e030.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Ambient air CO
<sub>2</sub>
concentration (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e031.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Mesophyll CO
<sub>2</sub>
concentration (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e032.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">HCO
<sub>3</sub>
<sup></sup>
concentration of the mesophyll (mol m
<sup>−3</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e033.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Intercellular CO
<sub>2</sub>
concentration (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e034.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
concentration in phase
<italic>j</italic>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e035.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Measured mesophyll CO
<sub>2</sub>
concentration using combined gas exchange and chlorophyll fluorescence measurements (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e036.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Measured intercellular CO
<sub>2</sub>
concentration (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e037.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Mean mesophyll CO
<sub>2</sub>
concentration computed from microscale model (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e038.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Mean intercellular CO
<sub>2</sub>
concentration computed from microscale model (µmol mol
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e039.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Diffusivity of phase
<italic>j</italic>
(m
<sup>2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e040.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Diffusivity of CO
<sub>2</sub>
in the mesophyll cytoplasm (m
<sup>2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e041.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
diffusivity of epidermis layer (m
<sup>2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e042.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
diffusivity of cell wall (m
<sup>2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e043.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Diffusivity of HCO
<sub>3</sub>
<sup></sup>
in the mesophyll cytoplasm (m
<sup>2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>d</italic>
</td>
<td align="left" rowspan="1" colspan="1">Average thickness of tissue (m)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e044.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">The fraction of chloroplasts of the leaf</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e045.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">The fraction of cytosols of the leaf</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e046.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Stomatal conductance (mol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e047.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Mesophyll conductance (mol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e048.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Measured mesophyll conductance using combined gas exchange and chlorophyll fluorescence measurements (mol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e049.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Computed mesophyll conductance from
<xref ref-type="disp-formula" rid="pone.0048376.e249">Eq. 14</xref>
(mol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e050.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Henry's constant for CO
<sub>2</sub>
(molm
<sup>−3</sup>
liquid) (mol m
<sup>−3</sup>
gas)
<sup>−1</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">[
<italic>H
<sup>+</sup>
</italic>
]</td>
<td align="left" rowspan="1" colspan="1">H
<sup>+</sup>
concentration (mol L
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e051.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Photon flux density incident to leaves (µmol photon m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>J</italic>
</td>
<td align="left" rowspan="1" colspan="1">Rate of potential electron transport calculated from chlorophyll fluorescence measurements (µmol electron m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e052.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
hydration velocity constant (s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e053.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
dehydration velocity constant (s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e054.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Acid dissociation constant for H
<sub>2</sub>
CO
<sub>3</sub>
(mol L
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e055.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Michaelis-Menten constant of Rubisco for CO
<sub>2</sub>
(µmol mol
<sup>−1</sup>
or μbar)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e056.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Michaelis-Menten constant of Rubisco for O
<sub>2</sub>
(mbar)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>O
<sub>2</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Oxygen partial pressure (mbar)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e057.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
permeability of cell membrane (m s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>R</italic>
</td>
<td align="left" rowspan="1" colspan="1">Universal gas constant (8.314 J mol
<sup>−1</sup>
K
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e058.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Day respiration (i.e. respiratory CO
<sub>2</sub>
release other than by photorespiration) (µmol CO
<sub>2</sub>
m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e059.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Volumetric respiration rate (µmol CO
<sub>2</sub>
m
<sup>−3</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>s</italic>
</td>
<td align="left" rowspan="1" colspan="1">Slope factor for converting chlorophyll fluorescence-based PSII electron efficiency into
<italic>J</italic>
(−)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e060.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Relative CO
<sub>2</sub>
/O
<sub>2</sub>
specificity factor for Rubisco (mbar μbar
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>T
<sub>leaf</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Temperature of the leaf (K)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e061.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Rate of triose phosphate export from the chloroplast (µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>t</italic>
</td>
<td align="left" rowspan="1" colspan="1">Time (s)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e062.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Total mesophyll cells volume (m
<sup>3</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e063.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">Maximum rate of Rubisco activity-limited carboxylation (µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e064.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">The relative photosynthetic capacity at a depth
<italic>y</italic>
inside the leaf</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>w
<sub>c</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Rate of Rubisco activity-limited carboxylation (µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>w
<sub>j</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Rate of electron transport-limited carboxylation (µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>w
<sub>p</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Rate of TPU-limited carboxylation (µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>w</italic>
(
<italic>y</italic>
)</td>
<td align="left" rowspan="1" colspan="1">The width of the leaf at the depth
<italic>y</italic>
(m)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td align="left" rowspan="1" colspan="1">The depth of the leaf from adaxial surface (m)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e065.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
flux through the membrane (µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Γ</italic>
*</td>
<td align="left" rowspan="1" colspan="1">
<italic>C</italic>
<sub>c</sub>
-based CO
<sub>2</sub>
compensation point in the absence of
<italic>R
<sub>d</sub>
</italic>
(µmol mol
<sup>−1</sup>
or μbar)</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<p>The unit µmol mol
<sup>−1</sup>
for CO
<sub>2</sub>
concentration (often used in the FvCB model) was converted to µmol m
<sup>−3</sup>
for use in the gas diffusion model by multiplying with a factor
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e066.jpg"></inline-graphic>
</inline-formula>
for CO
<sub>2</sub>
concentration in the gas phase and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e067.jpg"></inline-graphic>
</inline-formula>
for CO
<sub>2</sub>
concentration of the mesophyll, respectively.
<italic>P</italic>
(Pa) is the total pressure of the ambient air,
<italic>R</italic>
(J mol
<sup>−1</sup>
K
<sup>−1</sup>
) is the universal gas constant and
<italic>T</italic>
(K) is the temperature.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>A detailed analysis of the calculated resistances of the different compartments of the leaf tissue is shown in
<xref ref-type="table" rid="pone-0048376-t002">Table 2</xref>
. The resistance of the chloroplast envelope contributed up to 11.43% of the total resistance. This suggests that the chloroplast envelope effectively contributes significantly to the resistance to CO
<sub>2</sub>
transport in the mesophyll cells, confirming the simulation results of Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
for single mesophyll cells. Microscale simulations with a lumped intracellular compartment (without distinguishing the individual chloroplasts or other organelles) have been additionally carried out (
<xref ref-type="supplementary-material" rid="pone.0048376.s001">Text S1</xref>
,
<xref ref-type="supplementary-material" rid="pone.0048376.s002">Figure S1</xref>
). These results showed that there was a good similarity in total gas flux between the lumped model and the one with the chloroplasts taken into account the resistance of the chloroplast envelope; the latter, however, predicted a
<italic>g
<sub>m</sub>
</italic>
that was 12.7% higher than that obtained with the lumped intracellular model. Apparently, the reduced resistance to CO
<sub>2</sub>
transport due to the position of the chloroplasts near the plasma membrane outweighs the increased resistance due to the double membrane of the chloroplasts compared to the lumped model. The modelled distribution of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e068.jpg"></inline-graphic>
</inline-formula>
along the depth of a typical leaf is shown in
<xref ref-type="fig" rid="pone-0048376-g002">Figure 2</xref>
. There is a decreasing trend at the abaxial side of the leaf. Also, there is a dip where there is a vascular bundle.</p>
<fig id="pone-0048376-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Distribution of the relative photosynthetic capacity along the depth of the wheat leaf computed from the modelled microscale geometry.</title>
</caption>
<graphic xlink:href="pone.0048376.g002"></graphic>
</fig>
<table-wrap id="pone-0048376-t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.t002</object-id>
<label>Table 2</label>
<caption>
<title>Resistance analysis of different compartments of the wheat leaf described in the model, for the CO
<sub>2</sub>
diffusion from ambient air to chloroplast stroma.</title>
</caption>
<alternatives>
<graphic id="pone-0048376-t002-2" xlink:href="pone.0048376.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="2" align="left" rowspan="1">Resistance</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">(m
<sup>2</sup>
s mol
<sup>−1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">(%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Epidermis</td>
<td align="left" rowspan="1" colspan="1">1.38</td>
<td align="left" rowspan="1" colspan="1">16.89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Intercellular space</td>
<td align="left" rowspan="1" colspan="1">2.54</td>
<td align="left" rowspan="1" colspan="1">31.10</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cell wall</td>
<td align="left" rowspan="1" colspan="1">1.89</td>
<td align="left" rowspan="1" colspan="1">23.05</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Plasma membrane</td>
<td align="left" rowspan="1" colspan="1">0.44</td>
<td align="left" rowspan="1" colspan="1">5.37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cytosol</td>
<td align="left" rowspan="1" colspan="1">0.52</td>
<td align="left" rowspan="1" colspan="1">6.38</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Chloroplast envelope</td>
<td align="left" rowspan="1" colspan="1">0.94</td>
<td align="left" rowspan="1" colspan="1">11.43</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Stroma</td>
<td align="left" rowspan="1" colspan="1">0.47</td>
<td align="left" rowspan="1" colspan="1">5.78</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total</td>
<td align="left" rowspan="1" colspan="1">8.18</td>
<td align="left" rowspan="1" colspan="1">100.00</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt102">
<p>The resistances were calculated by dividing the average concentration difference across compartments by the average flux expressed per unit of exposed leaf surface.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s2b">
<title>Photosynthesis in response to CO
<sub>2</sub>
concentration and model validation</title>
<p>In a next step, we investigated whether the microscale model was able to predict the measured response of leaf photosynthesis to the ambient CO
<sub>2</sub>
concentration in photorespiration conditions. The following convention for symbols is used further: macroscopic variables which were estimated from gas exchange and chlorophyll fluorescence experiments are denoted by a ‘∧’ symbol. Volume averaged variables calculated from the microscale model are overlined (see more details in
<xref ref-type="sec" rid="s4">Materials and Method</xref>
section).</p>
<p>Plots of the measured and simulated net photosynthesis rate at
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e069.jpg"></inline-graphic>
</inline-formula>
values from 50 to 1500 µmol mol
<sup>−1</sup>
at 1000 µmol m
<sup>−2</sup>
s
<sup>−1 </sup>
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e070.jpg"></inline-graphic>
</inline-formula>
and 21% O
<sub>2</sub>
are shown in
<xref ref-type="fig" rid="pone-0048376-g003">Figure 3</xref>
. A good agreement was found between measured and simulated data.
