Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree

Identifieur interne : 000054 ( PascalFrancis/Corpus ); précédent : 000053; suivant : 000055

3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree

Auteurs : Dimitry Van Der Zande ; Simone Mereu ; Nadezhda Nadezhdina ; Jan Cermak ; Bart Muys ; Pol Coppin ; Fausto Manes

Source :

RBID : Pascal:09-0386917

Descripteurs français

English descriptors

Abstract

The reliability of plant upscaling methods strongly depends on a precise calculation of the intercepted radiation, which in turn depends on the three-dimensional distribution of the plant biomass. A three-dimensional LiDAR upscaling procedure (LUP) based on a fine description of plant structure is proposed. The voxel-based vegetative elements distribution of a Quercus ilex L. tree was acquired with a ground-based LiDAR system. These preprocessed LiDAR data were imported into a ray tracing program in order to simulate the light environment through the crown during 15 days on a half hour time step. The obtained light environments were then used as input for a Jarvis-type conductance model in order to calculate the transpiration per voxel by inverting the Penman-Monteith equation. The approach reproduced the vertical LAI profile of the tree and the exponential extinction of light through the canopy. It also provided the possibility to observe the contribution of any voxel inside the crown to the total transpiration. The LAI of the tree measured by the LiDAR system resulted in a value of 3.97, comparable with LAI measured using the hemispherical photography and a LICOR LAI 2000, 3.64 and 4.1 respectively. Maximum conductance (gs,max) varied between 70 and 210 mmol H2O m-2 s-1 depending on the average daily intercepted radiation. The total transpiration rate of the tree was obtained by integrating transpiration of all voxels and validated by comparison with direct measurements of sap flow in August, September and October with a different water availability, 10%, 15% and 19%. The method yielded an R2 of 0.90, without the need to parameterize coefficients with the direct measurements. It is shown how the most shaded parts of the canopy (voxels that intercepted 0-20% of the total daily radiation) contributed the most to the total transpiration because of the wider surface of this class. The model also predicts a ratio between leaf maximum conductance (gs) of sun leaves and canopy maximum conductance (Gsmax) of 2.56. Both these results suggest that shade leaves instead of sun leaves should be chosen as sample leaves for upscaling purposes. The reliability of the developed method proved to be independent of the horizontal heterogeneity of the canopy. This independence is maid possible by the choice to describe the 3D light environment with small voxels (0.1 m3), hence this methods intrinsically takes into account gaps and leaf clumping. Given the heterogeneity of the canopy, 10-26% of the initial incoming radiation was allowed to reach the understorey directly. The combination of structural LiDAR data with ecophysiological measurements proved to be a valid tool for upscaling. However some steps in the procedure could be optimized, leaving space for further improvements.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0168-1923
A02 01      @0 AFMEEB
A03   1    @0 Agric. for. meteorol.
A05       @2 149
A06       @2 10
A08 01  1  ENG  @1 3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree
A11 01  1    @1 VAN DER ZANDE (Dimitry)
A11 02  1    @1 MEREU (Simone)
A11 03  1    @1 NADEZHDINA (Nadezhda)
A11 04  1    @1 CERMAK (Jan)
A11 05  1    @1 MUYS (Bart)
A11 06  1    @1 COPPIN (Pol)
A11 07  1    @1 MANES (Fausto)
A14 01      @1 Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E @2 3001 Leuven @3 BEL @Z 1 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5 @2 00152 Rome @3 ITA @Z 2 aut. @Z 4 aut. @Z 7 aut.
A14 03      @1 Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3 @2 613 00 Bmo @3 CZE @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 04      @1 Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E @2 3001 Leuven @3 BEL @Z 2 aut. @Z 4 aut. @Z 5 aut.
