Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance

Identifieur interne : 000409 ( Istex/Corpus ); précédent : 000408; suivant : 000410

Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance

Auteurs : Kirk R. Wythers ; Peter B. Reich ; Mark G. Tjoelker ; Paul B. Bolstad

Source :

RBID : ISTEX:5D421CC4F89E8DC813B046226D6BCA108BA55CD1

English descriptors

Abstract

The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.

Url:
DOI: 10.1111/j.1365-2486.2005.00922.x

Links to Exploration step

ISTEX:5D421CC4F89E8DC813B046226D6BCA108BA55CD1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
<author>
<name sortKey="Wythers, Kirk R" sort="Wythers, Kirk R" uniqKey="Wythers K" first="Kirk R." last="Wythers">Kirk R. Wythers</name>
<affiliation>
<mods:affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reich, Peter B" sort="Reich, Peter B" uniqKey="Reich P" first="Peter B." last="Reich">Peter B. Reich</name>
<affiliation>
<mods:affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tjoelker, Mark G" sort="Tjoelker, Mark G" uniqKey="Tjoelker M" first="Mark G." last="Tjoelker">Mark G. Tjoelker</name>
<affiliation>
<mods:affiliation>Department of Forest Science, Texas A&M University, College Station, TX 77843‐2135, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bolstad, Paul B" sort="Bolstad, Paul B" uniqKey="Bolstad P" first="Paul B." last="Bolstad">Paul B. Bolstad</name>
<affiliation>
<mods:affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5D421CC4F89E8DC813B046226D6BCA108BA55CD1</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1365-2486.2005.00922.x</idno>
<idno type="url">https://api.istex.fr/document/5D421CC4F89E8DC813B046226D6BCA108BA55CD1/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000409</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000409</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
<author>
<name sortKey="Wythers, Kirk R" sort="Wythers, Kirk R" uniqKey="Wythers K" first="Kirk R." last="Wythers">Kirk R. Wythers</name>
<affiliation>
<mods:affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reich, Peter B" sort="Reich, Peter B" uniqKey="Reich P" first="Peter B." last="Reich">Peter B. Reich</name>
<affiliation>
<mods:affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tjoelker, Mark G" sort="Tjoelker, Mark G" uniqKey="Tjoelker M" first="Mark G." last="Tjoelker">Mark G. Tjoelker</name>
<affiliation>
<mods:affiliation>Department of Forest Science, Texas A&M University, College Station, TX 77843‐2135, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bolstad, Paul B" sort="Bolstad, Paul B" uniqKey="Bolstad P" first="Paul B." last="Bolstad">Paul B. Bolstad</name>
<affiliation>
<mods:affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Global Change Biology</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-03">2005-03</date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="435">435</biblScope>
<biblScope unit="page" to="449">449</biblScope>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
<idno type="istex">5D421CC4F89E8DC813B046226D6BCA108BA55CD1</idno>
<idno type="DOI">10.1111/j.1365-2486.2005.00922.x</idno>
<idno type="ArticleID">GCB922</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ANPP ecosystem model</term>
<term>PnET</term>
<term>Rd : A</term>
<term>acclimation</term>
<term>production</term>
<term>respiration</term>
<term>temperature</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Kirk R. Wythers</name>
<affiliations>
<json:string>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter B. Reich</name>
<affiliations>
<json:string>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mark G. Tjoelker</name>
<affiliations>
<json:string>Department of Forest Science, Texas A&M University, College Station, TX 77843‐2135, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Paul B. Bolstad</name>
<affiliations>
<json:string>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>acclimation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ANPP ecosystem model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PnET</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>production</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Rd : A</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>respiration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>temperature</value>
</json:item>
</subject>
<articleId>
<json:string>GCB922</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2227</abstractCharCount>
<pdfWordCount>9142</pdfWordCount>
<pdfCharCount>57669</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>310</abstractWordCount>
</qualityIndicators>
<title>Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>JD Aber</name>
</json:item>
<json:item>
<name>CA Federer</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>474</last>
<first>463</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>A generalized, lumped parameter model of photosynthesis, evapotranspiration, and net primary production in temperate and boreal forest ecosystems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JD Aber</name>
</json:item>
<json:item>
<name>SV Ollinger</name>
</json:item>
<json:item>
<name>CT Driscoll</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>78</last>
<first>61</first>
</pages>
<author></author>