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e071.jpg"></inline-graphic>
</inline-formula>
rapidly increased at low
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e072.jpg"></inline-graphic>
</inline-formula>
concentrations but saturated at high CO
<sub>2</sub>
concentrations (
<xref ref-type="fig" rid="pone-0048376-g003">Figures 3A&3B</xref>
). The relationship between
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e073.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e074.jpg"></inline-graphic>
</inline-formula>
is shown in
<xref ref-type="fig" rid="pone-0048376-g003">Figures 3C&3D</xref>
. They are approximately equal at low CO
<sub>2</sub>
concentrations (<500 µmol mol
<sup>−1</sup>
), but at high CO
<sub>2</sub>
concentrations
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e075.jpg"></inline-graphic>
</inline-formula>
levels off. In
<xref ref-type="fig" rid="pone-0048376-g003">Figures 3E & 3F</xref>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e076.jpg"></inline-graphic>
</inline-formula>
is plotted as a function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e077.jpg"></inline-graphic>
</inline-formula>
. Excluding the low-CO
<sub>2</sub>
region where any assessment of
<italic>g
<sub>m</sub>
</italic>
is uncertain
<xref ref-type="bibr" rid="pone.0048376-Flexas1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Flexas2">[2]</xref>
, clearly
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e078.jpg"></inline-graphic>
</inline-formula>
decreased with increasing CO
<sub>2</sub>
levels;
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e079.jpg"></inline-graphic>
</inline-formula>
also decreased with increasing CO
<sub>2</sub>
levels but then stabilized at high CO
<sub>2</sub>
concentrations. Similar results were found when validating the model using data obtained from wheat leaves at 2 weeks after flowering (
<xref ref-type="supplementary-material" rid="pone.0048376.s003">Figure S2</xref>
).</p>
<fig id="pone-0048376-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Simulations and measurements at different conditions of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e080.jpg"></inline-graphic>
</inline-formula>
at 21% O
<sub>2</sub>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e081.jpg"></inline-graphic>
</inline-formula>
 = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and 25°C at flowering stage.</title>
<p>Figures (A) and (B) show
<italic>A</italic>
as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e082.jpg"></inline-graphic>
</inline-formula>
for the flag leaves at high and low N supply, respectively. The symbols represent measurements (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e083.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e084.jpg"></inline-graphic>
</inline-formula>
) while the lines indicate model predictions (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e085.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e086.jpg"></inline-graphic>
</inline-formula>
). Figures (C) and (D) depict
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e087.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e088.jpg"></inline-graphic>
</inline-formula>
for high and low N supply flag leaves, respectively. The diagonal lines indicate perfect correspondence. Figures (E) and (F) show
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e089.jpg"></inline-graphic>
</inline-formula>
as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e090.jpg"></inline-graphic>
</inline-formula>
for high and low N supply flag leaves, respectively. The solid (—) line represents
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e091.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e092.jpg"></inline-graphic>
</inline-formula>
. The symbols (o) represent the measured data (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e093.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e094.jpg"></inline-graphic>
</inline-formula>
). Data are from Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.</p>
</caption>
<graphic xlink:href="pone.0048376.g003"></graphic>
</fig>
<p>We then validated the microscale model using data obtained at 2% O
<sub>2</sub>
. The computed CO
<sub>2</sub>
assimilation rate was slightly underestimated compared to the measurements (
<xref ref-type="fig" rid="pone-0048376-g004">Figure 4</xref>
), especially for the condition of high and low N supply at flowering stage (
<xref ref-type="fig" rid="pone-0048376-g004">Figures 4A&4B</xref>
).</p>
<fig id="pone-0048376-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g004</object-id>
<label>Figure 4</label>
<caption>
<title>CO
<sub>2</sub>
response of net CO
<sub>2</sub>
assimilation rates of the flag leaves under the conditions of 2% O
<sub>2</sub>
.</title>
<p>(A) and (B) correspond to flag leaves at high N and low N supply at flowering while (C) and (D)correspond to flag leaves at high N and low N supply at two weeks after flowering. The symbols represent the measured values of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e095.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e096.jpg"></inline-graphic>
</inline-formula>
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
; the solid (—) represent the computed
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e097.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e098.jpg"></inline-graphic>
</inline-formula>
.</p>
</caption>
<graphic xlink:href="pone.0048376.g004"></graphic>
</fig>
</sec>
<sec id="s2c">
<title>Photosynthesis in response to irradiance</title>
<p>Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
found that
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e099.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e100.jpg"></inline-graphic>
</inline-formula>
increase with increasing
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e101.jpg"></inline-graphic>
</inline-formula>
. We wanted to evaluate whether the microscale model indeed predicts such behaviour. Microscale gas exchange simulations were carried out for different values of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e102.jpg"></inline-graphic>
</inline-formula>
increasing from 0 to 2000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
(350 µmol mol
<sup>−1 </sup>
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e103.jpg"></inline-graphic>
</inline-formula>
and 21% O
<sub>2</sub>
). If using a constant
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e104.jpg"></inline-graphic>
</inline-formula>
 = 1.67×10
<sup>−7</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
(
<xref ref-type="table" rid="pone-0048376-t003">Table 3</xref>
), the CO
<sub>2</sub>
concentration in the intercellular space was overestimated by the model for the conditions of low light intensity (results not shown). As
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e105.jpg"></inline-graphic>
</inline-formula>
was considered in the microscale model as a lumped parameter that included the gas diffusion through the stomata, its value was expected to vary with irradiance. The high N data at flowering stage were used for fitting
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e106.jpg"></inline-graphic>
</inline-formula>
to
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e107.jpg"></inline-graphic>
</inline-formula>
and to determine
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e108.jpg"></inline-graphic>
</inline-formula>
. The effects of light on
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e109.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e110.jpg"></inline-graphic>
</inline-formula>
are shown in
<xref ref-type="fig" rid="pone-0048376-g005">Figure 5</xref>
. The results confirm that
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e111.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e112.jpg"></inline-graphic>
</inline-formula>
increase with
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e113.jpg"></inline-graphic>
</inline-formula>
, due to the opening of the stomata by light
<xref ref-type="bibr" rid="pone.0048376-Morison1">[34]</xref>
.</p>
<fig id="pone-0048376-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Epidermal diffusion and CO
<sub>2</sub>
stomatal conductance as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e114.jpg"></inline-graphic>
</inline-formula>
.</title>
<p>(A) Fitted epidermal diffusion (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e115.jpg"></inline-graphic>
</inline-formula>
) as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e116.jpg"></inline-graphic>
</inline-formula>
. (B) Measured CO
<sub>2</sub>
stomatal conductance (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e117.jpg"></inline-graphic>
</inline-formula>
) as a function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e118.jpg"></inline-graphic>
</inline-formula>
. The symbols (o) and (×) represent high and low N supply flag leaves at flowering stage, respectively while symbols (◊) and (+) represent high and low N supply flag leaves at two weeks after flowering.</p>
</caption>
<graphic xlink:href="pone.0048376.g005"></graphic>
</fig>
<table-wrap id="pone-0048376-t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.t003</object-id>
<label>Table 3</label>
<caption>
<title>Physical parameters of the microscale gas exchange model.</title>
</caption>
<alternatives>
<graphic id="pone-0048376-t003-3" xlink:href="pone.0048376.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Model parameters</td>
<td align="left" rowspan="1" colspan="1">Symbol</td>
<td align="left" rowspan="1" colspan="1">Values</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Diffusivity</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">- Pore</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e119.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">1.60×10
<sup>−5</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
at 20°C
<xref ref-type="table-fn" rid="nt103">(a)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">- Cytosol and stroma</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e120.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">1.67×10
<sup>−9</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
at 20°C
<xref ref-type="table-fn" rid="nt103">(a)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">- Cell wall</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e121.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">3.437×10
<sup>−7</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">- Epidermis</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e122.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">1.672×10
<sup>−7</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e123.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">1.17×10
<sup>−9</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
<xref ref-type="table-fn" rid="nt104">(b)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cell wall thickness</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e124.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">0.5 µm</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Membrane permeability</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e125.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">3.5×10
<sup>−3</sup>
m s
<sup>−1</sup>
<xref ref-type="table-fn" rid="nt105">(c)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Henry's constant</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e126.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">0.83 (mol m
<sup>−3</sup>
liquid)(mol m
<sup>−3</sup>
gas)
<sup>−1</sup>
at 25°C
<xref ref-type="table-fn" rid="nt103">(a)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
reaction rate constants</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e127.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">0.039 s
<sup>−1</sup>
<xref ref-type="table-fn" rid="nt106">(d)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e128.jpg"></inline-graphic>
</inline-formula>
</td>
<td align="left" rowspan="1" colspan="1">23 s
<sup>−1</sup>
<xref ref-type="table-fn" rid="nt106">(d)</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>K</italic>
</td>
<td align="left" rowspan="1" colspan="1">2.5×10
<sup>−4</sup>
mol L
<sup>−1</sup>
<xref ref-type="table-fn" rid="nt106">(d)</xref>
</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt103">
<label>(a)</label>
<p>Lide
<xref ref-type="bibr" rid="pone.0048376-Lide1">[43]</xref>
,</p>
</fn>
<fn id="nt104">
<label>(b)</label>
<p>Geers and Gros
<xref ref-type="bibr" rid="pone.0048376-Geers1">[76]</xref>
,</p>
</fn>
<fn id="nt105">
<label>(c)</label>
<p>Gutknecht et al.
<xref ref-type="bibr" rid="pone.0048376-Gutknecht1">[47]</xref>
,</p>
</fn>
<fn id="nt106">
<label>(d)</label>
<p>Jolly
<xref ref-type="bibr" rid="pone.0048376-Jolly1">[77]</xref>
.</p>
</fn>
<fn id="nt107">
<p>Symbols are defined in the
<xref ref-type="table" rid="pone-0048376-t001">Table 1</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e129.jpg"></inline-graphic>
</inline-formula>
values were larger than the measured ones at low
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e130.jpg"></inline-graphic>
</inline-formula>
while at high values of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e131.jpg"></inline-graphic>
</inline-formula>
both
<italic>C
<sub>i</sub>
</italic>
and
<italic>C
<sub>c</sub>
</italic>
in the model and measurement levelled off (
<xref ref-type="fig" rid="pone-0048376-g006">Figures 6A&6B</xref>
).
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e132.jpg"></inline-graphic>
</inline-formula>
as a function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e133.jpg"></inline-graphic>
</inline-formula>
agreed well with the measured values at low
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e134.jpg"></inline-graphic>
</inline-formula>
but was underestimated at high
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e135.jpg"></inline-graphic>
</inline-formula>
(
<xref ref-type="fig" rid="pone-0048376-g006">Figures 6C&6D</xref>
). While
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e136.jpg"></inline-graphic>
</inline-formula>
seemed to be very sensitive at low
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e137.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e138.jpg"></inline-graphic>
</inline-formula>
was not (
<xref ref-type="fig" rid="pone-0048376-g006">Figures 6E&6F</xref>
). Similar results were found for validation on wheat leaf at 2 weeks after flowering (
<xref ref-type="supplementary-material" rid="pone.0048376.s004">Figure S3</xref>
). Overestimations of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e139.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e140.jpg"></inline-graphic>
</inline-formula>
compared to the measurements were found. Note that the
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e141.jpg"></inline-graphic>
</inline-formula>
obtained for two weeks after flowering was lower than the
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e142.jpg"></inline-graphic>
</inline-formula>
at the flowering stage, while the values of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e143.jpg"></inline-graphic>
</inline-formula>
at different
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e144.jpg"></inline-graphic>
</inline-formula>
applied in the simulation resulted in
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e145.jpg"></inline-graphic>
</inline-formula>
similar to
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e146.jpg"></inline-graphic>
</inline-formula>
for the high N leaves at flowering stage.</p>
<fig id="pone-0048376-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Model predictions (lines) versus measurements (symbols) of photosynthesis variables for 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e147.jpg"></inline-graphic>
</inline-formula>
from 0 to 2000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and 25°C at flowering stage.</title>
<p>Left figures represent fitting results using data from high N supply flag leaves; right figures were simulations for low N supply flag leaves. Figure (A) and (B) show
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e148.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e149.jpg"></inline-graphic>
</inline-formula>
as a function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e150.jpg"></inline-graphic>
</inline-formula>
; solid lines (—) and dashed lines (- -) represent
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e151.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e152.jpg"></inline-graphic>
</inline-formula>
, symbols (×) and (o) represent
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e153.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e154.jpg"></inline-graphic>
</inline-formula>
, respectively. Figure (C) and (D):
<italic>A</italic>
as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e155.jpg"></inline-graphic>
</inline-formula>
. Figure (E) and (F): mesophyll conductance
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e156.jpg"></inline-graphic>
</inline-formula>
(—) or
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e157.jpg"></inline-graphic>
</inline-formula>
(o) as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e158.jpg"></inline-graphic>
</inline-formula>
. Data from Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.</p>
</caption>
<graphic xlink:href="pone.0048376.g006"></graphic>
</fig>
</sec>
<sec id="s2d">
<title>Microstructure effect on mesophyll conductance</title>
<p>The anatomy of the leaf may have an effect on microscale gas exchange and result in variation in mesophyll conductance. In order to test this hypothesis, the mesophyll conductance was computed for four different micro-structures of a wheat leaf based on light microscopic images at 15, 30, 60 and 90 mm above the leaf base taken from the literature
<xref ref-type="bibr" rid="pone.0048376-Hu1">[35]</xref>
. Simulations were carried out at different values of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e159.jpg"></inline-graphic>
</inline-formula>
from 50 to 1500 µmol mol
<sup>−1</sup>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e160.jpg"></inline-graphic>
</inline-formula>
 = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
in photorespiration conditions (21% O
<sub>2</sub>
). In
<xref ref-type="fig" rid="pone-0048376-g007">Figure 7</xref>
the computed values of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e161.jpg"></inline-graphic>
</inline-formula>
for four different microscale geometries are shown as a function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e162.jpg"></inline-graphic>
</inline-formula>
. The
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e163.jpg"></inline-graphic>
</inline-formula>
values varied for the different microstructures, validating our hypothesis. A decreasing trend of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e164.jpg"></inline-graphic>
</inline-formula>
with increasing
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e165.jpg"></inline-graphic>
</inline-formula>
was found consistently, irrespective of leaf microstructures. This is a simulation result that follows from the model and it is difficult to trace this to a particular submodel.</p>
<fig id="pone-0048376-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Model predictions of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e166.jpg"></inline-graphic>
</inline-formula>
as a function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e167.jpg"></inline-graphic>
</inline-formula>
in high N supply flag leaves at flowering stage using four different microstructure topologies of wheat leaves.</title>
<p>The simulations were done for different external CO
<sub>2</sub>
concentrations from 50 to 1500 µmol mol
<sup>−1</sup>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e168.jpg"></inline-graphic>
</inline-formula>
 = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
in photorespiration conditions (21% O
<sub>2</sub>
). Different symbols correspond to different microstructure topologies.</p>
</caption>
<graphic xlink:href="pone.0048376.g007"></graphic>
</fig>
</sec>
</sec>
<sec id="s3">
<title>Discussion</title>
<sec id="s3a">
<title>CO
<sub>2</sub>
transport model</title>
<p>Fick's diffusion equation is applicable to transport of a chemical species such as CO
<sub>2</sub>
in a continuum material such as water. It can be related to Brownian motion according to the Einstein–Smoluchowski equation that has its foundations in statistical mechanics. Several authors have used the diffusion equation to describe CO
<sub>2</sub>
uptake by leaves
<xref ref-type="bibr" rid="pone.0048376-Parkhurst1">[36]</xref>
. Such models were solved with geometrical simplifications such as a 1D model of CO
<sub>2</sub>
drawdown in the leaf
<xref ref-type="bibr" rid="pone.0048376-Farquhar3">[37]</xref>
, a restricted and simplified zone analysis of diffusion from a small sub-stomatal cavity into a hemispherical region surrounding it
<xref ref-type="bibr" rid="pone.0048376-Parkhurst2">[38]</xref>
, and CO
<sub>2</sub>
diffusion through a single stoma and the surrounding mesophyll using an axial symmetry model
<xref ref-type="bibr" rid="pone.0048376-Vesala1">[23]</xref>
. Aalto and Juurola
<xref ref-type="bibr" rid="pone.0048376-Aalto1">[24]</xref>
constructed a 3-D model for CO
<sub>2</sub>
gas exchange through the leaf with basic geometrical elements such as spheres and cylinders representing mesophyll cells. While in their model the cells were separated by air gaps, in reality cells touch each other and this contact may reduce both the surface available for CO
<sub>2</sub>
exchange and the diffusion among the cells as we have clearly shown. The most realistic photosynthesis model to date was recently described by Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
. Their model, while addressing 3-D CO
<sub>2</sub>
transport in a single mesophyll cell and incorporating subcellular features such as chloroplasts and mitochondria, does not account for any resistances due to the leaf microstructure and in particular the mesophyll.</p>
<p>In our model we incorporated for the first time the actual microstructure as observed from microscopy images in the CO
<sub>2</sub>
transport model. We considered six materials (epidermis, cell wall, cytoplasm, chloroplast, vacuole and air) and we assumed that these materials were proper continuum materials so that we could assume Fickean diffusion of CO
<sub>2</sub>
within each of them. Membranes were modelled as resistances. In contrast to the model of Aalto and Juurola
<xref ref-type="bibr" rid="pone.0048376-Aalto1">[24]</xref>
, our model does account for the effect of mesophyll cells touching each other and thereby reducing the exchange surface between mesophyll and intercellular space. Further, our simulations show that wheat leaves with different microstructure have widely different
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e169.jpg"></inline-graphic>
</inline-formula>
values (
<xref ref-type="fig" rid="pone-0048376-g007">Figure 7</xref>
), indicating a clear effect of microstructure on gas transport (also see next section). This implies that our model is in principle not restricted to leaf types in which air space resistance is negligible as in the model of Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
.</p>
<p>We carried out a simulation in which we replaced air by helox in the model, corresponding to an increase of the diffusivity of CO
<sub>2</sub>
in the gas phase by 2.33 compared to that of the original model. At ambient conditions of 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e170.jpg"></inline-graphic>
</inline-formula>
 = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and 25°C,
<italic>A</italic>
was 6.8% higher than in the case of the air. This corresponds to the results of Parkhurst and Mott
<xref ref-type="bibr" rid="pone.0048376-Parkhurst2">[38]</xref>
who experimentally found that
<italic>A</italic>
was up to 7% higher in the amphistomatous leaves compared to air and up to 27% higher for the hypostomatous ones. While we did not do any measurements with helox, this result provides additional evidence that our model predicts realistic results. Additionally, it indicates that the intercellular space affects CO
<sub>2</sub>
transport and thus photosynthesis. Note that a lumped model, in contrast, cannot explain the effect of helox on photosynthesis</p>
<p>The effect of nitrogen treatment on the photosynthetic parameters of wheat leaves at different development stages was investigated by Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
. A relatively small effect of nitrogen treatment could be observed in the flowering stage; two weeks after flowering the effect was somewhat larger (
<xref ref-type="fig" rid="pone-0048376-g003">Figures 3</xref>
,
<xref ref-type="fig" rid="pone-0048376-g006">6</xref>
;
<xref ref-type="supplementary-material" rid="pone.0048376.s003">Figure S2</xref>
and
<xref ref-type="supplementary-material" rid="pone.0048376.s004">S3</xref>
). The effect of development stage was, however, considerable (
<xref ref-type="fig" rid="pone-0048376-g003">Figures 3</xref>
,
<xref ref-type="fig" rid="pone-0048376-g006">6</xref>
;
<xref ref-type="supplementary-material" rid="pone.0048376.s003">Figure S2</xref>
and
<xref ref-type="supplementary-material" rid="pone.0048376.s004">S3</xref>
). The more significant difference in the later stage was probably due to the greater difference in the content of leaf nitrogen as large amount of leaf nitrogen was translocated into grains during grain filling.</p>
<p>We calibrated and validated the model at one temperature (25°C), as data were available for this temperature only
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
. However, temperature is known to have a large effect on photosynthesis
<xref ref-type="bibr" rid="pone.0048376-Dreyer1">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Medlyn1">[40]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Archontoulis1">[41]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-DePury1">[42]</xref>
. The temperature dependence of physical constants such as the solubility and diffusivity of CO
<sub>2</sub>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e171.jpg"></inline-graphic>
</inline-formula>
is known
<xref ref-type="bibr" rid="pone.0048376-Badger1">[44]</xref>
. Also, mathematical expressions have been developed to describe the temperature dependence of the parameters of the FvCB model for different species
<xref ref-type="bibr" rid="pone.0048376-Dreyer1">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Medlyn1">[40]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Archontoulis1">[41]</xref>
, but not for wheat. In fact, the values of the activation energy of
<italic>V
<sub>c,max</sub>
</italic>
and
<italic>J
<sub>max</sub>
</italic>
used by De Pury and Farquhar
<xref ref-type="bibr" rid="pone.0048376-Lide1">[43]</xref>
and Archontoulis et al.