A20       @1 1573-1583
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 11784 @5 354000187630790020
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 09-0386917
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Agricultural and forest meteorology
A66 01      @0 NLD
C01 01    ENG  @0 The reliability of plant upscaling methods strongly depends on a precise calculation of the intercepted radiation, which in turn depends on the three-dimensional distribution of the plant biomass. A three-dimensional LiDAR upscaling procedure (LUP) based on a fine description of plant structure is proposed. The voxel-based vegetative elements distribution of a Quercus ilex L. tree was acquired with a ground-based LiDAR system. These preprocessed LiDAR data were imported into a ray tracing program in order to simulate the light environment through the crown during 15 days on a half hour time step. The obtained light environments were then used as input for a Jarvis-type conductance model in order to calculate the transpiration per voxel by inverting the Penman-Monteith equation. The approach reproduced the vertical LAI profile of the tree and the exponential extinction of light through the canopy. It also provided the possibility to observe the contribution of any voxel inside the crown to the total transpiration. The LAI of the tree measured by the LiDAR system resulted in a value of 3.97, comparable with LAI measured using the hemispherical photography and a LICOR LAI 2000, 3.64 and 4.1 respectively. Maximum conductance (gs,max) varied between 70 and 210 mmol H2O m-2 s-1 depending on the average daily intercepted radiation. The total transpiration rate of the tree was obtained by integrating transpiration of all voxels and validated by comparison with direct measurements of sap flow in August, September and October with a different water availability, 10%, 15% and 19%. The method yielded an R2 of 0.90, without the need to parameterize coefficients with the direct measurements. It is shown how the most shaded parts of the canopy (voxels that intercepted 0-20% of the total daily radiation) contributed the most to the total transpiration because of the wider surface of this class. The model also predicts a ratio between leaf maximum conductance (gs) of sun leaves and canopy maximum conductance (Gsmax) of 2.56. Both these results suggest that shade leaves instead of sun leaves should be chosen as sample leaves for upscaling purposes. The reliability of the developed method proved to be independent of the horizontal heterogeneity of the canopy. This independence is maid possible by the choice to describe the 3D light environment with small voxels (0.1 m3), hence this methods intrinsically takes into account gaps and leaf clumping. Given the heterogeneity of the canopy, 10-26% of the initial incoming radiation was allowed to reach the understorey directly. The combination of structural LiDAR data with ecophysiological measurements proved to be a valid tool for upscaling. However some steps in the procedure could be optimized, leaving space for further improvements.
C02 01  X    @0 002A32C03
C03 01  X  FRE  @0 Transformation échelle @5 01
C03 01  X  ENG  @0 Scale transformation @5 01
C03 01  X  SPA  @0 Transformación escala @5 01
C03 02  X  FRE  @0 Transpiration @5 02
C03 02  X  ENG  @0 Transpiration @5 02
C03 02  X  SPA  @0 Transpiración @5 02
C03 03  X  FRE  @0 Feuille végétal @5 03
C03 03  X  ENG  @0 Plant leaf @5 03
C03 03  X  SPA  @0 Hoja vegetal @5 03
C03 04  X  FRE  @0 Utilisation @5 04
C03 04  X  ENG  @0 Use @5 04