<title>Ecological Modelling</title>
</host>
<title>Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JD Aber</name>
</json:item>
<json:item>
<name>SV Ollinger</name>
</json:item>
<json:item>
<name>CA Federer</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>222</last>
<first>207</first>
</pages>
<author></author>
<title>Climate Research</title>
</host>
<title>Predicting the effects of climate change on water yield and forest production in the northern United States</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JD Aber</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>ML Goulden</name>
</json:item>
</author>
<host>
<volume>106</volume>
<pages>
<last>275</last>
<first>267</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>Extrapolating leaf CO2 exchange to the canopy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GI Ågren</name>
</json:item>
<json:item>
<name>RE McMurtrie</name>
</json:item>
<json:item>
<name>WJ Parton</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>138</last>
<first>118</first>
</pages>
<author></author>
<title>Ecological Applications</title>
</host>
<title>State‐of‐the‐art models of production‐decomposition linkages in conifer and grassland ecosystems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JS Amthor</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>20</last>
<first>1</first>
</pages>
<author></author>
<title>Annals of Botany</title>
</host>
<title>The McCree–de Wit–Penning de Vries–Thornley respiration paradigms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>OK Atkin</name>
</json:item>
<json:item>
<name>EJ Edwards</name>
</json:item>
<json:item>
<name>BR Loveys</name>
</json:item>
</author>
<host>
<volume>147</volume>
<pages>
<last>154</last>
<first>141</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Response of root respiration to changes in temperature and its relevance to global warming</title>
</json:item>
<json:item>
<author>
<json:item>
<name>OK Atkin</name>
</json:item>
<json:item>
<name>C Holly</name>
</json:item>
<json:item>
<name>MC Ball</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>26</last>
<first>15</first>
</pages>
<author></author>
<title>Plant Cell and Environment</title>
</host>
<title>Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature</title>
</json:item>
<json:item>
<author>
<json:item>
<name>OK Atkin</name>
</json:item>
<json:item>
<name>MG Tjoelker</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>351</last>
<first>343</first>
</pages>
<author></author>
<title>Trends in Plant Science</title>
</host>
<title>Thermal acclimation and the dynamic response of plant respiration to temperature</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RR Aubuchon</name>
</json:item>
<json:item>
<name>DR Thompson</name>
</json:item>
<json:item>
<name>TM Hinckley</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>306</last>
<first>295</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>Environmental influences on photosynthesis within the crown of a while oak [Quercus alba]</title>
</json:item>
<json:item>
<author>
<json:item>
<name>HH Bartelink</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>406</last>
<first>399</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Effects of stand composition and thinning in mixed‐species forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Belehrádek</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>58</last>
<first>30</first>
</pages>
<author></author>
<title>Biological Reviews</title>
</host>
<title>Temperature coefficients in biology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JA Berry</name>
</json:item>
<json:item>
<name>JK Raison</name>
</json:item>
</author>
<host>
<volume>Vol. 12A</volume>
<pages>
<last>338</last>
<first>277</first>
</pages>
<author></author>
<title>Encyclopedia of Plant Physiology, New Series</title>
</host>
<title>Response of macrophytes to temperature</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PV Bolstad</name>
</json:item>
<json:item>
<name>K Mitchell</name>
</json:item>
<json:item>
<name>JM Vose</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>878</last>
<first>871</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Foliar temperature‐respiration response functions for broad‐leaved tree species in the southern Appalachians</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PV Bolstad</name>
</json:item>
<json:item>
<name>JM Vose</name>
</json:item>
<json:item>
<name>SG McNulty</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>9</last>
<first>1</first>
</pages>
<author></author>
<title>Forest Science</title>
</host>
<title>Forest productivity, leaf area and terrain in southern Appalachian deciduous forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PV Bolstad</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>T Lee</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>976</last>
<first>969</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Rapid temperature acclimation of leaf respiration rates of Quercus alba (L.) and Quercus rubra (L.) and Q. rubra</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B Bond‐Lamberty</name>
</json:item>
<json:item>
<name>C Wang</name>
</json:item>
<json:item>
<name>ST Gower</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>487</last>