<xref ref-type="bibr" rid="pone.0048376-Lide1">[43]</xref>
for wheat were actually obtained by Badger and Collatz
<xref ref-type="bibr" rid="pone.0048376-Badger1">[44]</xref>
from experiments with
<italic>Atriplex glabriuscular</italic>
leaf and by Farquhar et al.
<xref ref-type="bibr" rid="pone.0048376-Farquhar2">[29]</xref>
. Preliminary simulations with temperature dependent
<italic>V
<sub>c,max</sub>
</italic>
and
<italic>J
<sub>max</sub>
</italic>
values taken from these references showed that the net photosynthesis of wheat leaves is highly dependent on temperature (
<xref ref-type="supplementary-material" rid="pone.0048376.s005">Figure S4</xref>
). Additional experiments are required to determine the temperature dependence of the parameters of the photosynthesis kinetics of wheat.</p>
<p>In our model it is assumed that CO
<sub>2</sub>
transport in the cell occurs mainly in the form of CO
<sub>2</sub>
and HCO
<sub>3</sub>
<sup></sup>
depending on the local pH. The dissociation of HCO
<sub>3</sub>
<sup></sup>
to H
<sup>+</sup>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e172.jpg"></inline-graphic>
</inline-formula>
is not significant at pH values below 8. There is both theoretical and experimental evidence for significant carbonic anhydrase (CA) dependent facilitation of CO
<sub>2</sub>
transport in C
<sub>3</sub>
plants
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Terashima1">[22]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Gillon1">[45]</xref>
. CA isozymes may be active in different cellular components
<xref ref-type="bibr" rid="pone.0048376-Terashima1">[22]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Fabre1">[46]</xref>
and may affect CO
<sub>2</sub>
transport. In fact, Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
calculated that removing all CA from the stroma would reduce
<italic>g
<sub>m</sub>
</italic>
by 44%. As little information is available about the rate constants of the hydration and dehydration of CO
<sub>2</sub>
by CA, or its activity in the different organelles of the cell, we decided at this stage to not include CA activity in the microscale model until more information would become available; incorporation in the model would be straightforward and desirable, though.</p>
<p>The value of
<italic>P
<sub>m</sub>
</italic>
was taken from Evans et al.
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
and Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
, who used the results of Gutknecht et al.
<xref ref-type="bibr" rid="pone.0048376-Gutknecht1">[47]</xref>
from experiments with equimolar mixtures of egg lecithin and cholesterol. The chemical composition of such a bilayer is, however, likely to be different from that of the cellular membranes of wheat leaf. The permeability of both the plasma and chloroplast membrane has also been shown to depend on the amount of embedded aquaporins (cooporins)
<xref ref-type="bibr" rid="pone.0048376-Uehlein1">[25]</xref>
. In fact, Evans et al.
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
found values for
<italic>P
<sub>m</sub>
</italic>
ranging from 10
<sup>−6</sup>
to 1.6×10
<sup>−2</sup>
m s
<sup>−1</sup>
in the literature. When we used the value reported by Uehlein et al.
<xref ref-type="bibr" rid="pone.0048376-Uehlein1">[25]</xref>
(
<italic>P
<sub>m</sub>
</italic>
 = 0.8×10
<sup>−6</sup>
m s
<sup>−1</sup>
) we obtained a value of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e173.jpg"></inline-graphic>
</inline-formula>
that was considerably smaller than the measured one. More research on cell membrane permeability of plants and wheat in particular is thus required.</p>
<p>The microscale model described here does not consider the light profile inside the leaf yet. Coupling a full light penetration model to this model may be very helpful to estimate the distribution of quanta that are absorbed by the mesophyll cells within the leaf for photosynthesis. Future research thus should also address models for light propagation in leaf tissue.</p>
</sec>
<sec id="s3b">
<title>Effect of leaf microstructure on CO
<sub>2</sub>
diffusion</title>
<p>During photosynthesis, CO
<sub>2</sub>
moves from the atmosphere surrounding the leaf to the sub-stomatal internal cavities through stomata, and from there to the site of carboxylation inside the mesophyll cells. The simulation results indicated that gas exchange through the microstructure is very heterogeneous. Large gradients and low CO
<sub>2</sub>
concentrations were mainly found inside the mesophyll cells and cell clusters due to photosynthesis and limited diffusion of CO
<sub>2</sub>
in the mesophyll cells. The CO
<sub>2</sub>
concentration at the carboxylation site in the chloroplast stroma,
<italic>C
<sub>c</sub>
</italic>
, in C
<sub>3</sub>
plants is lower than
<italic>C
<sub>i</sub>
</italic>
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Evans1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Evans4">[48]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Terashima2">[49]</xref>
. The diffusion barriers such as the water-filled pores of the cell wall, plasma membrane, cytosol, the envelope and stroma are responsible for the resistance of CO
<sub>2</sub>
along the pathway from intercellular space to stroma
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
. Several authors (Evans and von Caemmerer
<xref ref-type="bibr" rid="pone.0048376-Evans1">[11]</xref>
, Evans et al.
<xref ref-type="bibr" rid="pone.0048376-Evans2">[14]</xref>
, Evans et al.
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
, Terashima et al.
<xref ref-type="bibr" rid="pone.0048376-Terashima2">[49]</xref>
) reported that chloroplasts adhere exclusively to the plasmamembrane of mesophyll cells and, therefore, path length of CO
<sub>2</sub>
transport over the cytoplasm is reduced. Tholen et al.
<xref ref-type="bibr" rid="pone.0048376-Tholen2">[21]</xref>
indicated the possibility of chloroplast movement that may have significant consequences for the diffusion of CO
<sub>2</sub>
through the mesophyll. Simulations with a microscale model with chloroplasts lumped over the mesophyll cells showed that the predicted value of
<italic>g
<sub>m</sub>
</italic>
was lower than when they incorporated chloroplasts near to the cell wall. This indicates that the position of the chloroplasts next to the plasma membrane does indeed reduce the resistance for CO
<sub>2</sub>
transport.</p>
<p>The distribution of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e174.jpg"></inline-graphic>
</inline-formula>
depends on the distribution of chlorophyll through the leaf and the presence of the vascular region. In
<italic>Eucalyptus pauciflora</italic>
leaves, the photosynthesis capacity has been shown to be low in the vascular bundle region
<xref ref-type="bibr" rid="pone.0048376-Evans5">[50]</xref>
. Evans and Vogelmann
<xref ref-type="bibr" rid="pone.0048376-Evans6">[51]</xref>
showed that with increasing depth the photosynthetic capacity first increased followed by a strong decrease which finally levelled off in spinach leaves. This was not implemented in our model as there was no data available for wheat.</p>
<p>Early literature has assumed that simple diffusion through cellular membranes
<xref ref-type="bibr" rid="pone.0048376-Colman1">[52]</xref>
and/or leaf structural features
<xref ref-type="bibr" rid="pone.0048376-Evans2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Lloyd1">[53]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Syvertsen1">[54]</xref>
are responsible for most of the variation in
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e175.jpg"></inline-graphic>
</inline-formula>
. Flexas et al.
<xref ref-type="bibr" rid="pone.0048376-Flexas2">[2]</xref>
supposed that
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e176.jpg"></inline-graphic>
</inline-formula>
can be correlated to some leaf microstructural features. Our simulation results provided even more direct evidence of gas concentration gradients in relation to the microstructure topology of leaves and the effect of variation of the leaf microstructure on
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e177.jpg"></inline-graphic>
</inline-formula>
: depending on the value of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e178.jpg"></inline-graphic>
</inline-formula>
, the value of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e179.jpg"></inline-graphic>
</inline-formula>
that was computed for different microstructure topologies was 30% different from the mean value (
<xref ref-type="fig" rid="pone-0048376-g007">Figure 7</xref>
). Biological variation thus considerably affects the mesophyll conductance. This may depend on the species, though: the microstructure of wheat leaf mesophyll is relatively tight compared to that of other species. Future photosynthesis models should thus not simply ignore the tissue microstructure.</p>
<p>The epidermis was implemented as a homogeneous layer without explicitly modelling the stomata, resulting in a high value of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e180.jpg"></inline-graphic>
</inline-formula>
. The positive dependence of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e181.jpg"></inline-graphic>
</inline-formula>
on
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e182.jpg"></inline-graphic>
</inline-formula>
(
<xref ref-type="fig" rid="pone-0048376-g006">Fig. 6</xref>
) is most probably due to the aperture of the stomata in response to the light. The cell walls were modelled as channels connecting the larger pores in the tissue, thereby creating a void network structure that facilitates gas exchange resulting in a high diffusivity of cell wall (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e183.jpg"></inline-graphic>
</inline-formula>
). When the cell wall structure was assumed to be saturated with liquid in the 2D model, the net CO
<sub>2</sub>
assimilation flux decreased drastically compared to the measurement and resulted in a significant underestimation of mesophyll CO
<sub>2</sub>
concentration. Evans et al.
<xref ref-type="bibr" rid="pone.0048376-Evans3">[20]</xref>
showed that CO
<sub>2</sub>
diffusivity of the cell wall (1.7×10
<sup>−9</sup>
m
<sup>−2</sup>
s
<sup>−1</sup>
) was much smaller than the value obtained here (see
<xref ref-type="table" rid="pone-0048376-t003">Table 3</xref>
). As
<italic>in vivo</italic>
the cell walls are expected to be fully hydrated, this may indicate that the interconnectivity of the microstructure is considerably larger than expected from the 2-D microscale geometry. Consequently,
<italic>D
<sub>w</sub>
</italic>
is in our model an apparent parameter that accounts for both CO
<sub>2</sub>
diffusion in the cell wall but also for the connectivity of the intercellular space in 3-D. Lateral gas diffusion within the intercellular air space has been studied by Pieruschka et al.
<xref ref-type="bibr" rid="pone.0048376-Pieruschka1">[55]</xref>
and Morison et al.
<xref ref-type="bibr" rid="pone.0048376-Morison2">[56]</xref>
. Morison et al.
<xref ref-type="bibr" rid="pone.0048376-Morison3">[57]</xref>
indicated that the supply of CO
<sub>2</sub>
from nearby stomata usually dominates assimilation, but that lateral supply over small distances can be important if stomata are blocked, particularly when the assimilation rate is low. The discrete positions of stomata may thus have an influence on the diffusion gradients in the leaf. As the 2-D model described here cannot fully capture gas transport through and from discrete stomata, a 3-D microscale gas transport simulation in a real leaf geometry is required to understand lateral gas diffusion in the leaves. A 3-D network structure with strong connectivity has indeed been observed in several plant tissues such as fruits
<xref ref-type="bibr" rid="pone.0048376-Kuroki1">[58]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Mendoza1">[59]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Verboven1">[60]</xref>
. The 3-D microstructure of stomatal aperture and the corresponding microscale gas exchange through the stomata have recently been investigated using a diffusional resistance model
<xref ref-type="bibr" rid="pone.0048376-Kaiser1">[61]</xref>
. Indeed, the 2-D gas exchange model described here is an important step toward a realistic full 3-D gas exchange model based on 3-D microstructure of leaf tissue which has not been achieved so far. The extension of our model to a 3-D model requires the geometrical model to be changed from 2-D to 3-D which is not trivial and requires advanced 3-D visualisation techniques such as synchrotron X-ray micro computed tomography
<xref ref-type="bibr" rid="pone.0048376-Verboven1">[60]</xref>
. The model equations, however, do not need to be changed.</p>
<p>It is important to note that our microstructural model (and a possible 3-D extension) complements rather than replaces the lumped approach for photosynthesis modelling that has been used by many authors
<xref ref-type="bibr" rid="pone.0048376-Flexas1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Bernacchi1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Harley1">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Evans1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin1">[12]</xref>
. A lumped model, even when it fits GE/CF measurements very well, does not improve our understanding on the role of mesophyll porosity, cell size, presence of vascular bundle or any other microstructural features on photosynthesis. Our 2-D model (and a future 3-D even more) does provide such information.</p>
</sec>
<sec id="s3c">
<title>Effect of CO
<sub>2</sub>
and irradiance on mesophyll conductance</title>
<p>We confronted our model extensively with measured gas exchange and chlorophyll fluorescence data and obtained in general a good agreement between simulated and measured values. However, the model failed to predict the decrease of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e184.jpg"></inline-graphic>
</inline-formula>
at high CO
<sub>2</sub>
values that was seen in the measurements and that is a topic of current debate
<xref ref-type="bibr" rid="pone.0048376-Flexas1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.</p>
<p>One explanation for this mismatch could be the uncertainty on the estimation of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e185.jpg"></inline-graphic>
</inline-formula>
based on combined gas exchange and chlorophyll fluorescence measurements, and the estimation of Harley et al.