C03 04  X  SPA  @0 Uso @5 04
C03 05  X  FRE  @0 Mesure basée sol @5 05
C03 05  X  ENG  @0 Ground based measurement @5 05
C03 05  X  SPA  @0 Medida en tierra @5 05
C03 06  X  FRE  @0 Radar optique @5 06
C03 06  X  ENG  @0 Lidar @5 06
C03 06  X  SPA  @0 Radar óptico @5 06
C03 07  X  FRE  @0 Application @5 07
C03 07  X  ENG  @0 Application @5 07
C03 07  X  SPA  @0 Aplicación @5 07
C03 08  X  FRE  @0 Structure végétation @5 08
C03 08  X  ENG  @0 Vegetation structure @5 08
C03 08  X  SPA  @0 Estructura vegetación @5 08
C03 09  X  FRE  @0 Canopée @5 09
C03 09  X  ENG  @0 Canopy(vegetation) @5 09
C03 09  X  SPA  @0 Dosel @5 09
C03 10  X  FRE  @0 Quercus ilex @2 NS @5 10
C03 10  X  ENG  @0 Quercus ilex @2 NS @5 10
C03 10  X  SPA  @0 Quercus ilex @2 NS @5 10
C03 11  X  FRE  @0 Région méditerranéenne @5 20
C03 11  X  ENG  @0 Mediterranean region @5 20
C03 11  X  SPA  @0 Región mediterránea @5 20
C03 12  X  FRE  @0 Lumière @5 28
C03 12  X  ENG  @0 Light @5 28
C03 12  X  SPA  @0 Luz @5 28
C03 13  X  FRE  @0 Environnement physique @5 29
C03 13  X  ENG  @0 Physical environment @5 29
C03 13  X  SPA  @0 Medio ambiente físico @5 29
C03 14  X  FRE  @0 Tracé rayon @5 30
C03 14  X  ENG  @0 Ray tracing @5 30
C03 14  X  SPA  @0 Trazado rayos @5 30
C03 15  X  FRE  @0 Augmentation échelle @4 CD @5 96
C03 15  X  ENG  @0 Scaling-up @4 CD @5 96
C03 15  X  SPA  @0 Aumento de escala @4 CD @5 96
C07 01  X  FRE  @0 Fagaceae @2 NS
C07 01  X  ENG  @0 Fagaceae @2 NS
C07 01  X  SPA  @0 Fagaceae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Plante feuillage persistant @5 31
C07 05  X  ENG  @0 Evergreen plant @5 31
C07 05  X  SPA  @0 Planta siempreverde @5 31
C07 06  X  FRE  @0 Arbre forestier feuillu @5 32
C07 06  X  ENG  @0 Hardwood forest tree @5 32
C07 06  X  SPA  @0 Arbol forestal frondoso @5 32
C07 07  X  FRE  @0 Appareil végétatif @5 33
C07 07  X  ENG  @0 Vegetative apparatus @5 33
C07 07  X  SPA  @0 Sistema vegetativo @5 33
C07 08  X  FRE  @0 Instrument optique @5 34
C07 08  X  ENG  @0 Optical instrument @5 34
C07 08  X  SPA  @0 Instrumento óptico @5 34
C07 09  X  FRE  @0 Dispositif optoélectronique @5 35
C07 09  X  ENG  @0 Optoelectronic device @5 35
C07 09  X  SPA  @0 Dispositivo optoelectrónico @5 35
C07 10  X  FRE  @0 Onde électromagnétique @5 36
C07 10  X  ENG  @0 Electromagnetic wave @5 36
C07 10  X  SPA  @0 Onda electromagnética @5 36
C07 11  X  FRE  @0 Arbre forestier @5 39
C07 11  X  ENG  @0 Forest tree @5 39
C07 11  X  SPA  @0 Arbol forestal @5 39
C07 12  X  FRE  @0 Plante ligneuse @5 40
C07 12  X  ENG  @0 Woody plant @5 40
C07 12  X  SPA  @0 Planta leñosa @5 40
C07 13  X  FRE  @0 Végétal @5 41
C07 13  X  ENG  @0 Vegetals @5 41
C07 13  X  SPA  @0 Vegetal @5 41
N21       @1 278
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0386917 INIST
ET : 3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree
AU : VAN DER ZANDE (Dimitry); MEREU (Simone); NADEZHDINA (Nadezhda); CERMAK (Jan); MUYS (Bart); COPPIN (Pol); MANES (Fausto)
AF : Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E/3001 Leuven/Belgique (1 aut., 4 aut., 6 aut.); University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5/00152 Rome/Italie (2 aut., 4 aut., 7 aut.); Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3/613 00 Bmo/Tchèque, République (2 aut., 3 aut., 4 aut.); Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E/3001 Leuven/Belgique (2 aut., 4 aut., 5 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : Agricultural and forest meteorology; ISSN 0168-1923; Coden AFMEEB; Pays-Bas; Da. 2009; Vol. 149; No. 10; Pp. 1573-1583; Bibl. 3/4 p.
