Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems

Identifieur interne : 001100 ( Istex/Corpus ); précédent : 001099; suivant : 001101

Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems

Auteurs : Carolyn F. Weber ; Donald R. Zak ; Bruce A. Hungate ; Robert B. Jackson ; Rytas Vilgalys ; R. David Evans ; Christopher W. Schadt ; J. Patrick Megonigal ; Cheryl R. Kuske

Source :

RBID : ISTEX:A81FDF4886B16BE929CCCA9A94856BF11CDA272A

Abstract

Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.

Url:
DOI: 10.1111/j.1462-2920.2011.02548.x

Links to Exploration step

ISTEX:A81FDF4886B16BE929CCCA9A94856BF11CDA272A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
<author>
<name sortKey="Weber, Carolyn F" sort="Weber, Carolyn F" uniqKey="Weber C" first="Carolyn F." last="Weber">Carolyn F. Weber</name>
<affiliation>
<mods:affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R." last="Zak">Donald R. Zak</name>
<affiliation>
<mods:affiliation>School of Natural Resources & Environment</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A." last="Hungate">Bruce A. Hungate</name>
<affiliation>
<mods:affiliation>Department of Biological Sciences</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Merriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Robert B" sort="Jackson, Robert B" uniqKey="Jackson R" first="Robert B." last="Jackson">Robert B. Jackson</name>
<affiliation>
<mods:affiliation>Department of Biology</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vilgalys, Rytas" sort="Vilgalys, Rytas" uniqKey="Vilgalys R" first="Rytas" last="Vilgalys">Rytas Vilgalys</name>
<affiliation>
<mods:affiliation>Department of Biology</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, R David" sort="Evans, R David" uniqKey="Evans R" first="R. David" last="Evans">R. David Evans</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Washington State University, Pullman, WA 99164, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W." last="Schadt">Christopher W. Schadt</name>
<affiliation>
<mods:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Megonigal, J Patrick" sort="Megonigal, J Patrick" uniqKey="Megonigal J" first="J. Patrick" last="Megonigal">J. Patrick Megonigal</name>
<affiliation>
<mods:affiliation>Smithsonian Environmental Research Center, Washington, DC 20013, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuske, Cheryl R" sort="Kuske, Cheryl R" uniqKey="Kuske C" first="Cheryl R." last="Kuske">Cheryl R. Kuske</name>
<affiliation>
<mods:affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kuske@lanl.gov</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A81FDF4886B16BE929CCCA9A94856BF11CDA272A</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1462-2920.2011.02548.x</idno>
<idno type="url">https://api.istex.fr/document/A81FDF4886B16BE929CCCA9A94856BF11CDA272A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001100</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
<author>
<name sortKey="Weber, Carolyn F" sort="Weber, Carolyn F" uniqKey="Weber C" first="Carolyn F." last="Weber">Carolyn F. Weber</name>
<affiliation>
<mods:affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R." last="Zak">Donald R. Zak</name>
<affiliation>
<mods:affiliation>School of Natural Resources & Environment</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A." last="Hungate">Bruce A. Hungate</name>
<affiliation>
<mods:affiliation>Department of Biological Sciences</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Merriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Robert B" sort="Jackson, Robert B" uniqKey="Jackson R" first="Robert B." last="Jackson">Robert B. Jackson</name>
<affiliation>
<mods:affiliation>Department of Biology</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vilgalys, Rytas" sort="Vilgalys, Rytas" uniqKey="Vilgalys R" first="Rytas" last="Vilgalys">Rytas Vilgalys</name>
<affiliation>
<mods:affiliation>Department of Biology</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, R David" sort="Evans, R David" uniqKey="Evans R" first="R. David" last="Evans">R. David Evans</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Washington State University, Pullman, WA 99164, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schadt, Christopher W" sort="Schadt, Christopher W" uniqKey="Schadt C" first="Christopher W." last="Schadt">Christopher W. Schadt</name>
<affiliation>
<mods:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Megonigal, J Patrick" sort="Megonigal, J Patrick" uniqKey="Megonigal J" first="J. Patrick" last="Megonigal">J. Patrick Megonigal</name>
<affiliation>
<mods:affiliation>Smithsonian Environmental Research Center, Washington, DC 20013, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuske, Cheryl R" sort="Kuske, Cheryl R" uniqKey="Kuske C" first="Cheryl R." last="Kuske">Cheryl R. Kuske</name>
<affiliation>
<mods:affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kuske@lanl.gov</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Environmental Microbiology</title>
<idno type="ISSN">1462-2912</idno>
<idno type="eISSN">1462-2920</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-10">2011-10</date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="2778">2778</biblScope>
<biblScope unit="page" to="2793">2793</biblScope>
</imprint>
<idno type="ISSN">1462-2912</idno>
</series>
<idno type="istex">A81FDF4886B16BE929CCCA9A94856BF11CDA272A</idno>
<idno type="DOI">10.1111/j.1462-2920.2011.02548.x</idno>
<idno type="ArticleID">EMI2548</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1462-2912</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Carolyn F. Weber</name>