<first>473</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Net primary production and net ecosystem production in boreal black spruce wildfire chronosequence</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MGR Cannell</name>
</json:item>
<json:item>
<name>JHM Thornley</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>54</last>
<first>45</first>
</pages>
<author></author>
<title>Annals of Botany</title>
</host>
<title>Modelling the components of plant respiration</title>
</json:item>
<json:item>
<author>
<json:item>
<name>BF Chabot</name>
</json:item>
<json:item>
<name>AR Lewis</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>135</last>
<first>130</first>
</pages>
<author></author>
<title>Photosynthetica</title>
</host>
<title>Thermal acclimation of photosynthesis in northern red oak [Quercus rubra borealis]</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KL Clark</name>
</json:item>
<json:item>
<name>WP Cropper</name>
</json:item>
<json:item>
<name>HL Gholz</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>59</last>
<first>52</first>
</pages>
<author></author>
<title>Forest Science</title>
</host>
<title>Evaluation of modeled carbon fluxes for a slash pine ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>NC Coops</name>
</json:item>
<json:item>
<name>RH Waring</name>
</json:item>
<json:item>
<name>JJ Landsberg</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>127</last>
<first>113</first>
</pages>
<author></author>
<title>Forest Ecology and Management</title>
</host>
<title>Assessing forest productivity in Australia and New Zealand using physiologically‐based model driven with averaged monthly weather data and satellite‐derived estimates of canopy photosynthetic capacity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>NC Coops</name>
</json:item>
<json:item>
<name>RH Waring</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>154</last>
<first>143</first>
</pages>
<author></author>
<title>Canadian Journal of Forest Research</title>
</host>
<title>Estimating forest productivity in the eastern Siskiyou Mountains of southwestern Oregon using a satellite driven process model, 3‐PGS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W Cramer</name>
</json:item>
<json:item>
<name>DW Kicklighter</name>
</json:item>
<json:item>
<name>A Bondeau</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>15</last>
<first>1</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Comparing global models of terrestrial net primary productivity (NPP)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PM Dougherty</name>
</json:item>
<json:item>
<name>RO Teskey</name>
</json:item>
<json:item>
<name>JE Phelps</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>935</last>
<first>930</first>
</pages>
<author></author>
<title>Plant Physiology</title>
</host>
<title>Net photosynthesis and early growth trends of a dominate White Oak (Quercus alba L.)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DS Ellsworth</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>178</last>
<first>169</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>BJ Enquist</name>
</json:item>
<json:item>
<name>EP Economo</name>
</json:item>
<json:item>
<name>TE Huxman</name>
</json:item>
</author>
<host>
<volume>423</volume>
<pages>
<last>642</last>
<first>639</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Scaling metabolism from organisms to ecosystems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Falkowski</name>
</json:item>
<json:item>
<name>RJ Scholes</name>
</json:item>
<json:item>
<name>E Boyle</name>
</json:item>
</author>
<host>
<volume>290</volume>
<pages>
<last>296</last>
<first>291</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>The Global Carbon Cycle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JF Farrar</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>438</last>
<first>427</first>
</pages>
<author></author>
<title>Plant Cell and Environment</title>
</host>
<title>The respiratory sources of C02</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JF Ferrar</name>
</json:item>
<json:item>
<name>RO Slatyer</name>
</json:item>
<json:item>
<name>JA Vranjic</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>217</last>
<first>199</first>
</pages>
<author></author>
<title>Australian Journal of Plant Physiology</title>
</host>
<title>Photosynthetic temperature acclimation in Eucalyptus species from diverse habitat, and a comparison with Nerium oleander</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CB Field</name>
</json:item>
<json:item>
<name>FS Chapin</name>
</json:item>
<json:item>
<name>PA Matson</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>235</last>
<first>201</first>
</pages>
<author></author>
<title>Annual Review of Ecology and Systematics</title>
</host>
<title>Responses of terrestrial ecosystems to the changing atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DF Forward</name>
</json:item>
</author>
<host>
<volume>Vol 12</volume>
<pages>
<last>258</last>
<first>234</first>
</pages>
<author></author>
<title>Handuch der Pflanzenphysiologie</title>
</host>
<title>Effect of temperature on respiration</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Frolking</name>
</json:item>
<json:item>