LA : Anglais
EA : The reliability of plant upscaling methods strongly depends on a precise calculation of the intercepted radiation, which in turn depends on the three-dimensional distribution of the plant biomass. A three-dimensional LiDAR upscaling procedure (LUP) based on a fine description of plant structure is proposed. The voxel-based vegetative elements distribution of a Quercus ilex L. tree was acquired with a ground-based LiDAR system. These preprocessed LiDAR data were imported into a ray tracing program in order to simulate the light environment through the crown during 15 days on a half hour time step. The obtained light environments were then used as input for a Jarvis-type conductance model in order to calculate the transpiration per voxel by inverting the Penman-Monteith equation. The approach reproduced the vertical LAI profile of the tree and the exponential extinction of light through the canopy. It also provided the possibility to observe the contribution of any voxel inside the crown to the total transpiration. The LAI of the tree measured by the LiDAR system resulted in a value of 3.97, comparable with LAI measured using the hemispherical photography and a LICOR LAI 2000, 3.64 and 4.1 respectively. Maximum conductance (gs,max) varied between 70 and 210 mmol H2O m-2 s-1 depending on the average daily intercepted radiation. The total transpiration rate of the tree was obtained by integrating transpiration of all voxels and validated by comparison with direct measurements of sap flow in August, September and October with a different water availability, 10%, 15% and 19%. The method yielded an R2 of 0.90, without the need to parameterize coefficients with the direct measurements. It is shown how the most shaded parts of the canopy (voxels that intercepted 0-20% of the total daily radiation) contributed the most to the total transpiration because of the wider surface of this class. The model also predicts a ratio between leaf maximum conductance (gs) of sun leaves and canopy maximum conductance (Gsmax) of 2.56. Both these results suggest that shade leaves instead of sun leaves should be chosen as sample leaves for upscaling purposes. The reliability of the developed method proved to be independent of the horizontal heterogeneity of the canopy. This independence is maid possible by the choice to describe the 3D light environment with small voxels (0.1 m3), hence this methods intrinsically takes into account gaps and leaf clumping. Given the heterogeneity of the canopy, 10-26% of the initial incoming radiation was allowed to reach the understorey directly. The combination of structural LiDAR data with ecophysiological measurements proved to be a valid tool for upscaling. However some steps in the procedure could be optimized, leaving space for further improvements.
CC : 002A32C03
FD : Transformation échelle; Transpiration; Feuille végétal; Utilisation; Mesure basée sol; Radar optique; Application; Structure végétation; Canopée; Quercus ilex; Région méditerranéenne; Lumière; Environnement physique; Tracé rayon; Augmentation échelle
FG : Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Plante feuillage persistant; Arbre forestier feuillu; Appareil végétatif; Instrument optique; Dispositif optoélectronique; Onde électromagnétique; Arbre forestier; Plante ligneuse; Végétal
ED : Scale transformation; Transpiration; Plant leaf; Use; Ground based measurement; Lidar; Application; Vegetation structure; Canopy(vegetation); Quercus ilex; Mediterranean region; Light; Physical environment; Ray tracing; Scaling-up
EG : Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Evergreen plant; Hardwood forest tree; Vegetative apparatus; Optical instrument; Optoelectronic device; Electromagnetic wave; Forest tree; Woody plant; Vegetals
SD : Transformación escala; Transpiración; Hoja vegetal; Uso; Medida en tierra; Radar óptico; Aplicación; Estructura vegetación; Dosel; Quercus ilex; Región mediterránea; Luz; Medio ambiente físico; Trazado rayos; Aumento de escala
LO : INIST-11784.354000187630790020
ID : 09-0386917

Links to Exploration step

Pascal:09-0386917

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree</title>
<author>
<name sortKey="Van Der Zande, Dimitry" sort="Van Der Zande, Dimitry" uniqKey="Van Der Zande D" first="Dimitry" last="Van Der Zande">Dimitry Van Der Zande</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mereu, Simone" sort="Mereu, Simone" uniqKey="Mereu S" first="Simone" last="Mereu">Simone Mereu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nadezhdina, Nadezhda" sort="Nadezhdina, Nadezhda" uniqKey="Nadezhdina N" first="Nadezhda" last="Nadezhdina">Nadezhda Nadezhdina</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cermak, Jan" sort="Cermak, Jan" uniqKey="Cermak J" first="Jan" last="Cermak">Jan Cermak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Muys, Bart" sort="Muys, Bart" uniqKey="Muys B" first="Bart" last="Muys">Bart Muys</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Coppin, Pol" sort="Coppin, Pol" uniqKey="Coppin P" first="Pol" last="Coppin">Pol Coppin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Manes, Fausto" sort="Manes, Fausto" uniqKey="Manes F" first="Fausto" last="Manes">Fausto Manes</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0386917</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0386917 INIST</idno>