<affiliations>
<json:string>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Donald R. Zak</name>
<affiliations>
<json:string>School of Natural Resources & Environment</json:string>
<json:string>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bruce A. Hungate</name>
<affiliations>
<json:string>Department of Biological Sciences</json:string>
<json:string>Merriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert B. Jackson</name>
<affiliations>
<json:string>Department of Biology</json:string>
<json:string>Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rytas Vilgalys</name>
<affiliations>
<json:string>Department of Biology</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. David Evans</name>
<affiliations>
<json:string>School of Biological Sciences, Washington State University, Pullman, WA 99164, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christopher W. Schadt</name>
<affiliations>
<json:string>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Patrick Megonigal</name>
<affiliations>
<json:string>Smithsonian Environmental Research Center, Washington, DC 20013, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Cheryl R. Kuske</name>
<affiliations>
<json:string>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</json:string>
<json:string>E-mail: kuske@lanl.gov</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>EMI2548</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; > 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.275 x 799.371 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1877</abstractCharCount>
<pdfWordCount>9517</pdfWordCount>
<pdfCharCount>64883</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>269</abstractWordCount>
</qualityIndicators>
<title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>C. Andrew</name>
</json:item>
<json:item>
<name>E.A. Lilleskov</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>822</last>
<first>812</first>
</pages>
<author></author>
<title>Ecol Lett</title>
</host>
<title>Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Biological soil crusts: characteristics and distribution In Ecological studies, 150. Biological soil crusts: structure, function and management</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Birney</name>
</json:item>
<json:item>
<name>M. Clamp</name>
</json:item>
<json:item>
<name>R. Durbin</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>995</last>
<first>988</first>
</pages>
<author></author>
<title>Genome Res</title>
</host>
<title>GeneWise and Genomewise</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. de Boer</name>
</json:item>
<json:item>
<name>L.B. Folman</name>
</json:item>
<json:item>
<name>R.C. Summerbell</name>
</json:item>
<json:item>
<name>L. Boddy</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>811</last>
<first>795</first>
</pages>
<author></author>
<title>FEMS Microbiol Rev</title>
</host>
<title>Living in a fungal world: impact of fungi on soil bacterial niche development</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.L.P. Brown</name>
</json:item>
<json:item>
<name>F.P. Day</name>
</json:item>
<json:item>
<name>B.A. Hungate</name>
</json:item>
<json:item>
<name>B.G. Drake</name>
</json:item>
<json:item>
<name>C.R. Hinkle</name>
</json:item>
</author>
<host>
<volume>292</volume>
<pages>
<last>232</last>
<first>219</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Root biomass and nutrient dynamics in a scrub‐oak ecosystem under the influence of elevated atmospheric CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.M. Carney</name>
</json:item>
<json:item>
<name>B.A. Hungate</name>
</json:item>
<json:item>
<name>B.G. Drake</name>
</json:item>
<json:item>
<name>J.P. Megonigal</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>4995</last>
<first>4990</first>
</pages>
<author></author>
<title>Proc Natl Acad Sci USA</title>
</host>
<title>Altered soil microbial community at elevated CO2 leads to loss of soil carbon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.F. Castro</name>
</json:item>
<json:item>
<name>A.T. Classen</name>
</json:item>
<json:item>
<name>E.E. Austin</name>
</json:item>
<json:item>
<name>R.J. Norby</name>
</json:item>
<json:item>
<name>C.W. Schadt</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>1007</last>
<first>999</first>
</pages>
<author></author>
<title>Appl Environ Microbiol</title>
</host>
<title>Soil microbial community responses to multiple experimental climate change drivers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Chung</name>
</json:item>
<json:item>
<name>D.R. Zak</name>
</json:item>
<json:item>
<name>E.A. Lilleskov</name>
</json:item>
</author>
<host>
<volume>147</volume>
<pages>
<last>154</last>
<first>143</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>Fungal community composition and metabolism under elevated CO2 and O3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.‐M. Couteaux</name>
</json:item>
<json:item>
<name>P. Bottner</name>
</json:item>
<json:item>
<name>B. Berg</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>66</last>
<first>63</first>
</pages>
<author></author>
<title>Trends Ecol Evol</title>
</host>
<title>Litter decomposition, climate and litter quality</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.S. Curtis</name>
</json:item>
<json:item>
<name>B.G. Drake</name>
</json:item>
<json:item>
<name>P.W. Leadley</name>
</json:item>
<json:item>
<name>W.J. Arp</name>
</json:item>
<json:item>
<name>D.F. Whigham</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>26</last>