<name>ML Goulden</name>
</json:item>
<json:item>
<name>SC Wofsy</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>366</last>
<first>343</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Modelling temporal variability in the carbon balance of a spruce/moss boreal forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RM Gifford</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>186</last>
<first>171</first>
</pages>
<author></author>
<title>Functional Plant Biology</title>
</host>
<title>Plant respiration in productivity models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>ST Gower</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>Y Son</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>345</last>
<first>327</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Canopy dynamics and aboveground production of five tree species with different leaf longevities</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CA Gracia</name>
</json:item>
<json:item>
<name>E Tello</name>
</json:item>
<json:item>
<name>S Sabate</name>
</json:item>
</author>
<host>
<author></author>
<title>Ecology of Mediterranean Evergreen Oak Forests</title>
</host>
<title>GOTWILA</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CA Gunderson</name>
</json:item>
<json:item>
<name>RJ Norby</name>
</json:item>
<json:item>
<name>SD Wullschleger</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>96</last>
<first>87</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Gunn</name>
</json:item>
<json:item>
<name>JF Farrar</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>20</last>
<first>12</first>
</pages>
<author></author>
<title>Functional Ecology</title>
</host>
<title>Effects of a 4°C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbohydrates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Hari</name>
</json:item>
<json:item>
<name>A Mäkelä</name>
</json:item>
<json:item>
<name>F Berninger</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>244</last>
<first>239</first>
</pages>
<author></author>
<title>Australian Journal of Plant Physiology</title>
</host>
<title>Field evidence for the optimality hypothesis of gas exchange in plants</title>
</json:item>
<json:item>
<host>
<pages>
<first>200</first>
</pages>
<author></author>
<title>Houghton JT, Callander BA, Varney SK (1992) Climate Change: The Supplementary Report to The IPCC Scientific Assessment. Cambridge University Press, Cambridge. 200.</title>
</host>
</json:item>
<json:item>
<host>
<pages>
<first>881</first>
</pages>
<author></author>
<title>Houghton JT, Ding Y, Griggs DJ et al. (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge. 881.</title>
</host>
</json:item>
<json:item>
<host>
<pages>
<first>282</first>
</pages>
<author></author>
<title>James WO (1953) Plant Respiration. Clarendon Press, Oxford. 282.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>TW Jurik</name>
</json:item>
</author>
<host>
<volume>73</volume>
<pages>
<last>138</last>
<first>131</first>
</pages>
<author></author>
<title>American Journal of Botany</title>
</host>
<title>Seasonal patterns of leaf photosynthetic capacity in successional northern hardwood tree species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>TW Jurik</name>
</json:item>
<json:item>
<name>GM Briggs</name>
</json:item>
<json:item>
<name>DM Gates</name>
</json:item>
</author>
<host>
<volume>66</volume>
<pages>
<last>141</last>
<first>138</first>
</pages>
<author></author>
<title>Canadian Journal of Botany</title>
</host>
<title>Springtime recovery of photosynthetic activity of white pine in Michigan</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RF Keeling</name>
</json:item>
<json:item>
<name>SC Piper</name>
</json:item>
<json:item>
<name>M Heimann</name>
</json:item>
</author>
<host>
<volume>381</volume>
<pages>
<last>221</last>
<first>218</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Global and hemispheric CO sinks deduced from changes in atmospheric O2 concentrations</title>
</json:item>
<json:item>
<author>
<json:item>
<name> Këllomaki</name>
</json:item>
<json:item>
<name>H Väisänen</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>140</last>
<first>121</first>
</pages>
<author></author>
<title>Ecological Modelling</title>
</host>
<title>Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JS Kimball</name>
</json:item>
<json:item>
<name>AR Keyser</name>
</json:item>
<json:item>
<name>SW Running</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>775</last>
<first>761</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AK Knapp</name>
</json:item>
<json:item>
<name>JM Briggs</name>
</json:item>
<json:item>
<name>JM Blair</name>
</json:item>
</author>
<host>
<pages>
<last>221</last>
<first>193</first>
</pages>
<author></author>
<title>Grassland Dynamics: Long‐Term Ecological Research in Tallgrass Prairie</title>
</host>
<title>Patterns and controls of above ground net primary production in tallgrass prairie</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AK Knapp</name>
</json:item>
<json:item>
<name>MD Smith</name>
</json:item>
</author>
<host>
<volume>291</volume>
<pages>
<last>484</last>
<first>481</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Variation among biomes in temporal dynamics of above ground primary production</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JJ Landsberg</name>