<idno type="RBID">Pascal:09-0386917</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree</title>
<author>
<name sortKey="Van Der Zande, Dimitry" sort="Van Der Zande, Dimitry" uniqKey="Van Der Zande D" first="Dimitry" last="Van Der Zande">Dimitry Van Der Zande</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mereu, Simone" sort="Mereu, Simone" uniqKey="Mereu S" first="Simone" last="Mereu">Simone Mereu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nadezhdina, Nadezhda" sort="Nadezhdina, Nadezhda" uniqKey="Nadezhdina N" first="Nadezhda" last="Nadezhdina">Nadezhda Nadezhdina</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cermak, Jan" sort="Cermak, Jan" uniqKey="Cermak J" first="Jan" last="Cermak">Jan Cermak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Muys, Bart" sort="Muys, Bart" uniqKey="Muys B" first="Bart" last="Muys">Bart Muys</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Coppin, Pol" sort="Coppin, Pol" uniqKey="Coppin P" first="Pol" last="Coppin">Pol Coppin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Manes, Fausto" sort="Manes, Fausto" uniqKey="Manes F" first="Fausto" last="Manes">Fausto Manes</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Agricultural and forest meteorology</title>
<title level="j" type="abbreviated">Agric. for. meteorol.</title>
<idno type="ISSN">0168-1923</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Agricultural and forest meteorology</title>
<title level="j" type="abbreviated">Agric. for. meteorol.</title>
<idno type="ISSN">0168-1923</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Application</term>
<term>Canopy(vegetation)</term>
<term>Ground based measurement</term>
<term>Lidar</term>
<term>Light</term>
<term>Mediterranean region</term>
<term>Physical environment</term>
<term>Plant leaf</term>
<term>Quercus ilex</term>
<term>Ray tracing</term>
<term>Scale transformation</term>
<term>Scaling-up</term>
<term>Transpiration</term>
<term>Use</term>
<term>Vegetation structure</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transformation échelle</term>
<term>Transpiration</term>
<term>Feuille végétal</term>
<term>Utilisation</term>
<term>Mesure basée sol</term>
<term>Radar optique</term>
<term>Application</term>
<term>Structure végétation</term>
<term>Canopée</term>
<term>Quercus ilex</term>
<term>Région méditerranéenne</term>
<term>Lumière</term>
<term>Environnement physique</term>
<term>Tracé rayon</term>
<term>Augmentation échelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The reliability of plant upscaling methods strongly depends on a precise calculation of the intercepted radiation, which in turn depends on the three-dimensional distribution of the plant biomass. A three-dimensional LiDAR upscaling procedure (LUP) based on a fine description of plant structure is proposed. The voxel-based vegetative elements distribution of a Quercus ilex L. tree was acquired with a ground-based LiDAR system. These preprocessed LiDAR data were imported into a ray tracing program in order to simulate the light environment through the crown during 15 days on a half hour time step. The obtained light environments were then used as input for a Jarvis-type conductance model in order to calculate the transpiration per voxel by inverting the Penman-Monteith equation. The approach reproduced the vertical LAI profile of the tree and the exponential extinction of light through the canopy. It also provided the possibility to observe the contribution of any voxel inside the crown to the total transpiration. The LAI of the tree measured by the LiDAR system resulted in a value of 3.97, comparable with LAI measured using the hemispherical photography and a LICOR LAI 2000, 3.64 and 4.1 respectively. Maximum conductance (g
<sub>s</sub>
,
<sub>max</sub>
) varied between 70 and 210 mmol H
<sub>2</sub>
O m
<sup>-2</sup>
s
<sup>-1</sup>
depending on the average daily intercepted radiation. The total transpiration rate of the tree was obtained by integrating transpiration of all voxels and validated by comparison with direct measurements of sap flow in August, September and October with a different water availability, 10%, 15% and 19%. The method yielded an R
<sup>2</sup>
of 0.90, without the need to parameterize coefficients with the direct measurements. It is shown how the most shaded parts of the canopy (voxels that intercepted 0-20% of the total daily radiation) contributed the most to the total transpiration because of the wider surface of this class. The model also predicts a ratio between leaf maximum conductance (g
<sub>s</sub>
) of sun leaves and canopy maximum conductance (G
<sub>smax</sub>