<xref ref-type="bibr" rid="pone.0048376-Harley1">[10]</xref>
, Yin and Struik
<xref ref-type="bibr" rid="pone.0048376-Yin1">[12]</xref>
. The latter authors found that the estimated mesophyll conductance becomes increasingly sensitive to variations of the measurements as the value of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e186.jpg"></inline-graphic>
</inline-formula>
increases, and can be affected by both statistical artifacts in curve fitting and biological uncertainties in thylakoid stoichiometry
<xref ref-type="bibr" rid="pone.0048376-Yin1">[12]</xref>
. In addition, Evans
<xref ref-type="bibr" rid="pone.0048376-Evans7">[62]</xref>
and Terashima et al.
<xref ref-type="bibr" rid="pone.0048376-Terashima3">[63]</xref>
indicated that electron transport rates calculated from chlorophyll fluorescence may have potential errors, which the calibration procedure based on
<xref ref-type="disp-formula" rid="pone.0048376.e243">Equation (12)</xref>
may not account for sufficiently. This would also explain the mismatch between
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e187.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e188.jpg"></inline-graphic>
</inline-formula>
as observed in
<xref ref-type="fig" rid="pone-0048376-g003">Figures 3C and 3D</xref>
. However, the large discrepancy between
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e189.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e190.jpg"></inline-graphic>
</inline-formula>
appears already at intermediate levels of
<italic>C
<sub>i</sub>
</italic>
, and is thus not well explained by these considerations. Another, more plausible, explanation may be that there are effects that have not been incorporated in our model. For example, Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
used a gas transport model for single mesophyll cells to show that increasing the permeability of the chloroplast membrane for
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e191.jpg"></inline-graphic>
</inline-formula>
would indeed explain decrease of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e192.jpg"></inline-graphic>
</inline-formula>
as a function of
<italic>C
<sub>i</sub>
</italic>
. Also, transport through the chloroplast membrane may be regulated by CA: CO
<sub>2</sub>
diffuses more easily through membranes than HCO
<sub>3</sub>
<sup></sup>
, so any regulatory mechanism that would affect the expression of CA and thus the equilibrium between CO
<sub>2</sub>
and HCO
<sub>3</sub>
<sup></sup>
in different cellular compartments would also affect their transport through the relevant membranes. Finally, cooporins have been shown to be present in chloroplast membranes and may significantly affect membrane permeability
<xref ref-type="bibr" rid="pone.0048376-Uehlein1">[25]</xref>
. These mechanisms may also explain the discrepancy between
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e193.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e194.jpg"></inline-graphic>
</inline-formula>
at low
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e195.jpg"></inline-graphic>
</inline-formula>
.</p>
</sec>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and Methods</title>
<sec id="s4a">
<title>Model assumptions</title>
<p>The following assumptions were made:</p>
<sec id="s4a1">
<title>Model dimension</title>
<p>Gas transport is essentially 3-D. We have shown previously
<xref ref-type="bibr" rid="pone.0048376-Verboven1">[60]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Verboven2">[64]</xref>
that in dense tissue such as in the cortex of fruit, pores that appear unconnected in 2-D may in fact be connected when visualised using 3-D techniques such as X-ray microfocus computed tomography (μCT). The reason that we have implemented a 2-D here instead of a 3-D model is the fact that μCT – the only feasible technique for 3-D visualisation of plant tissue at this resolution – provides insufficient contrast to discriminate organelles in a cell, and, for example, locate the position of the chloroplasts to include them in the geometrical model. Moreover, the best resolution that currently can be obtained with μCT (about 500 nm) is not enough to visualise the cell wall with sufficient contrast to allow segmentation of individual cells. This is a prerequisite for the method we used to artificially position the chloroplast layer inside the cell close to the plasmalemma (see further). As mesophyll is much less dense we expect that the difference between 2-D and 3-D is not as large as in fruit cortex tissue, but this remains to be investigated in future research.</p>
</sec>
<sec id="s4a2">
<title>Intercellular space</title>
<p>In contrast to the model of Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
, our model explicitly incorporated the actual microstructure of the mesophyll tissue, including the intercellular space and cells touching each other. This allows investigating any resistances these features may cause in addition to those investigated by the latter authors.</p>
</sec>
<sec id="s4a3">
<title>Cell organelles</title>
<p>Chloroplasts and mitochondria were modelled as different homogeneous layers in the cell rather than as individual organelles. This considerably reduced the complexity of the model and the required mesh density. This assumption was supported by the model of Tholen and Zhu
<xref ref-type="bibr" rid="pone.0048376-Tholen1">[3]</xref>
that displayed almost one dimensional gas exchange in a single isolated mesophyll cell one. It was further assumed that a mesophyll cell contained a single, large vacuole.</p>
</sec>
<sec id="s4a4">
<title>Stomata</title>
<p>In a 2-D model the real stomata distribution cannot be implemented without considerably overestimating the overall stomatal gas exchange of the leaf; only a true 3-D model would allow incorporating the stomata as such. We therefore modelled the epidermis layer as a continuum material with an effective diffusivity
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e196.jpg"></inline-graphic>
</inline-formula>
. This lumped parameter implicitly incorporates stomatal gas exchange in such a way that the overall conductance of the epidermis in the model would be equal to the measured one.</p>
</sec>
<sec id="s4a5">
<title>Localisation of photosynthesis</title>
<p>We assumed that there was no photosynthesis in the epidermis and vascular bundle. Respiration was assumed to take place in the epidermis, the cytoplasm of mesophyll cells and phloem; xylem cells were assumed not to respire. Xylem was identified as large cells in the vascular bundle facing the adaxial epidermis.</p>
</sec>
<sec id="s4a6">
<title>Spatial dependence of photosynthesis rate</title>
<p>Several authors have found a spatial dependence of the photosynthesis rate
<xref ref-type="bibr" rid="pone.0048376-Evans6">[51]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Terashima4">[65]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Vogelmann1">[66]</xref>
. The rate of photosynthesis across a leaf is determined by the light absorption profile and the profile of the photosynthetic capacity. With increasing depth the photosynthetic capacity first increases followed by a strong decrease and finally levels off. Although we realise that this would affect the modelling results, we did not find sufficient quantitative data on the spatial dependence of the photosynthesis rate in wheat.</p>
</sec>
<sec id="s4a7">
<title>Light transport</title>
<p>As light penetrates the leaf it is absorbed by the photosynthetic pigments and scattered at air-water interfaces. Palisade cells facilitate the penetration of collimated light into the inner parts of the leaf, whereas the spongy mesophyll scatters the light thus increasing the probability of the light being absorbed. Because of the difficulty of modelling of this process (for example by means of Monte Carlo methods) we have assumed here that the photon flux density is uniform in the leaf.</p>
</sec>
</sec>
<sec id="s4b">
<title>Model of photosynthesis kinetics</title>
<p>The FvCB model was used in this article to describe the gross CO
<sub>2</sub>
fixation rate
<italic>A
<sub>G</sub>
</italic>
in the chloroplasts of C
<sub>3</sub>
plants
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer3">[16]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Farquhar2">[29]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Sharkey2">[67]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Yin4">[68]</xref>
. Briefly,
<disp-formula id="pone.0048376.e197">
<graphic xlink:href="pone.0048376.e197"></graphic>
<label>(1)</label>
</disp-formula>
with
<italic>w</italic>
<sub>c</sub>
the Rubisco-limited carboxylation rate,
<italic>w</italic>
<sub>j</sub>
the RuBP-regeneration or electron transport limited rate, and
<italic>w</italic>
<sub>p</sub>
the triose phosphate utilization (TPU) limited rate. They were calculated from
<disp-formula id="pone.0048376.e198">
<graphic xlink:href="pone.0048376.e198"></graphic>
<label>(2)</label>
</disp-formula>
<disp-formula id="pone.0048376.e199">
<graphic xlink:href="pone.0048376.e199"></graphic>
<label>(3)</label>
</disp-formula>
<disp-formula id="pone.0048376.e200">
<graphic xlink:href="pone.0048376.e200"></graphic>
<label>(4)</label>
</disp-formula>
with
<italic>C
<sub>c</sub>
</italic>
and
<italic>O
<sub>2</sub>
</italic>
the CO
<sub>2</sub>
and O
<sub>2</sub>
concentration in the chloroplast, respectively;
<italic>J</italic>
the rate of electron transport;
<italic>T
<sub>p</sub>
</italic>
the rate of triose phosphate export from the chloroplast; and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e201.jpg"></inline-graphic>
</inline-formula>
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e202.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e203.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e204.jpg"></inline-graphic>
</inline-formula>
are constants. The meaning and units of all symbols are given in
<xref ref-type="table" rid="pone-0048376-t001">Table 1</xref>
. The net photosynthesis rate
<italic>A</italic>
was defined as
<italic>A = A
<sub>G</sub>
-R
<sub>d</sub>
</italic>
, with
<italic>R
<sub>d</sub>
</italic>
the respiratory CO
<sub>2</sub>
release other than by photorespiration.</p>
</sec>
<sec id="s4c">
<title>Microscale gas exchange model</title>
<p>The exchange of CO
<sub>2</sub>
in the tissue was described by means of a reaction diffusion equation:
<disp-formula id="pone.0048376.e205">
<graphic xlink:href="pone.0048376.e205"></graphic>
<label>(5)</label>
</disp-formula>
<disp-formula id="pone.0048376.e206">
<graphic xlink:href="pone.0048376.e206"></graphic>
<label>(6)</label>
</disp-formula>
with
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e207.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e208.jpg"></inline-graphic>
</inline-formula>
the local CO
<sub>2</sub>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e209.jpg"></inline-graphic>
</inline-formula>
concentration;
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e210.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e211.jpg"></inline-graphic>
</inline-formula>
the corresponding local diffusivity coefficients; and
<italic>t</italic>
time. The volumetric photosynthesis rate
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e212.jpg"></inline-graphic>
</inline-formula>
was assumed to be equal to zero everywhere except in the chloroplasts.
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e213.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e214.jpg"></inline-graphic>
</inline-formula>
were calculated from
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e215.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e216.jpg"></inline-graphic>
</inline-formula>
using
<disp-formula id="pone.0048376.e217">
<graphic xlink:href="pone.0048376.e217"></graphic>
<label>(7)</label>
</disp-formula>
<disp-formula id="pone.0048376.e218">
<graphic xlink:href="pone.0048376.e218"></graphic>
<label>(8)</label>
</disp-formula>
with
<italic>d</italic>
(184 µm) the average thickness of the leaf, and
<italic>f
<sub>c</sub>
</italic>
(0.104) and
<italic>f
<sub>m</sub>
</italic>
(0.169) the fraction of chloroplasts and cytosol in a 2-D cross section of the leaf, respectively.
<italic>B</italic>
represents the net hydration rate of CO
<sub>2</sub>
to HCO
<sub>3</sub>
<sup></sup>
:
<disp-formula id="pone.0048376.e219">
<graphic xlink:href="pone.0048376.e219"></graphic>
<label>(9)</label>
</disp-formula>
The CO
<sub>2</sub>
flux
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e220.jpg"></inline-graphic>
</inline-formula>
through the membranes of the cell, chloroplast and vacuole membranes was described by a flux boundary condition:
<disp-formula id="pone.0048376.e221">
<graphic xlink:href="pone.0048376.e221"></graphic>
<label>(10)</label>
</disp-formula>
with
<italic>P
<sub>m</sub>
</italic>
the membrane permeability that is equal to the reciprocal of resistance. It was assumed that the local CO
<sub>2</sub>
concentration in the gas and liquid phase was always in equilibrium and described by Henry's law.</p>
</sec>
<sec id="s4d">
<title>Geometrical model</title>
<p>The 2-D geometry of wheat leaf was constructed from light microscopic images of wheat leaf available from the literature
<xref ref-type="bibr" rid="pone.0048376-Hu1">[35]</xref>
, as the experimental dataset of Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
did not contain microscopic images. As the leaf cross section consists of several similar parallel vein segments, only one segment was modelled and impermeable boundary conditions were applied at the left and right hand side of the geometrical model. The images were digitized in the Matlab programming environment version 7.0 (The Mathworks, Natick, MA) by in-house developed software (
<xref ref-type="fig" rid="pone-0048376-g008">Figure 8</xref>
). The cells were represented by polygons. The bottom and top cell layers constituted the epidermis. The thickness of plant cell walls generally lies in the range of 0.1 to 0.3 µm, but can exceed 1 µm
<xref ref-type="bibr" rid="pone.0048376-RezvaniMoghaddam1">[69]</xref>
,
<xref ref-type="bibr" rid="pone.0048376-Dupuy1">[70]</xref>
. As it was not possible to determine the cell wall thickness accurately from the light microscopic images, we constructed the cell wall by shrinking the original polygon representing a cell by 0.5 µm normal to every edge; the volume between the original and shrunk polygon was defined as the cell wall. Since the model was solved using the finite element method, reducing the cell wall thickness would decrease the mesh size in the cell wall material and, hence, increase the required computational resources and time. This would not affect the model predictions appreciably as the cell wall thickness is interchangeable with
<italic>D
<sub>w</sub>
</italic>
: if we would have implemented a smaller cell wall thickness the parameter estimation procedure would have resulted in a larger value of
<italic>D
<sub>w</sub>
</italic>
, but the simulation results would be virtually identical. Chloroplasts appear as flat discs usually 2 to 10 µm in diameter and 1 µm thick. A mesophyll cell can contain 10 to 100 chloroplasts
<xref ref-type="bibr" rid="pone.0048376-Buchanan1">[71]</xref>
. James et al.