<first>20</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>Growth and senescence in plant communities exposed to elevated CO2 concentrations on an marsh</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.S. Dhillion</name>
</json:item>
<json:item>
<name>J. Roy</name>
</json:item>
<json:item>
<name>M. Abrams</name>
</json:item>
</author>
<host>
<volume>187</volume>
<pages>
<last>342</last>
<first>333</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Assessing the impact of elevated CO2 on soil microbial activities in a Mediterranean model ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Dijkstra</name>
</json:item>
<json:item>
<name>G. Hymus</name>
</json:item>
<json:item>
<name>D. Colavito</name>
</json:item>
<json:item>
<name>D.A. Vieglais</name>
</json:item>
<json:item>
<name>C.M. Cundari</name>
</json:item>
<json:item>
<name>D.P. Johnson</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>103</last>
<first>90</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Elevated atmospheric CO2 stimulates aboveground biomass in a fire‐regenerated scrub‐oak ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I.P. Edwards</name>
</json:item>
<json:item>
<name>D.R. Zak</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>2195</last>
<first>2184</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Fungal community composition and function after long‐term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I.P. Edwards</name>
</json:item>
<json:item>
<name>R.A. Upchurch</name>
</json:item>
<json:item>
<name>D.R. Zak</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>3489</last>
<first>3481</first>
</pages>
<author></author>
<title>Appl Environ Microbiol</title>
</host>
<title>Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Entry</name>
</json:item>
<json:item>
<name>C.L. Rose</name>
</json:item>
<json:item>
<name>K. Cromack Jr</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>290</last>
<first>285</first>
</pages>
<author></author>
<title>Soil Biol Biochem</title>
</host>
<title>Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.O. Garcia</name>
</json:item>
<json:item>
<name>T. Ovasapyan</name>
</json:item>
<json:item>
<name>M. Greas</name>
</json:item>
<json:item>
<name>K. Treseder</name>
</json:item>
</author>
<host>
<volume>303</volume>
<pages>
<last>310</last>
<first>301</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.C. Hall</name>
</json:item>
<json:item>
<name>P. Stiling</name>
</json:item>
<json:item>
<name>B.A. Hungate</name>
</json:item>
<json:item>
<name>B.G. Drake</name>
</json:item>
<json:item>
<name>M.D. Hunter</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>2356</last>
<first>2343</first>
</pages>
<author></author>
<title>J Chem Ecol</title>
</host>
<title>Effects of elevated CO2 and herbivore damage on litter quality in a scrub oak ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.P. Hamerlynck</name>
</json:item>
<json:item>
<name>T.E. Huxman</name>
</json:item>
<json:item>
<name>R.S. Nowak</name>
</json:item>
<json:item>
<name>S. Redar</name>
</json:item>
<json:item>
<name>M.E. Loik</name>
</json:item>
<json:item>
<name>D.N. Jordan</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>436</last>
<first>425</first>
</pages>
<author></author>
<title>J Arid Environ</title>
</host>
<title>Photosynthetic responses of Larrea tridentata to a step‐increase in atmospheric CO2 at the Nevada Desert FACE Facility</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.A. Hungate</name>
</json:item>
<json:item>
<name>E.A. Holland</name>
</json:item>
<json:item>
<name>R.B. Jackson</name>
</json:item>
<json:item>
<name>F.S. Chapin III</name>
</json:item>
<json:item>
<name>H.A. Mooney</name>
</json:item>
<json:item>
<name>C.B. Field</name>
</json:item>
</author>
<host>
<volume>388</volume>
<pages>
<last>579</last>
<first>576</first>
</pages>
<author></author>
<title>Lett Nat</title>
</host>
<title>The fate of carbon in grasslands under carbon dioxide enrichment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Insam</name>
</json:item>
<json:item>
<name>E. Baath</name>
</json:item>
<json:item>
<name>A. Frostegard</name>
</json:item>
<json:item>
<name>M.H. Gerzabek</name>
</json:item>
<json:item>
<name>A. Kraft</name>
</json:item>
<json:item>
<name>F. Schinner</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>54</last>
<first>45</first>
</pages>
<author></author>
<title>J Microbiol Methods</title>
</host>
<title>Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V.L. Jin</name>
</json:item>
<json:item>
<name>R.D. Evans</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>465</last>
<first>452</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Elevated CO2 increased microbial carbon substrate use and nitrogen cycling in Mojave Desert soils</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V.L. Jin</name>
</json:item>
<json:item>
<name>R.D. Evans</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>2344</last>
<first>2334</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Microbial 13C utilization patterns via stable isotope probing of phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated atmospheric CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Kampichler</name>
</json:item>
<json:item>
<name>E. Kandeler</name>
</json:item>
<json:item>
<name>R.D. Bardgett</name>
</json:item>
<json:item>
<name>T.H. Jones</name>
</json:item>
<json:item>
<name>L.J. Thompson</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>346</last>
<first>335</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Impact of elevated atmospheric CO2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.M. Kelley</name>
</json:item>
<json:item>