) of 2.56. Both these results suggest that shade leaves instead of sun leaves should be chosen as sample leaves for upscaling purposes. The reliability of the developed method proved to be independent of the horizontal heterogeneity of the canopy. This independence is maid possible by the choice to describe the 3D light environment with small voxels (0.1 m
<sup>3</sup>
), hence this methods intrinsically takes into account gaps and leaf clumping. Given the heterogeneity of the canopy, 10-26% of the initial incoming radiation was allowed to reach the understorey directly. The combination of structural LiDAR data with ecophysiological measurements proved to be a valid tool for upscaling. However some steps in the procedure could be optimized, leaving space for further improvements.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0168-1923</s0>
</fA01>
<fA02 i1="01">
<s0>AFMEEB</s0>
</fA02>
<fA03 i2="1">
<s0>Agric. for. meteorol.</s0>
</fA03>
<fA05>
<s2>149</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VAN DER ZANDE (Dimitry)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MEREU (Simone)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NADEZHDINA (Nadezhda)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CERMAK (Jan)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MUYS (Bart)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>COPPIN (Pol)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MANES (Fausto)</s1>
</fA11>
<fA14 i1="01">
<s1>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5</s1>
<s2>00152 Rome</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3</s1>
<s2>613 00 Bmo</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>1573-1583</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11784</s2>
<s5>354000187630790020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0386917</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Agricultural and forest meteorology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The reliability of plant upscaling methods strongly depends on a precise calculation of the intercepted radiation, which in turn depends on the three-dimensional distribution of the plant biomass. A three-dimensional LiDAR upscaling procedure (LUP) based on a fine description of plant structure is proposed. The voxel-based vegetative elements distribution of a Quercus ilex L. tree was acquired with a ground-based LiDAR system. These preprocessed LiDAR data were imported into a ray tracing program in order to simulate the light environment through the crown during 15 days on a half hour time step. The obtained light environments were then used as input for a Jarvis-type conductance model in order to calculate the transpiration per voxel by inverting the Penman-Monteith equation. The approach reproduced the vertical LAI profile of the tree and the exponential extinction of light through the canopy. It also provided the possibility to observe the contribution of any voxel inside the crown to the total transpiration. The LAI of the tree measured by the LiDAR system resulted in a value of 3.97, comparable with LAI measured using the hemispherical photography and a LICOR LAI 2000, 3.64 and 4.1 respectively. Maximum conductance (g
<sub>s</sub>
,
<sub>max</sub>
) varied between 70 and 210 mmol H
<sub>2</sub>
O m
<sup>-2</sup>
s
<sup>-1</sup>
depending on the average daily intercepted radiation. The total transpiration rate of the tree was obtained by integrating transpiration of all voxels and validated by comparison with direct measurements of sap flow in August, September and October with a different water availability, 10%, 15% and 19%. The method yielded an R
<sup>2</sup>
of 0.90, without the need to parameterize coefficients with the direct measurements. It is shown how the most shaded parts of the canopy (voxels that intercepted 0-20% of the total daily radiation) contributed the most to the total transpiration because of the wider surface of this class. The model also predicts a ratio between leaf maximum conductance (g
<sub>s</sub>
) of sun leaves and canopy maximum conductance (G
<sub>smax</sub>
) of 2.56. Both these results suggest that shade leaves instead of sun leaves should be chosen as sample leaves for upscaling purposes. The reliability of the developed method proved to be independent of the horizontal heterogeneity of the canopy. This independence is maid possible by the choice to describe the 3D light environment with small voxels (0.1 m
<sup>3</sup>