<xref ref-type="bibr" rid="pone.0048376-James1">[72]</xref>
found that the volume fraction of chloroplasts in the mesophyll cells was about 24%. For simplicity, chloroplasts were modeled as a layer located at a distance of 0.5 µm from the cell wall and occupying 20% of the modelled mesophyll cell volume. The relative photosynthetic capacity
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e222.jpg"></inline-graphic>
</inline-formula>
at a well defined depth
<italic>y</italic>
inside the leaf was calculated as
<disp-formula id="pone.0048376.e223">
<graphic xlink:href="pone.0048376.e223"></graphic>
<label>(11)</label>
</disp-formula>
where the integration is over the width
<italic>w</italic>
(
<italic>y</italic>
) of the leaf at the depth
<italic>y</italic>
. The distribution of photosynthesis capacity
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e224.jpg"></inline-graphic>
</inline-formula>
along the depth of the leaf depends on distribution of chlorophyll through the leaf, the presence of vascular region (
<xref ref-type="fig" rid="pone-0048376-g002">Figure 2</xref>
). The vacuolar volume fraction is variable and can be larger than 30% of the cell volume and up to 90% of the cell volume in a mature cell
<xref ref-type="bibr" rid="pone.0048376-Buchanan1">[71]</xref>
. The vacuoles were modelled explicitly in the mesophyll cells by shrinking the cell area of 2D geometry by 60% and considering the shrunk area to be vacuole. For a spherical cell, for example, this corresponds to a vacuolar volume fraction of 46%. The layer between the cell membrane and the chlorophyll layer and that between the tonoplast and the chlorophyll layer was considered to be cytoplasm. This implies that CO
<sub>2</sub>
to reach the vacuole has to pass the cell wall, the plasmalemma, twice the chloroplast membrane, and finally the tonoplast. In reality CO
<sub>2</sub>
can diffuse directly from the plasmalemma to the tonoplast, but we believe that ignoring this only marginally affects intercellular CO
<sub>2</sub>
transport while it simplifies the geometrical model considerably.</p>
<fig id="pone-0048376-g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.g008</object-id>
<label>Figure 8</label>
<caption>
<title>Reconstructed microscale geometry based on microscopic images of wheat leaf tissue and scheme of fluxes of CO
<sub>2</sub>
species through different compartments of the mesophyll cell.</title>
<p>(A) Reconstructed microscale geometry based on microscopic images of wheat leaf tissue
<xref ref-type="bibr" rid="pone.0048376-Hu1">[35]</xref>
. The adaxial surface is at the bottom. E, epidermis; I, intercellular space; M, mesophyll cell; P, phloem; and X, xylem. (B) Detail of reconstructed mesophyll cells in computer model. Chl, chloroplast layer; Cyto, cytoplasm; Cw, cell wall; Vac, vacuole.(C) Scheme of fluxes of CO
<sub>2</sub>
species through different compartments of the mesophyll cell and corresponding resistances. The resistances due to the epidermis, stomata and intercellular space are not included in this scheme. The symbols
<italic>C</italic>
and
<italic>r</italic>
indicate CO
<sub>2</sub>
concentration and resistance, respectively. The subscripts
<italic>i</italic>
,
<italic>w</italic>
,
<italic>cyto</italic>
,
<italic>c</italic>
,
<italic>vac</italic>
and
<italic>mem</italic>
indicate intercellular space, cell wall, cytoplasm, chloroplast, vacuole and membrane, respectively. The resistance of double membrane- chloroplast envelope was modeled as twice the resistance of the phospholipid membrane.
<italic>A
<sub>G</sub>
</italic>
is the gross photosynthesis rate;
<italic>R
<sub>d</sub>
</italic>
is respiration.</p>
</caption>
<graphic xlink:href="pone.0048376.g008"></graphic>
</fig>
<p>The resulting geometry of the tissue was then exported into a finite element simulation code (Comsol 3.5, Comsol AB, Stockholm, Sweden) via a Matlab interface. The leaf geometry and the corresponding finite element mesh that was used for the simulations are shown in
<xref ref-type="fig" rid="pone-0048376-g008">Figure 8</xref>
.</p>
</sec>
<sec id="s4e">
<title>Gas exchange and chlorophyll fluorescence measurements</title>
<p>Data used for our analysis came from measurements reported by Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
for photosynthesis of wheat plants grown under two contrasting levels of nitrogen supply. Nutrient supply is known to enhance photosynthesis, whereas it has a rather small and inconsistent effect on
<italic>g
<sub>m</sub>
</italic>
<xref ref-type="bibr" rid="pone.0048376-Warren1">[73]</xref>
. Simultaneous gas exchange and chlorophyll fluorescence measurements at both 21% and 2% O
<sub>2</sub>
were performed on main-stem flag leaves at the flowering stage and two weeks after flowering, with four replications at each stage, using an open gas exchange system (Li-Cor 6400; Li-Cor Inc, Lincoln, NE, USA) and an integrated fluorescence chamber head (LI-6400-40; Li-Cor Inc, Lincoln, NE, USA). All measurements were made at a leaf temperature (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e225.jpg"></inline-graphic>
</inline-formula>
) of 25°C and a leaf-to-air vapour pressure difference of 1.0–1.6 kPa. For the
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e226.jpg"></inline-graphic>
</inline-formula>
response curves, the ambient air CO
<sub>2</sub>
concentration (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e227.jpg"></inline-graphic>
</inline-formula>
) was increased step-wise: 50, 100, 150, 200, 250, 350, 500, 650, 1000, and 1500 µmol mol
<sup>−1</sup>
, while keeping incident irradiance
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e228.jpg"></inline-graphic>
</inline-formula>
at 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
. For the
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e229.jpg"></inline-graphic>
</inline-formula>
response curves, the photon flux densities were in a series: 0, 20, 50, 100, 150, 200, 500, 1000, 1500, 2000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
, while keeping
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e230.jpg"></inline-graphic>
</inline-formula>
at 350 µmol mol
<sup>−1</sup>
for measurements at 21% O
<sub>2</sub>
, and keeping
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e231.jpg"></inline-graphic>
</inline-formula>
at 1000 µmol mol
<sup>−1</sup>
for measurements at 2% O
<sub>2</sub>
to ensure a non-photorespiration condition. The photosynthetic parameters of the FvCB model were estimated from these measurements
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
and are given in
<xref ref-type="table" rid="pone-0048376-t004">Table 4</xref>
.</p>
<table-wrap id="pone-0048376-t004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.t004</object-id>
<label>Table 4</label>
<caption>
<title>Values (± standard error of estimate if applicable) of photosynthetic parameters estimated for flag leaves of wheat plants at flowering grown at low nitrogen (N) and high N levels at flowering stage. Estimates were made separately for photorespiratory (PR) and non-photorespiratory (NPR) conditions when necessary
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.</title>
</caption>
<alternatives>
<graphic id="pone-0048376-t004-4" xlink:href="pone.0048376.t004"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Parameters</td>
<td align="left" rowspan="1" colspan="1">High N</td>
<td align="left" rowspan="1" colspan="1">Low N</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e232.jpg"></inline-graphic>
</inline-formula>
(µmolm
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">65.8±0.8</td>
<td align="left" rowspan="1" colspan="1">58.5±0.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e233.jpg"></inline-graphic>
</inline-formula>
(μbar)</td>
<td align="left" rowspan="1" colspan="1">168±17</td>
<td align="left" rowspan="1" colspan="1">168±17</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e234.jpg"></inline-graphic>
</inline-formula>
(mbar)</td>
<td align="left" rowspan="1" colspan="1">473</td>
<td align="left" rowspan="1" colspan="1">473</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e235.jpg"></inline-graphic>
</inline-formula>
(mbar μbar
<sup>−1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">3.13</td>
<td align="left" rowspan="1" colspan="1">3.13</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>s</italic>
</td>
<td align="left" rowspan="1" colspan="1">0.380</td>
<td align="left" rowspan="1" colspan="1">0.403</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Γ*</italic>
(μbar)</td>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">34</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e236.jpg"></inline-graphic>
</inline-formula>
(µmol m
<sup>−2</sup>
s
<sup>−1</sup>
) PR</td>
<td align="left" rowspan="1" colspan="1">1.317</td>
<td align="left" rowspan="1" colspan="1">0.939</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e237.jpg"></inline-graphic>
</inline-formula>
(µmol m
<sup>−2</sup>
s
<sup>−1</sup>
) NPR</td>
<td align="left" rowspan="1" colspan="1">1.573</td>
<td align="left" rowspan="1" colspan="1">1.375</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e238.jpg"></inline-graphic>
</inline-formula>
(µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">12.9±0.13</td>
<td align="left" rowspan="1" colspan="1">11.1±0.19</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="s4f">
<title>Definition of macroscale variables</title>
<p>The microscale model predicts local variables which may depend on the position inside the leaf, whereas the gas exchange and chlorophyll fluorescence experiments measure lumped, macroscale variables of the whole leaf. In order to compare both measurements and simulations, equivalent macroscale variables need to be calculated from the microscale simulation results. We will use the following convention for symbols: macroscopic variables which were estimated from gas exchange and chlorophyll fluorescence experiments are denoted by a ‘∧’ symbol. Volume averaged variables (area averaged variables in the 2-D model) calculated from the microscale model are overlined.</p>
<p>Chlorophyll fluorescence measurements can assess the photosystem II (PSII) electron transport efficiency as
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e239.jpg"></inline-graphic>
</inline-formula>
, where
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e240.jpg"></inline-graphic>
</inline-formula>
is the steady-state fluorescence,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e241.jpg"></inline-graphic>
</inline-formula>
is the maximum fluorescence during a saturating light pulse
<xref ref-type="bibr" rid="pone.0048376-Genty1">[74]</xref>
. Data for
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e242.jpg"></inline-graphic>
</inline-formula>
can be converted into the flux of potential electron transport (
<italic>J</italic>
) according to
<disp-formula id="pone.0048376.e243">
<graphic xlink:href="pone.0048376.e243"></graphic>
<label>(12)</label>
</disp-formula>
where
<italic>s</italic>
is a calibration factor that can be estimated as the slope of the empirical linear relation between
<italic>A</italic>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e244.jpg"></inline-graphic>
</inline-formula>
using data of non-photorespiratory measurements at 2% O
<sub>2</sub>
combined with high CO
<sub>2</sub>
levels (see Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
, for more details). Using
<italic>J</italic>
estimated from the chlorophyll fluorescence measurements under photorespiration conditions, the mean mesophyll CO
<sub>2</sub>
concentration
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e245.jpg"></inline-graphic>
</inline-formula>
was estimated as
<xref ref-type="bibr" rid="pone.0048376-Harley1">[10]</xref>
:
<disp-formula id="pone.0048376.e246">
<graphic xlink:href="pone.0048376.e246"></graphic>
<label>(13)</label>
</disp-formula>
where
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e247.jpg"></inline-graphic>
</inline-formula>
is the net CO
<sub>2</sub>
assimilation rate based on the gas exchange measurements.</p>
<p>The volume averaged CO
<sub>2</sub>
concentration of the mesophyll cell (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e248.jpg"></inline-graphic>
</inline-formula>
) predicted by the microscale model was computed as
<disp-formula id="pone.0048376.e249">
<graphic xlink:href="pone.0048376.e249"></graphic>
<label>(14)</label>
</disp-formula>
The integration domain
<italic>V
<sub>m</sub>
</italic>
in
<xref ref-type="disp-formula" rid="pone.0048376.e249">Equation (14)</xref>
is the volume (area in 2-D) of all mesophyll cells in the 2-D microstructural image of the leaf tissue.</p>
<p>On the basis of the assumption that
<italic>C
<sub>c</sub>
</italic>
can be reliably estimated by
<xref ref-type="disp-formula" rid="pone.0048376.e246">Equation (13)</xref>
from combined gas exchange and chlorophyll fluorescence data, the mesophyll conductance
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e250.jpg"></inline-graphic>
</inline-formula>
was calculated from
<xref ref-type="bibr" rid="pone.0048376-Harley1">[10]</xref>
:
<disp-formula id="pone.0048376.e251">
<graphic xlink:href="pone.0048376.e251"></graphic>
<label>(15)</label>
</disp-formula>
where
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e252.jpg"></inline-graphic>
</inline-formula>
is the intercellular CO
<sub>2</sub>
concentration from gas exchange measurements
<xref ref-type="bibr" rid="pone.0048376-vonCaemmerer1">[7]</xref>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e253.jpg"></inline-graphic>
</inline-formula>
the measured photosynthesis rate. The equivalent whole-leaf
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e254.jpg"></inline-graphic>
</inline-formula>
predicted by the microscale model is
<disp-formula id="pone.0048376.e255">
<graphic xlink:href="pone.0048376.e255"></graphic>
<label>(16)</label>
</disp-formula>
where
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e256.jpg"></inline-graphic>
</inline-formula>
is the volume averaged intercellular CO
<sub>2</sub>
concentration and computed from the microscale model according to a similar expression as in
<xref ref-type="disp-formula" rid="pone.0048376.e249">Equation (14)</xref>
. The whole leaf photosynthesis rate
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e257.jpg"></inline-graphic>
</inline-formula>
is calculated by integrating the CO
<sub>2</sub>
flux from the epidermis to the ambient over the entire exchange surface.</p>
</sec>
<sec id="s4g">
<title>Model calibration and validation</title>
<p>The model equations were solved using the finite element environment Comsol Multiphysics vs. 3.5 (Comsol AB, Stockholm). The non-linear coupled model
<xref ref-type="disp-formula" rid="pone.0048376.e197">equations from (1)</xref>
to
<xref ref-type="disp-formula" rid="pone.0048376.e221">(10)</xref>
were discretized over the finite element mesh using the weak formulation
<xref ref-type="bibr" rid="pone.0048376-Knabner1">[75]</xref>
. The model equations were solved for steady-state conditions. Between the organelles, permeation through the membranes was taken into account. A direct solver was used for solving the resulting set of ordinary differential equations with relative tolerance less than 10
<sup>−6</sup>
.</p>
<p>Gas transport properties were obtained from the literature (
<xref ref-type="table" rid="pone-0048376-t003">Table 3</xref>
). The photosynthetic parameters of the FvCB model for different N treatments and life stages were obtained from Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e258.jpg"></inline-graphic>
</inline-formula>
was estimated based on the chloroplastic CO
<sub>2</sub>
concentration. The potential electron transport rate
<italic>J</italic>
was calculated from the chlorophyll fluorescence measurements (
<xref ref-type="disp-formula" rid="pone.0048376.e243">Equation 12</xref>
). We assumed that all membranes had the same permeability (value indicated in
<xref ref-type="table" rid="pone-0048376-t003">Table 3</xref>
), but because the chloroplast envelope is a double membrane we assigned half the permeability of the other (single) membranes to it.</p>
<p>For model calibration, data from experiments A1 and A2 of
<xref ref-type="table" rid="pone-0048376-t005">Table 5</xref>
were used. Using the photosynthesis response to ambient CO
<sub>2</sub>
concentration (Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