<name>P.A. Fay</name>
</json:item>
<json:item>
<name>H.W. Polley</name>
</json:item>
<json:item>
<name>R.A. Gill</name>
</json:item>
<json:item>
<name>R.B. Jackson</name>
</json:item>
</author>
<host>
<author></author>
<title>Ecosphere</title>
</host>
<title>Altered soil extracellular enzyme activity with changing atmospheric CO2: results from a meta‐analysis and unique CO2 field gradient</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.N. Klironomos</name>
</json:item>
<json:item>
<name>M.C. Rillig</name>
</json:item>
<json:item>
<name>M.F. Allen</name>
</json:item>
<json:item>
<name>D.R. Zak</name>
</json:item>
<json:item>
<name>M. Kubiske</name>
</json:item>
<json:item>
<name>K.S. Pregitzer</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>478</last>
<first>473</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Soil fungal‐arthropod responses to Populus tremuloides grown under elevated atmospheric CO2 under field conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.A. Kluber</name>
</json:item>
<json:item>
<name>K.M. Tinnesand</name>
</json:item>
<json:item>
<name>B.A. Caldwell</name>
</json:item>
<json:item>
<name>S.M. Dunham</name>
</json:item>
<json:item>
<name>R.R. Yarwood</name>
</json:item>
<json:item>
<name>P.J. Bottomley</name>
</json:item>
<json:item>
<name>D.D. Myrold</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>1613</last>
<first>1607</first>
</pages>
<author></author>
<title>Soil Biol Biochem</title>
</host>
<title>Ectomycorrhizal mats alter forest soil biogeochemistry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.P. Kubicek</name>
</json:item>
<json:item>
<name>V. Seidl</name>
</json:item>
<json:item>
<name>B. Seiboth</name>
</json:item>
</author>
<host>
<pages>
<last>413</last>
<first>396</first>
</pages>
<author></author>
<title>Cellulose and Molecular Biology of Filamentous Fungi</title>
</host>
<title>Plant cell wall and chitin degradation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Langley</name>
</json:item>
<json:item>
<name>B.G. Drake</name>
</json:item>
<json:item>
<name>P. Dijkstra</name>
</json:item>
<json:item>
<name>B.A. Hungate</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>430</last>
<first>424</first>
</pages>
<author></author>
<title>Ecosystems</title>
</host>
<title>Ectomycorrhizal colonization, biomass and production in a regenerating scrub oak forest in response to elevated CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.L. Larson</name>
</json:item>
<json:item>
<name>D.R. Zak</name>
</json:item>
<json:item>
<name>R.L. Sinsabaugh</name>
</json:item>
</author>
<host>
<volume>66</volume>
<pages>
<last>1856</last>
<first>1848</first>
</pages>
<author></author>
<title>J Soil Sci Soc Am</title>
</host>
<title>Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Lesaulnier</name>
</json:item>
<json:item>
<name>D. Papamichail</name>
</json:item>
<json:item>
<name>S. McCorkle</name>
</json:item>
<json:item>
<name>B. Ollivier</name>
</json:item>
<json:item>
<name>S. Skiena</name>
</json:item>
<json:item>
<name>S. Taghavi</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>941</last>
<first>926</first>
</pages>
<author></author>
<title>Environ Microbiol</title>
</host>
<title>Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.A. Lipson</name>
</json:item>
<json:item>
<name>R.F. Wilson</name>
</json:item>
<json:item>
<name>W.C. Oechel</name>
</json:item>
</author>
<host>
<volume>71</volume>
<pages>
<last>8580</last>
<first>8573</first>
</pages>
<author></author>
<title>Appl Environ Microbiol</title>
</host>
<title>Effects of elevated atmospheric CO2 on soil microbial biomass, activity an diversity in a chaparral ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Ludwig</name>
</json:item>
<json:item>
<name>O. Strunk</name>
</json:item>
<json:item>
<name>R. Westram</name>
</json:item>
<json:item>
<name>L. Richter</name>
</json:item>
<json:item>
<name>H. Meier</name>
</json:item>
<json:item>
<name> Yadhukumar</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>1371</last>
<first>1363</first>
</pages>
<author></author>
<title>Nucleic Acids Res</title>
</host>
<title>ARB: a software environment for sequence data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.R. McCarthy</name>
</json:item>
<json:item>
<name>R. Oren</name>
</json:item>
<json:item>
<name>K.H. Johnse</name>
</json:item>
<json:item>
<name>A. Gallet‐Budynek</name>
</json:item>
<json:item>
<name>S.G. Pritchard</name>
</json:item>
<json:item>
<name>C.W. Cook</name>
</json:item>
</author>
<host>
<volume>185</volume>
<pages>
<last>528</last>
<first>514</first>
</pages>
<author></author>
<title>New Phytol</title>
</host>
<title>Re‐assessment of plant carbon dynamics at the Duke free‐air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.L. Moorhead</name>
</json:item>
<json:item>
<name>A.E. Linkins</name>
</json:item>
</author>
<host>
<volume>189</volume>
<pages>
<last>329</last>
<first>321</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Elevated CO2 alters belowground exoenzyme activities in tussock tundra</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. Olszyk</name>
</json:item>
<json:item>
<name>M.G. Johnson</name>
</json:item>
<json:item>
<name>D.L. Phillips</name>
</json:item>
<json:item>
<name>R.J. Seidler</name>
</json:item>
<json:item>
<name>D.T. Tingey</name>
</json:item>
<json:item>
<name>L.S. Watrud</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<last>462</last>
<first>447</first>
</pages>
<author></author>
<title>Environ Poll</title>
</host>
<title>Interactive effects of CO2 and O3 on ponerosa pine plant/litter/soil mesocosm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.F. Parsons</name>