), hence this methods intrinsically takes into account gaps and leaf clumping. Given the heterogeneity of the canopy, 10-26% of the initial incoming radiation was allowed to reach the understorey directly. The combination of structural LiDAR data with ecophysiological measurements proved to be a valid tool for upscaling. However some steps in the procedure could be optimized, leaving space for further improvements.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transformation échelle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Scale transformation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transformación escala</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transpiration</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Transpiration</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transpiración</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Utilisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Use</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Uso</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mesure basée sol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ground based measurement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Medida en tierra</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Radar optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Lidar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Radar óptico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Application</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Application</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aplicación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure végétation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Vegetation structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura vegetación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Canopée</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Canopy(vegetation)</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dosel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Quercus ilex</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quercus ilex</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Quercus ilex</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Région méditerranéenne</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mediterranean region</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Región mediterránea</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Lumière</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Light</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Luz</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Environnement physique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Physical environment</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Medio ambiente físico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Tracé rayon</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Ray tracing</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Trazado rayos</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Augmentation échelle</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Scaling-up</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aumento de escala</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Plante feuillage persistant</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Evergreen plant</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Planta siempreverde</s0>
<s5>31</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Arbre forestier feuillu</s0>
<s5>32</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Hardwood forest tree</s0>
<s5>32</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Arbol forestal frondoso</s0>
<s5>32</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Appareil végétatif</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Vegetative apparatus</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Sistema vegetativo</s0>
<s5>33</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Instrument optique</s0>
<s5>34</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Optical instrument</s0>
<s5>34</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Instrumento óptico</s0>
<s5>34</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>35</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>35</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>35</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Onde électromagnétique</s0>
<s5>36</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Electromagnetic wave</s0>
<s5>36</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Onda electromagnética</s0>
<s5>36</s5>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Arbre forestier</s0>
<s5>39</s5>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Forest tree</s0>
<s5>39</s5>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Arbol forestal</s0>
<s5>39</s5>
</fC07>
<fC07 i1="12" i2="X" l="FRE">
<s0>Plante ligneuse</s0>
<s5>40</s5>
</fC07>
<fC07 i1="12" i2="X" l="ENG">
<s0>Woody plant</s0>
<s5>40</s5>
</fC07>
<fC07 i1="12" i2="X" l="SPA">
<s0>Planta leñosa</s0>
<s5>40</s5>
</fC07>
<fC07 i1="13" i2="X" l="FRE">
<s0>Végétal</s0>
<s5>41</s5>
</fC07>
<fC07 i1="13" i2="X" l="ENG">
<s0>Vegetals</s0>
<s5>41</s5>
</fC07>
<fC07 i1="13" i2="X" l="SPA">
<s0>Vegetal</s0>
<s5>41</s5>
</fC07>
<fN21>
<s1>278</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0386917 INIST</NO>
<ET>3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree</ET>
<AU>VAN DER ZANDE (Dimitry); MEREU (Simone); NADEZHDINA (Nadezhda); CERMAK (Jan); MUYS (Bart); COPPIN (Pol); MANES (Fausto)</AU>