, the diffusivity values of the epidermis (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e259.jpg"></inline-graphic>
</inline-formula>
) and of the cell wall (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e260.jpg"></inline-graphic>
</inline-formula>
) were estimated simultaneously by fitting the calculated CO
<sub>2</sub>
concentration of the intercellular space and the mesophyll CO
<sub>2</sub>
concentration determined from microscale model to the experimental data using a nonlinear least square estimation procedure in Matlab (The Mathworks, Inc., Natick, USA). The boundary condition used in the parameter estimation was 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
at 21% O
<sub>2</sub>
while keeping
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e261.jpg"></inline-graphic>
</inline-formula>
at 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e262.jpg"></inline-graphic>
</inline-formula>
at 25°C. The resulting values were equal to 1.67×10
<sup>−7</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
and 3.437×10
<sup>−7</sup>
m
<sup>2</sup>
s
<sup>−1</sup>
for
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e263.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e264.jpg"></inline-graphic>
</inline-formula>
, respectively (
<xref ref-type="table" rid="pone-0048376-t003">Table 3</xref>
). Note that for reasons outlined before the stomata were not modelled explicitly but their conductance was implicitly included in
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e265.jpg"></inline-graphic>
</inline-formula>
. Irradiation affects stomatal aperture
<xref ref-type="bibr" rid="pone.0048376-Morison1">[34]</xref>
and a significant effect on the measured stomatal conductance has been observed. Thus, for modelling of photosynthesis in response to irradiation,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e266.jpg"></inline-graphic>
</inline-formula>
can be expected to vary with irradiance. For each measured light intensity, the corresponding
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e267.jpg"></inline-graphic>
</inline-formula>
was therefore determined by fitting
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e268.jpg"></inline-graphic>
</inline-formula>
to
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e269.jpg"></inline-graphic>
</inline-formula>
while keeping
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e270.jpg"></inline-graphic>
</inline-formula>
at the value determined previously.</p>
<table-wrap id="pone-0048376-t005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0048376.t005</object-id>
<label>Table 5</label>
<caption>
<title>Description of data sets used in calibration and validation of model.</title>
</caption>
<alternatives>
<graphic id="pone-0048376-t005-5" xlink:href="pone.0048376.t005"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Data set</td>
<td align="left" rowspan="1" colspan="1">Nitrogen (N) supply</td>
<td align="left" rowspan="1" colspan="1">Development stage</td>
<td align="left" rowspan="1" colspan="1">[CO
<sub>2</sub>
] (µmol mol
<sup>−1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e271.jpg"></inline-graphic>
</inline-formula>
(µmol m
<sup>−2</sup>
s
<sup>−1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">O
<sub>2</sub>
(%)</td>
<td align="left" rowspan="1" colspan="1">Experiments</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Calibration</td>
<td align="left" rowspan="1" colspan="1">A1</td>
<td align="left" rowspan="1" colspan="1">High N</td>
<td align="left" rowspan="1" colspan="1">Flowering stage</td>
<td align="left" rowspan="1" colspan="1">350</td>
<td align="left" rowspan="1" colspan="1">1000</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">A2</td>
<td align="left" rowspan="1" colspan="1">High N</td>
<td align="left" rowspan="1" colspan="1">Flowering stage</td>
<td align="left" rowspan="1" colspan="1">350</td>
<td align="left" rowspan="1" colspan="1">0, 20, 50, 100, 150, 200, 500, 1000, 1500, 2000</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">
<italic>I
<sub>inc</sub>
</italic>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Validation</td>
<td align="left" rowspan="1" colspan="1">A1</td>
<td align="left" rowspan="1" colspan="1">High N</td>
<td align="left" rowspan="1" colspan="1">Flowering stage</td>
<td align="left" rowspan="1" colspan="1">50, 100, 150, 200, 250, 500, 650, 1000, 1500</td>
<td align="left" rowspan="1" colspan="1">1000</td>
<td align="left" rowspan="1" colspan="1">2, 21</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">B1</td>
<td align="left" rowspan="1" colspan="1">Low N</td>
<td align="left" rowspan="1" colspan="1">Flowering stage</td>
<td align="left" rowspan="1" colspan="1">50, 100, 150, 200, 250, 350, 500, 650, 1000, 1500</td>
<td align="left" rowspan="1" colspan="1">1000</td>
<td align="left" rowspan="1" colspan="1">2, 21</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">C1</td>
<td align="left" rowspan="1" colspan="1">High N</td>
<td align="left" rowspan="1" colspan="1">2 weeks after flowering</td>
<td align="left" rowspan="1" colspan="1">50, 100, 150, 200, 250, 350, 500, 650, 1000, 1500</td>
<td align="left" rowspan="1" colspan="1">1000</td>
<td align="left" rowspan="1" colspan="1">2, 21</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">D1</td>
<td align="left" rowspan="1" colspan="1">Low N</td>
<td align="left" rowspan="1" colspan="1">2 weeks after flowering</td>
<td align="left" rowspan="1" colspan="1">50, 100, 150, 200, 250, 350, 500, 650, 1000, 1500</td>
<td align="left" rowspan="1" colspan="1">1000</td>
<td align="left" rowspan="1" colspan="1">2, 21</td>
<td align="left" rowspan="1" colspan="1">CO
<sub>2</sub>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">B2</td>
<td align="left" rowspan="1" colspan="1">Low N</td>
<td align="left" rowspan="1" colspan="1">Flowering stage</td>
<td align="left" rowspan="1" colspan="1">350</td>
<td align="left" rowspan="1" colspan="1">0, 20, 50, 100, 150, 200, 500, 1000, 1500, 2000</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">
<italic>I
<sub>inc</sub>
</italic>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">C2</td>
<td align="left" rowspan="1" colspan="1">High N</td>
<td align="left" rowspan="1" colspan="1">2 weeks after flowering</td>
<td align="left" rowspan="1" colspan="1">350</td>
<td align="left" rowspan="1" colspan="1">0, 20, 50, 100, 150, 200, 500, 1000, 1500, 2000</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">
<italic>I
<sub>inc</sub>
</italic>
response curves</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">D2</td>
<td align="left" rowspan="1" colspan="1">Low N</td>
<td align="left" rowspan="1" colspan="1">2 weeks after flowering</td>
<td align="left" rowspan="1" colspan="1">350</td>
<td align="left" rowspan="1" colspan="1">0, 20, 50, 100, 150, 200, 500, 1000, 1500, 2000</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">
<italic>I
<sub>inc</sub>
</italic>
response curves</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>For validation, the model predictions were compared to experimental data that were not used for the parameter estimation, i.e. dataset B1, C1, D1, B2, C2 and D2 of
<xref ref-type="table" rid="pone-0048376-t005">Table 5</xref>
. The same values of
<italic>D
<sub>epi</sub>
</italic>
and
<italic>D
<sub>w</sub>
</italic>
as in the calibration experiments were assumed.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0048376.s001">
<label>Text S1</label>
<caption>
<p>
<bold>Lumped microscale modeling.</bold>
</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0048376.s001.doc" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0048376.s002">
<label>Figure S1</label>
<caption>
<p>
<bold>Computed CO
<sub>2</sub>
distribution in wheat leaf according to the model with and without chloroplasts.</bold>
The ambient conditions were 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e272.jpg"></inline-graphic>
</inline-formula>
 = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e273.jpg"></inline-graphic>
</inline-formula>
 = 25°C. Concentrations are expressed in µmol m
<sup>−3</sup>
. (A) and (B) are simulation results with and without chloroplasts.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0048376.s002.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0048376.s003">
<label>Figure S2</label>
<caption>
<p>
<bold>Simulations and measurements at different conditions of </bold>
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e274.jpg"></inline-graphic>
</inline-formula>
<bold> at 21% O
<sub>2</sub>
, </bold>
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e275.jpg"></inline-graphic>
</inline-formula>
<bold> = 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and 25°C.</bold>
The left and right figures represent simulations at two weeks after flowering for high and low N supply flag leaves, respectively. Figures (A) and (B) show the net CO
<sub>2</sub>
assimilation rate (
<italic>A</italic>
) as function of intercellular CO
<sub>2</sub>
concentration
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e276.jpg"></inline-graphic>
</inline-formula>
. The symbols represent measurements (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e277.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e278.jpg"></inline-graphic>
</inline-formula>
) while the lines indicate model predictions (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e279.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e280.jpg"></inline-graphic>
</inline-formula>
). Figures (C) and (D) depict
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e281.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e282.jpg"></inline-graphic>
</inline-formula>
. The diagonal lines indicate perfect correspondence. Figures (E) and (F) show
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e283.jpg"></inline-graphic>
</inline-formula>
as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e284.jpg"></inline-graphic>
</inline-formula>
. The solid (—) line represents
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e285.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e286.jpg"></inline-graphic>
</inline-formula>
. The symbols (o) represent the measured data (
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e287.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e288.jpg"></inline-graphic>
</inline-formula>
). Data are from Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0048376.s003.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0048376.s004">
<label>Figure S3</label>
<caption>
<p>
<bold>Model predictions (lines) versus measurements (symbols) of photosynthesis variables for 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
, </bold>
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e289.jpg"></inline-graphic>
</inline-formula>
<bold> from 0 to 2000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
and 25°C.</bold>
Left figures and right figures represent simulations for high N and low N supply flag leaves at two weeks after flowering. Figure (A) and (B) show
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e290.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e291.jpg"></inline-graphic>
</inline-formula>
as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e292.jpg"></inline-graphic>
</inline-formula>
; the solid lines (—) and dashed lines (- -) represent
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e293.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e294.jpg"></inline-graphic>
</inline-formula>
, symbols (×) and (o) represent
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e295.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e296.jpg"></inline-graphic>
</inline-formula>
, respectively. Figure (C) and (D) show
<italic>A</italic>
as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e297.jpg"></inline-graphic>
</inline-formula>
, while figure (E) and (F) indicate the mesophyll conductance
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e298.jpg"></inline-graphic>
</inline-formula>
(—) or
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e299.jpg"></inline-graphic>
</inline-formula>
(o) as function of
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e300.jpg"></inline-graphic>
</inline-formula>
. Data from Yin et al.
<xref ref-type="bibr" rid="pone.0048376-Yin2">[17]</xref>
.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0048376.s004.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0048376.s005">
<label>Figure S4</label>
<caption>
<p>
<bold>Simulated net photosynthesis of wheat leaf as function of temperature.</bold>
(A) Temperature dependence of
<italic>V
<sub>c,max</sub>
</italic>
and
<italic>J
<sub>max</sub>
</italic>
. Values are normalized to 1 at 25°C. Arrhenius-like expressions for
<italic>V
<sub>c,max</sub>
</italic>
and
<italic>J
<sub>max</sub>
</italic>
as a function of temperature are described by
<xref ref-type="bibr" rid="pone.0048376-Badger1">[44]</xref>
and
<xref ref-type="bibr" rid="pone.0048376-Farquhar2">[29]</xref>
, respectively. (B) Simulated net photosynthesis of wheat leaf as function of temperature.
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e301.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e302.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e303.jpg"></inline-graphic>
</inline-formula>
are the mean net photosynthesis rate, rubisco activity limited net photosynthesis rate and electron transport limited net photosynthesis rate computed from the microscale model.
<italic>V
<sub>c,max</sub>
</italic>
and
<italic>J
<sub>max</sub>
</italic>
as function of temperature are taken from
<xref ref-type="bibr" rid="pone.0048376-Badger1">[44]</xref>
and
<xref ref-type="bibr" rid="pone.0048376-Farquhar2">[29]</xref>
, respectively while the temperature dependence of other FvCB parameters (
<italic>R
<sub>d</sub>
</italic>
,
<italic>Γ</italic>
*,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e304.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e305.jpg"></inline-graphic>
</inline-formula>
) were was from
<xref ref-type="bibr" rid="pone.0048376-Dreyer1">[39]</xref>
and
<xref ref-type="bibr" rid="pone.0048376-Medlyn1">[40]</xref>
. Model predictions of photosynthesis were for high N wheat leaf at the flowering stage, 350 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
, 21% O
<sub>2</sub>
,
<inline-formula>
<inline-graphic xlink:href="pone.0048376.e306.jpg"></inline-graphic>
</inline-formula>
of 1000 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0048376.s005.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors would like to acknowledge two anonymous reviewers for their valuable suggestions during the revision process. Wageningen based authors thank Pascual Romero for his contribution to the data collection.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0048376-Flexas1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Flexas</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Diaz-Espejo</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Galmes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kaldenhoff</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Medrano</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Rapid variation of mesophyll conductance in response to changes in CO
<sub>2</sub>
concentration around leaves</article-title>
.
<source>Plant Cell Environ</source>
<volume>30</volume>
:
<fpage>1284</fpage>
<lpage>1298</lpage>
<pub-id pub-id-type="pmid">17727418</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Flexas2">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Flexas</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ribas-Carbό</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Diaz-Espejo</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Galmes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Medrano</surname>
<given-names>H</given-names>
</name>
(
<year>2008</year>
)
<article-title>Mesophyll conductance to CO
<sub>2</sub>
: current knowledge and future prospects</article-title>
.
<source>Plant Cell Environ</source>
<volume>31</volume>
:
<fpage>602</fpage>
<lpage>621</lpage>
<pub-id pub-id-type="pmid">17996013</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Tholen1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tholen</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>X-G</given-names>
</name>
(
<year>2011</year>
)
<article-title>The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO
<sub>2</sub>
diffusion</article-title>
.