</json:item>
<json:item>
<name>J.G. Bockheim</name>
</json:item>
<json:item>
<name>R.L. Lindroth</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>519</last>
<first>505</first>
</pages>
<author></author>
<title>Ecosystems</title>
</host>
<title>Independent, interactive and species‐specific responses to leaf litter decomposition to elevated CO2 and O3 in a Northern Hardwood Forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.H. Schlesinger</name>
</json:item>
<json:item>
<name>J.A. Andrews</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>20</last>
<first>7</first>
</pages>
<author></author>
<title>Biogeochem</title>
</host>
<title>Soil respiration and the global carbon cycle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.D. Schloss</name>
</json:item>
<json:item>
<name>S.L. Westcott</name>
</json:item>
<json:item>
<name>T. Ryabin</name>
</json:item>
<json:item>
<name>J.R. Hall</name>
</json:item>
<json:item>
<name>M. Hartmann</name>
</json:item>
<json:item>
<name>E.B. Hollister</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>7541</last>
<first>7537</first>
</pages>
<author></author>
<title>Appl Environ Microbiol</title>
</host>
<title>Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.J. Seiler</name>
</json:item>
<json:item>
<name>D.P. Rasse</name>
</json:item>
<json:item>
<name>J. Li</name>
</json:item>
<json:item>
<name>P. Dijkstra</name>
</json:item>
<json:item>
<name>H.P. Anderson</name>
</json:item>
<json:item>
<name>D.P. Johnson</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>367</last>
<first>356</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub‐oak ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.K. Treseder</name>
</json:item>
</author>
<host>
<volume>164</volume>
<pages>
<last>355</last>
<first>347</first>
</pages>
<author></author>
<title>New Phytol</title>
</host>
<title>A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO2 in field studies</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.K. Treseder</name>
</json:item>
</author>
<host>
<pages>
<last>731</last>
<first>713</first>
</pages>
<author></author>
<title>The Fungal Community: Its Organization and Role in the Ecosystem</title>
</host>
<title>Nutrient acquisition strategies of fungi and their relation to elevated atmospheric CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.K. Treseder</name>
</json:item>
<json:item>
<name>L.M. Egerton‐Warburton</name>
</json:item>
<json:item>
<name>M.F. Allen</name>
</json:item>
<json:item>
<name>Y. Cheng</name>
</json:item>
<json:item>
<name>W.C. Oechel</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>796</last>
<first>786</first>
</pages>
<author></author>
<title>Ecosystems</title>
</host>
<title>Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated carbon dioxide</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.E. Weatherly</name>
</json:item>
<json:item>
<name>S.F. Zitzer</name>
</json:item>
<json:item>
<name>J.S. Coleman</name>
</json:item>
<json:item>
<name>J.A. Arnone III</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>1233</last>
<first>1223</first>
</pages>
<author></author>
<title>Glob Change Biol</title>
</host>
<title>In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO2 and interannual climate variability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Webster</name>
</json:item>
<json:item>
<name>R.W.S. Weber</name>
</json:item>
</author>
<host>
<pages>
<last>576</last>
<first>514</first>
</pages>
<author></author>
<title>Introduction to Fungi</title>
</host>
<title>Homobasidiomycetes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.R. Zak</name>
</json:item>
<json:item>
<name>K.S. Pregitzer</name>
</json:item>
<json:item>
<name>P.S. Curtis</name>
</json:item>
<json:item>
<name>J.A. Terri</name>
</json:item>
<json:item>
<name>R. Fogel</name>
</json:item>
<json:item>
<name>D.L. Randlett</name>
</json:item>
</author>
<host>
<volume>151</volume>
<pages>
<last>117</last>
<first>105</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>13</volume>
<publisherId>
<json:string>EMI</json:string>
</publisherId>
<pages>
<total>16</total>
<last>2793</last>
<first>2778</first>
</pages>
<issn>
<json:string>1462-2912</json:string>
</issn>
<issue>10</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1462-2920</json:string>
</eissn>
<title>Environmental Microbiology</title>
<doi>
<json:string>10.1111/(ISSN)1462-2920</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>microbiology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1462-2920.2011.02548.x</json:string>
</doi>
<id>A81FDF4886B16BE929CCCA9A94856BF11CDA272A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A81FDF4886B16BE929CCCA9A94856BF11CDA272A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A81FDF4886B16BE929CCCA9A94856BF11CDA272A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A81FDF4886B16BE929CCCA9A94856BF11CDA272A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd</p>
</availability>
<date>2011</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
<author xml:id="author-1">
<persName>
<forename type="first">Carolyn F.</forename>
<surname>Weber</surname>
</persName>
<affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Donald R.</forename>
<surname>Zak</surname>
</persName>
<affiliation>School of Natural Resources & Environment</affiliation>
<affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Bruce A.</forename>
<surname>Hungate</surname>
</persName>
<affiliation>Department of Biological Sciences</affiliation>
<affiliation>Merriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Robert B.</forename>