<AF>Katholieke Universiteit Leuven, Biosystems Departement, M3-BIORES, Celestijnenlaan 200E/3001 Leuven/Belgique (1 aut., 4 aut., 6 aut.); University of Rome "Sapienza", Department of Plant Biology, P.le Aldo moro 5/00152 Rome/Italie (2 aut., 4 aut., 7 aut.); Mendel University of Forestry and agriculture, Institute of Forest Ecology. Zemedelska 3/613 00 Bmo/Tchèque, République (2 aut., 3 aut., 4 aut.); Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200E/3001 Leuven/Belgique (2 aut., 4 aut., 5 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>Agricultural and forest meteorology; ISSN 0168-1923; Coden AFMEEB; Pays-Bas; Da. 2009; Vol. 149; No. 10; Pp. 1573-1583; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>The reliability of plant upscaling methods strongly depends on a precise calculation of the intercepted radiation, which in turn depends on the three-dimensional distribution of the plant biomass. A three-dimensional LiDAR upscaling procedure (LUP) based on a fine description of plant structure is proposed. The voxel-based vegetative elements distribution of a Quercus ilex L. tree was acquired with a ground-based LiDAR system. These preprocessed LiDAR data were imported into a ray tracing program in order to simulate the light environment through the crown during 15 days on a half hour time step. The obtained light environments were then used as input for a Jarvis-type conductance model in order to calculate the transpiration per voxel by inverting the Penman-Monteith equation. The approach reproduced the vertical LAI profile of the tree and the exponential extinction of light through the canopy. It also provided the possibility to observe the contribution of any voxel inside the crown to the total transpiration. The LAI of the tree measured by the LiDAR system resulted in a value of 3.97, comparable with LAI measured using the hemispherical photography and a LICOR LAI 2000, 3.64 and 4.1 respectively. Maximum conductance (g
<sub>s</sub>
,
<sub>max</sub>
) varied between 70 and 210 mmol H
<sub>2</sub>
O m
<sup>-2</sup>
s
<sup>-1</sup>
depending on the average daily intercepted radiation. The total transpiration rate of the tree was obtained by integrating transpiration of all voxels and validated by comparison with direct measurements of sap flow in August, September and October with a different water availability, 10%, 15% and 19%. The method yielded an R
<sup>2</sup>
of 0.90, without the need to parameterize coefficients with the direct measurements. It is shown how the most shaded parts of the canopy (voxels that intercepted 0-20% of the total daily radiation) contributed the most to the total transpiration because of the wider surface of this class. The model also predicts a ratio between leaf maximum conductance (g
<sub>s</sub>
) of sun leaves and canopy maximum conductance (G
<sub>smax</sub>
) of 2.56. Both these results suggest that shade leaves instead of sun leaves should be chosen as sample leaves for upscaling purposes. The reliability of the developed method proved to be independent of the horizontal heterogeneity of the canopy. This independence is maid possible by the choice to describe the 3D light environment with small voxels (0.1 m
<sup>3</sup>
), hence this methods intrinsically takes into account gaps and leaf clumping. Given the heterogeneity of the canopy, 10-26% of the initial incoming radiation was allowed to reach the understorey directly. The combination of structural LiDAR data with ecophysiological measurements proved to be a valid tool for upscaling. However some steps in the procedure could be optimized, leaving space for further improvements.</EA>
<CC>002A32C03</CC>
<FD>Transformation échelle; Transpiration; Feuille végétal; Utilisation; Mesure basée sol; Radar optique; Application; Structure végétation; Canopée; Quercus ilex; Région méditerranéenne; Lumière; Environnement physique; Tracé rayon; Augmentation échelle</FD>
<FG>Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Plante feuillage persistant; Arbre forestier feuillu; Appareil végétatif; Instrument optique; Dispositif optoélectronique; Onde électromagnétique; Arbre forestier; Plante ligneuse; Végétal</FG>
<ED>Scale transformation; Transpiration; Plant leaf; Use; Ground based measurement; Lidar; Application; Vegetation structure; Canopy(vegetation); Quercus ilex; Mediterranean region; Light; Physical environment; Ray tracing; Scaling-up</ED>
<EG>Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Evergreen plant; Hardwood forest tree; Vegetative apparatus; Optical instrument; Optoelectronic device; Electromagnetic wave; Forest tree; Woody plant; Vegetals</EG>
<SD>Transformación escala; Transpiración; Hoja vegetal; Uso; Medida en tierra; Radar óptico; Aplicación; Estructura vegetación; Dosel; Quercus ilex; Región mediterránea; Luz; Medio ambiente físico; Trazado rayos; Aumento de escala</SD>
<LO>INIST-11784.354000187630790020</LO>
<ID>09-0386917</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0386917
   |texte=   3D upscaling of transpiration from leaf to tree using ground-based LiDAR: Application on a Mediterranean Holm oak (Quercus ilex L.) tree
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024