<source>Plant Physiol</source>
<volume>156</volume>
:
<fpage>90</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="pmid">21441385</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Farquhar1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
,
<name>
<surname>Sharkey</surname>
<given-names>TD</given-names>
</name>
(
<year>1982</year>
)
<article-title>Stomatal conductance and photosynthesis</article-title>
.
<source>Ann Rev Plant Physiol</source>
<volume>33</volume>
:
<fpage>317</fpage>
<lpage>345</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Bernacchi1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bernacchi</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Portis</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Nakano</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>SP</given-names>
</name>
(
<year>2002</year>
)
<article-title>Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo</article-title>
.
<source>Plant Physiol</source>
<volume>130</volume>
:
<fpage>1992</fpage>
<lpage>1998</lpage>
<pub-id pub-id-type="pmid">12481082</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Goudriaan1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Goudriaan</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>van Laar</surname>
<given-names>HH</given-names>
</name>
(
<year>1978</year>
)
<article-title>Relations between resistance, CO
<sub>2</sub>
concentration and CO
<sub>2</sub>
assimilation in maize, beans, lalang grass and sunflower</article-title>
.
<source>Photosynthetica</source>
<volume>12</volume>
:
<fpage>241</fpage>
<lpage>249</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-vonCaemmerer1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
(
<year>1981</year>
)
<article-title>Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves</article-title>
.
<source>Planta</source>
<volume>153</volume>
:
<fpage>376</fpage>
<lpage>387</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Bongi1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bongi</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Loreto</surname>
<given-names>F</given-names>
</name>
(
<year>1989</year>
)
<article-title>Gas-exchange properties of salted-stressed olive (
<italic>Olea europea</italic>
L.) leaves</article-title>
.
<source>Plant Physiol</source>
<volume>90</volume>
:
<fpage>1408</fpage>
<lpage>1416</lpage>
<pub-id pub-id-type="pmid">16666944</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-DiMarco1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Di Marco</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Manes</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Tricoli</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Vitale</surname>
<given-names>E</given-names>
</name>
(
<year>1990</year>
)
<article-title>Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO
<sub>2</sub>
concentration in leaves of Quercus ilex L</article-title>
.
<source>J Plant Physiol</source>
<volume>136</volume>
:
<fpage>538</fpage>
<lpage>543</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Harley1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Harley</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Loreto</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Di Marco</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Sharkey</surname>
<given-names>TD</given-names>
</name>
(
<year>1992</year>
)
<article-title>Theoretical considerations when estimating the mesophyll conductance to CO
<sub>2</sub>
flux by analysis of the response of photosynthesis to CO
<sub>2</sub>
</article-title>
.
<source>Plant Physiol</source>
<volume>98</volume>
:
<fpage>1429</fpage>
<lpage>1436</lpage>
<pub-id pub-id-type="pmid">16668811</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
(
<year>1996</year>
)
<article-title>Carbon dioxide diffusion inside leaves</article-title>
.
<source>Plant Physiol</source>
<volume>110</volume>
:
<fpage>339</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="pmid">12226185</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Yin1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Struik</surname>
<given-names>PC</given-names>
</name>
(
<year>2009</year>
)
<article-title>Theoretical reconsiderations when estimating the mesophyll conductance to CO
<sub>2</sub>
diffusion in leaves of C
<sub>3</sub>
plants by analysis of combined gas exchange and chlorophyll fluorescence measurements</article-title>
.
<source>Plant Cell Environ</source>
<volume>32</volume>
:
<fpage>1513</fpage>
<lpage>1524</lpage>
(corrigendum in Plant Cell Environ 33: 1595)..
<pub-id pub-id-type="pmid">19558403</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Loreto1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Loreto</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Harley</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Di Marco</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Sharkey</surname>
<given-names>TD</given-names>
</name>
(
<year>1992</year>
)
<article-title>Estimation of mesophyll conductance to CO
<sub>2</sub>
flux by three different methods</article-title>
.
<source>Plant Physiol</source>
<volume>98</volume>
:
<fpage>1437</fpage>
<lpage>1443</lpage>
<pub-id pub-id-type="pmid">16668812</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans2">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Setchell</surname>
<given-names>BA</given-names>
</name>
,
<name>
<surname>Hudson</surname>
<given-names>GS</given-names>
</name>
(
<year>1994</year>
)
<article-title>The relationship between CO
<sub>2</sub>
transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco</article-title>
.
<source>Aust J Plant Physiol</source>
<volume>21</volume>
:
<fpage>475</fpage>
<lpage>495</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-vonCaemmerer2">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Hudson</surname>
<given-names>GS</given-names>
</name>
,
<name>
<surname>Andrews</surname>
<given-names>TJ</given-names>
</name>
(
<year>1994</year>
)
<article-title>The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco</article-title>
.
<source>Planta</source>
<volume>195</volume>
:
<fpage>88</fpage>
<lpage>97</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-vonCaemmerer3">
<label>16</label>
<mixed-citation publication-type="other">von Caemmerer S (2000) Biochemical models of leaf photosynthesis. In: Techniques in Plant Sciences No. 2. Collingwood, Victoria, Australia: CSIRO Publishing. p.196.</mixed-citation>
</ref>
<ref id="pone.0048376-Yin2">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Struik</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Romero</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Harbinson</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Evers</surname>
<given-names>JB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C-3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (
<italic>Triticum aestivum</italic>
) canopy</article-title>
.
<source>Plant Cell Environ</source>
<volume>32</volume>
:
<fpage>448</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="pmid">19183300</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-vonCaemmerer4">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
(
<year>1991</year>
)
<article-title>Determination of the average partial pressure of CO
<sub>2</sub>
in chloroplasts from leaves of several C
<sub>3</sub>
plants</article-title>
.
<source>Aust J Plant Physiol</source>
<volume>18</volume>
:
<fpage>287</fpage>
<lpage>305</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Centritto1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Centritto</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Loreto</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Chartzoulakis</surname>
<given-names>K</given-names>
</name>
(
<year>2003</year>
)
<article-title>The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salted-stressed olive saplings</article-title>
.
<source>Plant Cell Environ</source>
<volume>26</volume>
:
<fpage>585</fpage>
<lpage>594</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans3">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Kaldenhoff</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Genty</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Terashima</surname>
<given-names>I</given-names>
</name>
(
<year>2009</year>
)
<article-title>Resistances along the CO
<sub>2</sub>
diffusion pathway inside leaves</article-title>
.
<source>J Exp Bot</source>
<volume>60</volume>
:
<fpage>2235</fpage>
<lpage>2248</lpage>
<pub-id pub-id-type="pmid">19395390</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Tholen2">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tholen</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Boom</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Noguchi</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Ueda</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Katase</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>The chloroplast avoidance response decreases internal conductance to CO
<sub>2</sub>
diffusion in
<italic>Arabidopsis thaliana</italic>
leaves</article-title>
.
<source>Plant Cell Environ</source>
<volume>31</volume>
:
<fpage>1688</fpage>
<lpage>1700</lpage>
<pub-id pub-id-type="pmid">18721264</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Terashima1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Terashima</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Hanba</surname>
<given-names>YT</given-names>
</name>
,
<name>
<surname>Tholen</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Niinemets</surname>
<given-names>U</given-names>
</name>
(
<year>2011</year>
)
<article-title>Leaf functional anatomy in relation to photosynthesis</article-title>
.
<source>Plant Physiol</source>
<volume>155</volume>
:
<fpage>108</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">21075960</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Vesala1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vesala</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ahonen</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Hari</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Krissinel</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Shokhirev</surname>
<given-names>N</given-names>
</name>
(
<year>1996</year>
)
<article-title>Analysis of stomatal CO
<sub>2</sub>
uptake by a three-dimensional cylindrically symmetric model</article-title>
.
<source>New Phytol</source>
<volume>132</volume>
:
<fpage>235</fpage>
<lpage>245</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Aalto1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aalto</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Juurola</surname>
<given-names>E</given-names>
</name>
(
<year>2002</year>
)
<article-title>A three-dimensional model of CO
<sub>2</sub>
transport in airspaces and mesophyll cells of a silver birch leaf</article-title>
.
<source>Plant Cell Environ</source>
<volume>25</volume>
:
<fpage>1399</fpage>
<lpage>1409</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Uehlein1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Uehlein</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Otto</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Hanson</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>McDowell</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Function of
<italic>Nicotiana tabacum</italic>
aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability</article-title>
.
<source>Plant Cell</source>
<volume>20</volume>
:
<fpage>648</fpage>
<lpage>657</lpage>
<pub-id pub-id-type="pmid">18349152</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Ho1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ho</surname>
<given-names>QT</given-names>
</name>
,
<name>
<surname>Verboven</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mebatsion</surname>
<given-names>HK</given-names>
</name>
,
<name>
<surname>Verlinden</surname>
<given-names>BE</given-names>
</name>
,
<name>
<surname>Vandewalle</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Microscale mechanisms of gas exchange in fruit tissue</article-title>
.
<source>New Phytol</source>
<volume>182</volume>
:
<fpage>163</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="pmid">19192195</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Ho2">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ho</surname>
<given-names>QT</given-names>
</name>
,
<name>
<surname>Verboven</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Verlinden</surname>
<given-names>BE</given-names>
</name>
,
<name>
<surname>Herremans</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Wevers</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>A 3-D multiscale model for gas exchange in fruit</article-title>
.
<source>Plant Physiol</source>
<volume>155</volume>
:
<fpage>1158</fpage>
<lpage>1168</lpage>
<pub-id pub-id-type="pmid">21224337</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Ho3">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ho</surname>
<given-names>QT</given-names>
</name>
,
<name>
<surname>Verboven</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Verlinden</surname>
<given-names>BE</given-names>
</name>
,
<name>
<surname>Nicolaï</surname>
<given-names>BM</given-names>
</name>
(
<year>2010</year>
)
<article-title>A model for gas transport in pear fruit at multiple scales</article-title>
.
<source>J Exp Bot</source>
<volume>61</volume>
:
<fpage>2071</fpage>
<lpage>2081</lpage>
<pub-id pub-id-type="pmid">20194925</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Farquhar2">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
,
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Berry</surname>
<given-names>JA</given-names>
</name>
(
<year>1980</year>
)
<article-title>A biochemical model of photosynthetic CO
<sub>2</sub>
assimilation in leaves of C
<sub>3</sub>
species</article-title>
.
<source>Planta</source>
<volume>149</volume>
:
<fpage>78</fpage>
<lpage>90</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Leuning1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Leuning</surname>
<given-names>R</given-names>
</name>
(
<year>1995</year>
)
<article-title>A critical appraisal of a combined stomatal-photosynthesis model for C
<sub>3</sub>
plant</article-title>
.
<source>Plant Cell Environ</source>
<volume>18</volume>
:
<fpage>339</fpage>
<lpage>355</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Kim1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
,
<name>
<surname>Heinrich Lieth</surname>
<given-names>J</given-names>
</name>
(
<year>2003</year>
)
<article-title>A coupled model of photosynthesis, stomatal conductance and transpiration for rose leaf (
<italic>Rosa hybrida</italic>
L.)</article-title>
.
<source>Ann Botany</source>
<volume>91</volume>
:
<fpage>771</fpage>
<lpage>781</lpage>
<pub-id pub-id-type="pmid">12730065</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Sharkey1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sharkey</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>Bernachhi</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
,
<name>
<surname>Singsaas</surname>
<given-names>EL</given-names>
</name>
(
<year>2007</year>
)
<article-title>Fitting photosynthetic carbon dioxide response curves for C
<sub>3</sub>
leaves</article-title>
.
<source>Plant Cell Environ</source>
<volume>30</volume>
:
<fpage>1035</fpage>
<lpage>1040</lpage>
<pub-id pub-id-type="pmid">17661745</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Yin3">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Struik</surname>
<given-names>PC</given-names>
</name>
(
<year>2009</year>
)
<article-title>C
<sub>3</sub>
and C
<sub>4</sub>
photosynthesis models: An overview from the perspective of crop modelling</article-title>
.
<source>NJAS-Wageningen Journal of Life Sciences</source>
<volume>57</volume>
:
<fpage>27</fpage>
<lpage>38</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Morison1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morison</surname>
<given-names>JIL</given-names>
</name>
,
<name>
<surname>Jarvis</surname>
<given-names>PG</given-names>
</name>
(
<year>1983</year>
)
<article-title>Direct and indirect effects of light on stomata</article-title>
.
<source>Plant Cell Environ</source>
<volume>6</volume>
:
<fpage>103</fpage>
<lpage>109</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Hu1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Fromm</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Schmidhalter</surname>
<given-names>U</given-names>
</name>
(
<year>2005</year>
)
<article-title>Effect of salinity on tissue architecture in expanding wheat leaves</article-title>
.
<source>Planta</source>
<volume>220</volume>
:
<fpage>838</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="pmid">15503127</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Parkhurst1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parkhurst</surname>
<given-names>DF</given-names>
</name>
(
<year>1994</year>
)
<article-title>Diffusion of CO
<sub>2</sub>
and other gases inside leaves</article-title>
.
<source>New Phytol</source>
<volume>126</volume>
:
<fpage>449</fpage>
<lpage>479</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Farquhar3">
<label>37</label>
<mixed-citation publication-type="other">Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, editors. Physiological Plant Ecology II. Water relations and carbon assimilation. Encyclopedia of Plant Physiol. New Series, Vol. 12 B. Berlin: Springer. pp. 549–588.</mixed-citation>
</ref>
<ref id="pone.0048376-Parkhurst2">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parkhurst</surname>
<given-names>DF</given-names>
</name>
,
<name>
<surname>Mott</surname>
<given-names>KA</given-names>
</name>
(
<year>1990</year>
)
<article-title>Intercellular diffusion limits to CO
<sub>2</sub>
uptake in leaves. Studies in air and helox</article-title>
.
<source>Plant Physiol</source>
<volume>94</volume>
:
<fpage>1024</fpage>
<lpage>1032</lpage>
<pub-id pub-id-type="pmid">16667792</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Dreyer1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dreyer</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Le Roux</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Montpied</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Daudet</surname>
<given-names>AF</given-names>
</name>
,
<name>
<surname>Masson</surname>
<given-names>F</given-names>
</name>
(
<year>2001</year>
)
<article-title>Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species</article-title>
.
<source>Tree Physiol</source>
<volume>21</volume>
:
<fpage>223</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="pmid">11276416</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Medlyn1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Medlyn</surname>
<given-names>BE</given-names>
</name>
,
<name>
<surname>Dreyer</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Ellsworth</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Forstreuter</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Harley</surname>
<given-names>PC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data</article-title>
.