<surname>Jackson</surname>
</persName>
<affiliation>Department of Biology</affiliation>
<affiliation>Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Rytas</forename>
<surname>Vilgalys</surname>
</persName>
<affiliation>Department of Biology</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">R. David</forename>
<surname>Evans</surname>
</persName>
<affiliation>School of Biological Sciences, Washington State University, Pullman, WA 99164, USA</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Christopher W.</forename>
<surname>Schadt</surname>
</persName>
<affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">J. Patrick</forename>
<surname>Megonigal</surname>
</persName>
<affiliation>Smithsonian Environmental Research Center, Washington, DC 20013, USA</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">Cheryl R.</forename>
<surname>Kuske</surname>
</persName>
<email>kuske@lanl.gov</email>
<affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Environmental Microbiology</title>
<idno type="pISSN">1462-2912</idno>
<idno type="eISSN">1462-2920</idno>
<idno type="DOI">10.1111/(ISSN)1462-2920</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-10"></date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="2778">2778</biblScope>
<biblScope unit="page" to="2793">2793</biblScope>
</imprint>
</monogr>
<idno type="istex">A81FDF4886B16BE929CCCA9A94856BF11CDA272A</idno>
<idno type="DOI">10.1111/j.1462-2920.2011.02548.x</idno>
<idno type="ArticleID">EMI2548</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2011-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A81FDF4886B16BE929CCCA9A94856BF11CDA272A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1462-2920</doi>
<issn type="print">1462-2912</issn>
<issn type="electronic">1462-2920</issn>
<idGroup>
<id type="product" value="EMI"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="ENVIRONMENTAL MICROBIOLOGY">Environmental Microbiology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10110">
<doi origin="wiley">10.1111/emi.2011.13.issue-10</doi>
<numberingGroup>
<numbering type="journalVolume" number="13">13</numbering>
<numbering type="journalIssue" number="10">10</numbering>
</numberingGroup>
<coverDate startDate="2011-10">October 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="14" status="forIssue">
<doi origin="wiley">10.1111/j.1462-2920.2011.02548.x</doi>
<idGroup>
<id type="unit" value="EMI2548"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Research articles</title>
</titleGroup>
<copyright>© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.10 mode:FullText" date="2011-10-10"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-09-01"></event>
<event type="firstOnline" date="2011-09-01"></event>
<event type="publishedOnlineFinalForm" date="2011-10-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-24"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2778">2778</numbering>
<numbering type="pageLast" number="2793">2793</numbering>
</numberingGroup>
<correspondenceTo> E‐mail
<email>kuske@lanl.gov</email>
; Tel. (+1) 505 665 4800; Fax (+1) 505 665 3024. </correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:EMI.EMI2548.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 8 February, 2011; accepted 17 June, 2011.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="45"></count>
<count type="wordTotal" number="10559"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Responses of soil cellulolytic fungal communities to elevated atmospheric CO
<sub>2</sub>
are complex and variable across five ecosystems</title>
<title type="shortAuthors">C. F. Weber
<i>et al</i>
.</title>
<title type="short">Response of cellulolytic fungi to elevated atmospheric CO
<sub>2</sub>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Carolyn F.</givenNames>
<familyName>Weber</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2 #a3">
<personName>
<givenNames>Donald R.</givenNames>
<familyName>Zak</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a4 #a5">
<personName>
<givenNames>Bruce A.</givenNames>
<familyName>Hungate</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a6 #a7">
<personName>
<givenNames>Robert B.</givenNames>
<familyName>Jackson</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a6">
<personName>
<givenNames>Rytas</givenNames>
<familyName>Vilgalys</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a8">
<personName>
<givenNames>R. David</givenNames>
<familyName>Evans</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a9">
<personName>
<givenNames>Christopher W.</givenNames>
<familyName>Schadt</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a10">
<personName>
<givenNames>J. Patrick</givenNames>
<familyName>Megonigal</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr9" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Cheryl R.</givenNames>
<familyName>Kuske</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2">
<unparsedAffiliation>School of Natural Resources & Environment</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US">
<unparsedAffiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4">
<unparsedAffiliation>Department of Biological Sciences</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="US">
<unparsedAffiliation>Merriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6">
<unparsedAffiliation>Department of Biology</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7" countryCode="US">
<unparsedAffiliation>Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a8" countryCode="US">
<unparsedAffiliation>School of Biological Sciences, Washington State University, Pullman, WA 99164, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a9" countryCode="US">
<unparsedAffiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a10" countryCode="US">
<unparsedAffiliation>Smithsonian Environmental Research Center, Washington, DC 20013, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<supportingInformation>
<p>
<b>Fig. S1.</b>
The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate
<i>cbhI</i>
libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the
<i>y</i>
‐axes.</p>
<p>
<b>Table S1.</b>
Fungal isolates and sporocarps PCR screened for the presence of the
<i>cbhI</i>
gene. Sources of cultures are as follows:
<sup>A</sup>
, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL;
<sup>F</sup>
, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA;
<sup>C</sup>
, Carolina Biological;
<sup>T</sup>
, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois.</p>
<p>
<b>Table S2.</b>
OTU‐based classification of soil sequences based on clustering with reference
<i>cbhI</i>
sequences from named taxa.</p>
<p>
<b>Table S3.</b>
Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences.</p>
<p>
<b>Table S4.</b>
Phylum level classification (by top BLAST hit) of sequences that are unique to a given site.</p>
<p>
<b>Table S5.</b>
Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO
<sub>3</sub>
extracted.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:14622912:media:emi2548:EMI_2548_sm_fig"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:14622912:media:emi2548:EMI_2548_sm_tables"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Summary</title>
<p>Elevated atmospheric CO
<sub>2</sub>
generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO
<sub>2</sub>
. To investigate the impacts of ecosystem type and elevated atmospheric CO
<sub>2</sub>
on cellulolytic fungal communities, we sequenced 10 677
<i>cbhI</i>
gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO
<sub>2</sub>
. The
<i>cbhI</i>
composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all
<i>P</i>
‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member
<i>cbhI</i>
sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi
<i>in situ</i>
are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal
<i>cbhI</i>
composition and richness that were correlated with elevated CO
<sub>2</sub>
exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils,
<i>cbhI</i>
gene richness was significantly higher after exposure to elevated CO
<sub>2</sub>
(550 µmol mol
<sup>−1</sup>
) than under ambient CO
<sub>2</sub>
(360 µmol mol
<sup>−1</sup>
CO
<sub>2</sub>
). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO
<sub>2</sub>
.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Response of cellulolytic fungi to elevated atmospheric CO2</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carolyn F.</namePart>
<namePart type="family">Weber</namePart>
<affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donald R.</namePart>
<namePart type="family">Zak</namePart>
<affiliation>School of Natural Resources & Environment</affiliation>
<affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruce A.</namePart>
<namePart type="family">Hungate</namePart>
<affiliation>Department of Biological Sciences</affiliation>
<affiliation>Merriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert B.</namePart>
<namePart type="family">Jackson</namePart>
<affiliation>Department of Biology</affiliation>
<affiliation>Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rytas</namePart>
<namePart type="family">Vilgalys</namePart>
<affiliation>Department of Biology</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. David</namePart>
<namePart type="family">Evans</namePart>
<affiliation>School of Biological Sciences, Washington State University, Pullman, WA 99164, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher W.</namePart>
<namePart type="family">Schadt</namePart>
<affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. Patrick</namePart>
<namePart type="family">Megonigal</namePart>
<affiliation>Smithsonian Environmental Research Center, Washington, DC 20013, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheryl R.</namePart>
<namePart type="family">Kuske</namePart>
<affiliation>Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA</affiliation>
<affiliation>E-mail: kuske@lanl.gov</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-10</dateIssued>
<edition>Received 8 February, 2011; accepted 17 June, 2011.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">3</extent>
<extent unit="references">45</extent>
<extent unit="words">10559</extent>
</physicalDescription>
<abstract lang="en">Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Environmental Microbiology</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Fig. S1. The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate cbhI libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the y‐axes. Table S1. Fungal isolates and sporocarps PCR screened for the presence of the cbhI gene. Sources of cultures are as follows: A, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL; F, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA; C, Carolina Biological; T, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois. Table S2. OTU‐based classification of soil sequences based on clustering with reference cbhI sequences from named taxa. Table S3. Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences. Table S4. Phylum level classification (by top BLAST hit) of sequences that are unique to a given site. Table S5. Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO3 extracted. Fig. S1. The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate cbhI libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the y‐axes. Table S1. Fungal isolates and sporocarps PCR screened for the presence of the cbhI gene. Sources of cultures are as follows: A, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL; F, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA; C, Carolina Biological; T, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois. Table S2. OTU‐based classification of soil sequences based on clustering with reference cbhI sequences from named taxa. Table S3. Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences. Table S4. Phylum level classification (by top BLAST hit) of sequences that are unique to a given site. Table S5. Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO3 extracted. Fig. S1. The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate cbhI libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the y‐axes. Table S1. Fungal isolates and sporocarps PCR screened for the presence of the cbhI gene. Sources of cultures are as follows: A, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL; F, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA; C, Carolina Biological; T, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois. Table S2. OTU‐based classification of soil sequences based on clustering with reference cbhI sequences from named taxa. Table S3. Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences. Table S4. Phylum level classification (by top BLAST hit) of sequences that are unique to a given site. Table S5. Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO3 extracted. Fig. S1. The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate cbhI libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the y‐axes. Table S1. Fungal isolates and sporocarps PCR screened for the presence of the cbhI gene. Sources of cultures are as follows: A, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL; F, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA; C, Carolina Biological; T, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois. Table S2. OTU‐based classification of soil sequences based on clustering with reference cbhI sequences from named taxa. Table S3. Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences. Table S4. Phylum level classification (by top BLAST hit) of sequences that are unique to a given site. Table S5. Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO3 extracted. Fig. S1. The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate cbhI libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the y‐axes. Table S1. Fungal isolates and sporocarps PCR screened for the presence of the cbhI gene. Sources of cultures are as follows: A, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL; F, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA; C, Carolina Biological; T, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois. Table S2. OTU‐based classification of soil sequences based on clustering with reference cbhI sequences from named taxa. Table S3. Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences. Table S4. Phylum level classification (by top BLAST hit) of sequences that are unique to a given site. Table S5. Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO3 extracted. Fig. S1. The average abundance of the 15 most abundant OTUs (binned at a distance of 0.10) present in the replicate cbhI libraries for each of the six sites surveyed (± SE). Number of replicate libraries averaged = 17 (creosote root zone), 17 (crust), 6 (aspen plantation), 12 (loblolly pine plantation), 6 (scrub oak/palmetto) and 10 (marsh). Number above the bars are OTU identifiers assigned in Mothur. Note difference in scale on the y‐axes. Table S1. Fungal isolates and sporocarps PCR screened for the presence of the cbhI gene. Sources of cultures are as follows: A, Andrea Porras‐Alfaro, Western Illinois University, Macomb, IL; F, Fusarium Research Center, Department of Plant Pathology, Pennsylvania State University, State College, PA; C, Carolina Biological; T, Terri Porter, McMaster University, Hamilton, Ontario, Canada; USDA, United States Department of Agriculture; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; IHEM, Belgian Co‐ordinated collection of Microorganisms; NM, sporocarp collected in New Mexico; IL, sporocarp collected in Northern Illinois. Table S2. OTU‐based classification of soil sequences based on clustering with reference cbhI sequences from named taxa. Table S3. Per cent composition based on phylum top BLAST hit of all 10 677 soil sequences. Table S4. Phylum level classification (by top BLAST hit) of sequences that are unique to a given site. Table S5. Soil properties in each of the treatment and control plots at the FACE and OTC sites surveyed in this study. Values represent an average of two replicates. Phosphorus (P) was NaHCO3 extracted.Supporting Info Item: Supporting info item - Supporting info item - </note>
<identifier type="ISSN">1462-2912</identifier>
<identifier type="eISSN">1462-2920</identifier>
<identifier type="DOI">10.1111/(ISSN)1462-2920</identifier>
<identifier type="PublisherID">EMI</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>2778</start>
<end>2793</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A81FDF4886B16BE929CCCA9A94856BF11CDA272A</identifier>
<identifier type="DOI">10.1111/j.1462-2920.2011.02548.x</identifier>
<identifier type="ArticleID">EMI2548</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A81FDF4886B16BE929CCCA9A94856BF11CDA272A
   |texte=   Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024