</json:item>
<json:item>
<name>RH Waring</name>
</json:item>
</author>
<host>
<volume>95</volume>
<pages>
<last>228</last>
<first>209</first>
</pages>
<author></author>
<title>Forest Ecology and Management</title>
</host>
<title>A generalized model of forest productivity using simplified concepts of radiation‐use‐efficiency, carbon balance, and partitioning</title>
</json:item>
<json:item>
<host>
<pages>
<last>126</last>
<first>120</first>
</pages>
<author></author>
<title>Larcher W (2003) Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (pp120–126. Springer–Verlag, Berlin.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>A Larigauderie</name>
</json:item>
<json:item>
<name>C Körner</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>252</last>
<first>245</first>
</pages>
<author></author>
<title>Annals of Botany</title>
</host>
<title>Acclimation of leaf dark respiration to temperature in alpine and lowland plant species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MB Lavigne</name>
</json:item>
<json:item>
<name>MG Ryan</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>551</last>
<first>543</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>BE Law</name>
</json:item>
<json:item>
<name>RH Waring</name>
</json:item>
<json:item>
<name>PM Anthoni</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>165</last>
<first>155</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Measurements of gross and net ecosystem productivity and water vapor exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Liu</name>
</json:item>
<json:item>
<name>JM Chen</name>
</json:item>
<json:item>
<name>J Cihlar</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>175</last>
<first>158</first>
</pages>
<author></author>
<title>Remote Sensing of Environment</title>
</host>
<title>A process‐based boreal ecosystem productivity simulator using remote sensing inputs</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Lloyd</name>
</json:item>
<json:item>
<name>JA Taylor</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>323</last>
<first>315</first>
</pages>
<author></author>
<title>Functional Ecology</title>
</host>
<title>On temperature dependence of soil respiration</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Luan</name>
</json:item>
<json:item>
<name>RI Muetzelfeldt</name>
</json:item>
<json:item>
<name>J Grace</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>50</last>
<first>37</first>
</pages>
<author></author>
<title>Ecological Modeling</title>
</host>
<title>Hierarchical approach to forest ecosystem simulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J A Lubchenco</name>
</json:item>
<json:item>
<name>AM Olson</name>
</json:item>
<json:item>
<name>LB Brubaker</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>412</last>
<first>371</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>The sustainable biosphere initiative</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Luo</name>
</json:item>
<json:item>
<name>S Wan</name>
</json:item>
<json:item>
<name>D Hui</name>
</json:item>
</author>
<host>
<volume>413</volume>
<pages>
<last>625</last>
<first>624</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Acclimatization of soil respiration to warming in a tall grass prairie</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Mäkelä</name>
</json:item>
<json:item>
<name>J Landsberg</name>
</json:item>
<json:item>
<name>AR Ek</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>298</last>
<first>289</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Process‐based models for forest ecosystem management</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Impacts, adaptation, and vulnerability</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>RE McMurtrie</name>
</json:item>
<json:item>
<name>DA Rook</name>
</json:item>
<json:item>
<name>FM Kelliher</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>413</last>
<first>381</first>
</pages>
<author></author>
<title>Forest Ecology and Management</title>
</host>
<title>Modelling the yield of Pinus radiata on a site limited by water and nitrogen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JM Melillo</name>
</json:item>
<json:item>
<name>AD McGuire</name>
</json:item>
<json:item>
<name>DW Kicklighter</name>
</json:item>
</author>
<host>
<volume>636</volume>
<pages>
<last>240</last>
<first>234</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Global climate change and terrestrial net primary production</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GMJ Mohren</name>
</json:item>
<json:item>
<name>K Kramer</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>317</last>
<first>307</first>
</pages>
<author></author>
<title>Impacts of Global Change on Tree Physiology and Forest Ecosystems, Forest Sciences</title>
</host>
<title>Simulation of direct effects of CO2 and temperature increase on forest growth</title>
</json:item>
<json:item>
<author>
<json:item>
<name>WJ Parton</name>
</json:item>
<json:item>
<name>DS Schimel</name>
</json:item>
<json:item>
<name>CV Cole</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>1179</last>
<first>1173</first>
</pages>
<author></author>
<title>Soil Science Society of America Journal</title>