<source>Plant Cell Environ</source>
<volume>25</volume>
:
<fpage>1167</fpage>
<lpage>1179</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Archontoulis1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Archontoulis</surname>
<given-names>SV</given-names>
</name>
,
<name>
<surname>Yin</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Vos</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Danalatos</surname>
<given-names>NG</given-names>
</name>
,
<name>
<surname>Struik</surname>
<given-names>PC</given-names>
</name>
(
<year>2012</year>
)
<article-title>Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species</article-title>
?.
<source>J Exp Bot</source>
<volume>63</volume>
:
<fpage>895</fpage>
<lpage>911</lpage>
<pub-id pub-id-type="pmid">22021569</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-DePury1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>De Pury</surname>
<given-names>DGG</given-names>
</name>
,
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
(
<year>1997</year>
)
<article-title>Simple scaling of photosynthesis from leaves to canopies without the errors of the big-leaf models</article-title>
.
<source>Plant Cell Environ</source>
<volume>20</volume>
:
<fpage>537</fpage>
<lpage>557</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Lide1">
<label>43</label>
<mixed-citation publication-type="other">Lide DR (1999) In:Handbook of Chemistry and Physics. Boca Raton: CRC Press.</mixed-citation>
</ref>
<ref id="pone.0048376-Badger1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Badger</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Collatz</surname>
<given-names>GJ</given-names>
</name>
(
<year>1977</year>
)
<article-title>Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters</article-title>
.
<source>Carnegie Institute of Washington Yearbook</source>
<volume>16</volume>
:
<fpage>355</fpage>
<lpage>361</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Gillon1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gillon</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Yakir</surname>
<given-names>D</given-names>
</name>
(
<year>2000</year>
)
<article-title>Internal conductance to CO
<sub>2</sub>
diffusion and C
<sup>18</sup>
OO discrimination in C
<sub>3</sub>
leaves</article-title>
.
<source>Plant Physiol</source>
<volume>123</volume>
:
<fpage>201</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="pmid">10806237</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Fabre1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fabre</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Reiter</surname>
<given-names>IM</given-names>
</name>
,
<name>
<surname>Becuwe-Linka</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Genty</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Rumeau</surname>
<given-names>D</given-names>
</name>
(
<year>2007</year>
)
<article-title>Characterization and expression analysis of genes encoding a and b carbonic anhydrases in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Plant Cell Environ</source>
<volume>30</volume>
:
<fpage>617</fpage>
<lpage>629</lpage>
<pub-id pub-id-type="pmid">17407539</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Gutknecht1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gutknecht</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Bisson</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Tosteson</surname>
<given-names>FC</given-names>
</name>
(
<year>1977</year>
)
<article-title>Diffusion of carbon dioxide through lipid bilayer membranes: effect of carbonic anhydrase, bicarbonate, and unstirred layers</article-title>
.
<source>J Gen Physiol</source>
<volume>69</volume>
:
<fpage>779</fpage>
<lpage>794</lpage>
<pub-id pub-id-type="pmid">408462</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans4">
<label>48</label>
<mixed-citation publication-type="other">Evans JR, Loreto F (2000) Acquisition and diffusion of CO
<sub>2</sub>
in higher plant leaves. In: Leegood RC, Sharkey TD, von Caemmerer S, editors. Photosynthesis: Physiology and Metabolism. Dordrecht, The Netherlands: Kluwer Academic Publishers. pp. 321–351.</mixed-citation>
</ref>
<ref id="pone.0048376-Terashima2">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Terashima</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Hanba</surname>
<given-names>YT</given-names>
</name>
,
<name>
<surname>Tazoe</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Vyas</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Yano</surname>
<given-names>S</given-names>
</name>
(
<year>2006</year>
)
<article-title>Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO
<sub>2</sub>
diffusion</article-title>
.
<source>J Exp Bot</source>
<volume>57</volume>
:
<fpage>343</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="pmid">16356943</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans5">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Vogelmann</surname>
<given-names>TC</given-names>
</name>
(
<year>2003</year>
)
<article-title>Profiles of
<sup>14</sup>
C fixation through spinach leaves in relation to light absorption and photosynthetic capacity</article-title>
.
<source>Plant Cell Environ</source>
<volume>26</volume>
:
<fpage>547</fpage>
<lpage>560</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans6">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Vogelmann</surname>
<given-names>TC</given-names>
</name>
(
<year>2006</year>
)
<article-title>Photosynthesis within isobilateral Eucalyptus pauciflora leaves</article-title>
.
<source>New Phytol</source>
<volume>171</volume>
:
<fpage>771</fpage>
<lpage>782</lpage>
<pub-id pub-id-type="pmid">16918548</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Colman1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Colman</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Espie</surname>
<given-names>GS</given-names>
</name>
(
<year>1985</year>
)
<article-title>CO
<sub>2</sub>
uptake and transport in leaf mesophyll cells</article-title>
.
<source>Plant Cell Environ</source>
<volume>8</volume>
:
<fpage>449</fpage>
<lpage>457</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Lloyd1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lloyd</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Syvertsen</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Kriedemann</surname>
<given-names>PE</given-names>
</name>
,
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
(
<year>1992</year>
)
<article-title>Low conductances for CO
<sub>2</sub>
diffusion from stomata to the sites of carboxylation in leaves of woody species</article-title>
.
<source>Plant Cell Environ</source>
<volume>15</volume>
:
<fpage>873</fpage>
<lpage>899</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Syvertsen1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Syvertsen</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Lloyd</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>McConchie</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Kriedemann</surname>
<given-names>PE</given-names>
</name>
,
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
(
<year>1995</year>
)
<article-title>On the relationship between leaf anatomy and CO
<sub>2</sub>
diffusion through the mesophyll of hypostomatous leaves</article-title>
.
<source>Plant Cell Environ</source>
<volume>18</volume>
:
<fpage>149</fpage>
<lpage>157</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Pieruschka1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pieruschka</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Schurr</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Jahnke</surname>
<given-names>S</given-names>
</name>
(
<year>2005</year>
)
<article-title>Lateral gas diffusion inside leaves</article-title>
.
<source>J Exp Bot</source>
<volume>56</volume>
:
<fpage>857</fpage>
<lpage>864</lpage>
<pub-id pub-id-type="pmid">15668225</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Morison2">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morison</surname>
<given-names>JIL</given-names>
</name>
,
<name>
<surname>Gallouet</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Lawson</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Cornic</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Herbin</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Lateral diffusion of CO
<sub>2</sub>
in leaves is not sufficient to support photosynthesis</article-title>
.
<source>Plant Physiol</source>
<volume>139</volume>
:
<fpage>254</fpage>
<lpage>266</lpage>
<pub-id pub-id-type="pmid">16113223</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Morison3">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morison</surname>
<given-names>JIL</given-names>
</name>
,
<name>
<surname>Lawson</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Cornic</surname>
<given-names>G</given-names>
</name>
(
<year>2007</year>
)
<article-title>Lateral CO
<sub>2</sub>
diffusion inside dicotyledonous leaves can be substantial: quantification in different light intensities</article-title>
.
<source>Plant Physiol</source>
<volume>145</volume>
:
<fpage>680</fpage>
<lpage>690</lpage>
<pub-id pub-id-type="pmid">17905868</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Kuroki1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kuroki</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Oshita</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Sotome</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Kawagoe</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Seo</surname>
<given-names>Y</given-names>
</name>
(
<year>2004</year>
)
<article-title>Visualisation of 3-D network of gas-filled intercellular spaces in cucumber fruit after harvest</article-title>
.
<source>Postharvest Biol Technol</source>
<volume>33</volume>
:
<fpage>255</fpage>
<lpage>262</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Mendoza1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mendoza</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Verboven</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mebatsion</surname>
<given-names>HK</given-names>
</name>
,
<name>
<surname>Kerckhofs</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Wevers</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography</article-title>
.
<source>Planta</source>
<volume>226</volume>
:
<fpage>559</fpage>
<lpage>570</lpage>
<pub-id pub-id-type="pmid">17361459</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Verboven1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Verboven</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Kerckhofs</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Mebatsion</surname>
<given-names>HK</given-names>
</name>
,
<name>
<surname>Ho</surname>
<given-names>QT</given-names>
</name>
,
<name>
<surname>Temst</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>3-D gas exchange pathways in pome fruit characterised by synchrotron X-ray computed tomography</article-title>
.
<source>Plant Physiol</source>
<volume>147</volume>
:
<fpage>518</fpage>
<lpage>527</lpage>
<pub-id pub-id-type="pmid">18417636</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Kaiser1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kaiser</surname>
<given-names>H</given-names>
</name>
(
<year>2009</year>
)
<article-title>The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll</article-title>
.
<source>Plant Cell Environ</source>
<volume>32</volume>
:
<fpage>1091</fpage>
<lpage>1098</lpage>
<pub-id pub-id-type="pmid">19422613</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Evans7">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
(
<year>2009</year>
)
<article-title>Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model</article-title>
.
<source>Plant and Cell Physiol</source>
<volume>50</volume>
:
<fpage>698</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">19282373</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Terashima3">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Terashima</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Fujita</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Inoue</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Chow</surname>
<given-names>WS</given-names>
</name>
,
<name>
<surname>Oguchi</surname>
<given-names>R</given-names>
</name>
(
<year>2009</year>
)
<article-title>Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green</article-title>
.
<source>Plant and Cell Physiol</source>
<volume>50</volume>
:
<fpage>684</fpage>
<lpage>697</lpage>
<pub-id pub-id-type="pmid">19246458</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Verboven2">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Verboven</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Pedersen</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Herremans</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Ho</surname>
<given-names>QT</given-names>
</name>
,
<name>
<surname>Nicolaï</surname>
<given-names>BM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Root aeration via aerenchymatous phellem – 3-D micro-imaging and radial O
<sub>2</sub>
profiles in
<italic>Melilotus siculus</italic>
</article-title>
.
<source>New Phytol</source>
<volume>193</volume>
:
<fpage>420</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">22029709</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Terashima4">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Terashima</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Saeki</surname>
<given-names>T</given-names>
</name>
(
<year>1985</year>
)
<article-title>A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf</article-title>
.
<source>Ann Bot</source>
<volume>56</volume>
:
<fpage>489</fpage>
<lpage>499</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Vogelmann1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vogelmann</surname>
<given-names>TC</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
(
<year>2002</year>
)
<article-title>Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence</article-title>
.
<source>Plant Cell Environ</source>
<volume>25</volume>
:
<fpage>1313</fpage>
<lpage>1323</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Sharkey2">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sharkey</surname>
<given-names>TD</given-names>
</name>
(
<year>1985</year>
)
<article-title>Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations</article-title>
.
<source>Bot Rev</source>
<volume>51</volume>
:
<fpage>53</fpage>
<lpage>105</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Yin4">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>van Oijen</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Schapendonk</surname>
<given-names>AHCM</given-names>
</name>
(
<year>2004</year>
)
<article-title>Extension of a biochemical model for the generalised stoichiometry of electron transport limited C3 photosynthesis</article-title>
.
<source>Plant Cell Environ</source>
<volume>27</volume>
:
<fpage>1211</fpage>
<lpage>1222</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-RezvaniMoghaddam1">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rezvani Moghaddam</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Wilman</surname>
<given-names>D</given-names>
</name>
(
<year>1998</year>
)
<article-title>Cell wall thickness and cell dimensions in plant parts of eight forage species</article-title>
.
<source>J Agric Sci</source>
<volume>131</volume>
:
<fpage>59</fpage>
<lpage>67</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Dupuy1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dupuy</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Mackenzie</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Haseloff</surname>
<given-names>J</given-names>
</name>
(
<year>2010</year>
)
<article-title>Coordination of plant cell division and expansion in a simple morphogenetic system</article-title>
.
<source>PNAS</source>
<volume>107</volume>
:
<fpage>2711</fpage>
<lpage>2716</lpage>
<pub-id pub-id-type="pmid">20133808</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Buchanan1">
<label>71</label>
<mixed-citation publication-type="other">Buchanan BB, Gruissem W, Jones RL (2000) In:Biochemistry and molecular biology of plants. Rockville, Maryland: American Society of Plant Physiologists.</mixed-citation>
</ref>
<ref id="pone.0048376-James1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>James</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Munns</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Trejo</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Miller</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Photosynthetic capacity is related to the cellular and subcellular partitioning of Na
<sup>+</sup>
, K
<sup>+</sup>
and Cl
<sup></sup>
in salt-affected barley and durum wheat</article-title>
.
<source>Plant Cell Environ</source>
<volume>29</volume>
:
<fpage>2185</fpage>
<lpage>2197</lpage>
<pub-id pub-id-type="pmid">17081251</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Warren1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Warren</surname>
<given-names>CR</given-names>
</name>
(
<year>2004</year>
)
<article-title>The photosynthetic limitation posed by internal conductance to CO
<sub>2</sub>
movement is increased by nutrient supply</article-title>
.
<source>J Exp Bot</source>
<volume>55</volume>
:
<fpage>2313</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="pmid">15310814</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Genty1">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Genty</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Briantais</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Baker</surname>
<given-names>N</given-names>
</name>
(
<year>1989</year>
)
<article-title>The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence</article-title>
.
<source>Biochim Biophys Acta</source>
<volume>990</volume>
:
<fpage>87</fpage>
<lpage>92</lpage>
</mixed-citation>
</ref>
<ref id="pone.0048376-Knabner1">
<label>75</label>
<mixed-citation publication-type="other">Knabner P, Angermann L (2003) In:Numerical methods for elliptic and parabolic partial differential equations. New York: Springer-Verlag.</mixed-citation>
</ref>
<ref id="pone.0048376-Geers1">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>Geers</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Gros</surname>
<given-names>G</given-names>
</name>
(
<year>2000</year>
)
<article-title>Carbon dioxide transport and carbonic anhydrase in blood and muscle</article-title>
.
<source>Physiol Rev</source>
<volume>80</volume>
:
<fpage>681</fpage>
<lpage>715</lpage>
<pub-id pub-id-type="pmid">10747205</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0048376-Jolly1">
<label>77</label>
<mixed-citation publication-type="other">Jolly WL (1985) In:Modern inorganic chemistry. New York: McGraw-Hill.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0002050 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0002050 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024