</host>
<title>Analysis of factors controlling soil organic matter levels in Great Plains grasslands</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Potter</name>
</json:item>
<json:item>
<name>J Bubier</name>
</json:item>
<json:item>
<name>P Crill</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>223</last>
<first>208</first>
</pages>
<author></author>
<title>Canadian Journal of Forest Research</title>
</host>
<title>Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Potter</name>
</json:item>
<json:item>
<name>E Davidson</name>
</json:item>
<json:item>
<name>D Nepstad</name>
</json:item>
</author>
<host>
<volume>152</volume>
<pages>
<last>117</last>
<first>97</first>
</pages>
<author></author>
<title>Forest Ecology and Management</title>
</host>
<title>Ecosystem modeling and dynamic effects of deforestation on trace gas fluxes in Amazon tropical forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JW Raich</name>
</json:item>
<json:item>
<name>EB Rasetter</name>
</json:item>
<json:item>
<name>JM Melillo</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>429</last>
<first>399</first>
</pages>
<author></author>
<title>Ecological Applications</title>
</host>
<title>Potential net primary productivity in South America</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>T Koike</name>
</json:item>
<json:item>
<name>ST Gower</name>
</json:item>
</author>
<host>
<pages>
<last>254</last>
<first>225</first>
</pages>
<author></author>
<title>Ecophysiology of Coniferous Forests</title>
</host>
<title>Causes and consequences of variation in conifer leaf life‐span</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>MB Walters</name>
</json:item>
<json:item>
<name>DS Ellsworth</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>392</last>
<first>365</first>
</pages>
<author></author>
<title>Ecological Monographs</title>
</host>
<title>Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>MB Walters</name>
</json:item>
<json:item>
<name>DS Ellsworth</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>482</last>
<first>471</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life‐span</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PB Reichm</name>
</json:item>
<json:item>
<name>MB Walters</name>
</json:item>
<json:item>
<name>MG Tjoelker</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>405</last>
<first>395</first>
</pages>
<author></author>
<title>Functional Ecology</title>
</host>
<title>Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SW Running</name>
</json:item>
<json:item>
<name>JC Coughlan</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>154</last>
<first>125</first>
</pages>
<author></author>
<title>Ecological Modeling</title>
</host>
<title>A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MG Ryan</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>266</last>
<first>255</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>A simple method for estimating gross carbon budgets for vegetation in forest ecosystems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MG Ryan</name>
</json:item>
<json:item>
<name>ST Gower</name>
</json:item>
<json:item>
<name>RM Hubbard</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>140</last>
<first>133</first>
</pages>
<author></author>
<title>Oecoglia</title>
</host>
<title>Woody tissue maintenance respiration of four conifers in contrasting climates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MG Ryan</name>
</json:item>
<json:item>
<name>RM Hubbard</name>
</json:item>
<json:item>
<name>S Pongracic</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>344</last>
<first>333</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Foliage, fine‐root, woody‐tissue, and stand respiration in Pinus radiata in relation to nitrogen status</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DA Sampson</name>
</json:item>
<json:item>
<name>IA Janssens</name>
</json:item>
<json:item>
<name>R Ceulemans</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>46</last>
<first>31</first>
</pages>
<author></author>
<title>Annals of Forest Science</title>
</host>
<title>Simulated soil CO efflux and net ecosystem exchange in a 70‐year‐old Belgian Scots pine stand using the process model SECRETS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PJ Sands</name>
</json:item>
<json:item>
<name>M Battaglia</name>
</json:item>
<json:item>
<name>D Mummery</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>392</last>
<first>383</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Application of process‐based models to forest management</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DS Schimel</name>
</json:item>
<json:item>
<name>BH Braswell</name>
</json:item>
<json:item>
<name> </name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>271</last>
<first>251</first>
</pages>
<author></author>
<title>Ecological Monographs</title>
</host>
<title>Continental scale variability in ecosystem process models, data and role of disturbance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Sitch</name>
</json:item>
<json:item>
<name>B Smith</name>
</json:item>
<json:item>
<name>IC Prentice</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>185</last>
<first>161</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Evaluation of ecosystem dynamics, plants geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RO Slatyer</name>
</json:item>
<json:item>
<name>PA Morrow</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>20</last>
<first>1</first>
</pages>
<author></author>
<title>Australian Journal of Botany</title>
</host>
<title>Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. I Seasonal changes under field conditions in the Snowy Mountains area of southern Australia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Stockfors</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>1062</last>
<first>1057</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Temperature variations and distribution of living cells within tree stems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MG Tjoelker</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>J Oleksyn</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>778</last>
<first>767</first>
</pages>
<author></author>
<title>Plant Cell and Environment</title>
</host>
<title>Changes in leaf nitrogen and carbohydrates underlie temperature and CO acclimation of dark respiration in five boreal tree species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MG Tjoelker</name>
</json:item>
<json:item>
<name>J Oleksyn</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>692</last>
<first>679</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MG Tjoelker</name>
</json:item>
<json:item>
<name>J Oleksyn</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>230</last>
<first>223</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Modeling respiration of vegetation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W Tranquillini</name>
</json:item>
<json:item>
<name>WM Havranek</name>
</json:item>
<json:item>
<name>P Ecker</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>45</last>
<first>37</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Effects of atmospheric humidity and acclimation temperature on the temperature response of photosynthesis in your Larix dicidua Mill</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PM Vitousek</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>1876</last>
<first>1861</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Beyond global warming</title>
</json:item>
<json:item>
<author>
<json:item>
<name>HG Wager</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>19</last>
<first>1</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>On the respiration and carbon assimilation rates of some arctic plants as related to temperature</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RH Waring</name>
</json:item>
<json:item>
<name>JJ Landsberg</name>
</json:item>
<json:item>
<name>M Williams</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>134</last>
<first>129</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Net production of forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RH Waring</name>
</json:item>
<json:item>
<name>N McDowell</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>188</last>
<first>179</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Use of a physiological process model with forestry yield tables to set limits on annual carbon balances</title>
</json:item>
<json:item>
<host>
<pages>
<first>416</first>
</pages>
<author></author>
<title>Woodwell GM, Mackenzie FT (1995) Biotic Feedbacks and the Global Climatic System: Will the Warming Feed the Warming?Oxford University Press, New York. 416.</title>
</host>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>11</volume>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<pages>
<total>16</total>
<last>449</last>
<first>435</first>
</pages>
<issn>
<json:string>1354-1013</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<title>Global Change Biology</title>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>environmental sciences</json:string>
<json:string>ecology</json:string>
<json:string>biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2486.2005.00922.x</json:string>
</doi>
<id>5D421CC4F89E8DC813B046226D6BCA108BA55CD1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5D421CC4F89E8DC813B046226D6BCA108BA55CD1/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5D421CC4F89E8DC813B046226D6BCA108BA55CD1/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5D421CC4F89E8DC813B046226D6BCA108BA55CD1/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2005</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
<author xml:id="author-1">
<persName>
<forename type="first">Kirk R.</forename>
<surname>Wythers</surname>
</persName>
<affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Peter B.</forename>
<surname>Reich</surname>
</persName>
<affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Mark G.</forename>
<surname>Tjoelker</surname>
</persName>
<affiliation>Department of Forest Science, Texas A&M University, College Station, TX 77843‐2135, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Paul B.</forename>
<surname>Bolstad</surname>
</persName>
<affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Global Change Biology</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="DOI">10.1111/(ISSN)1365-2486</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-03"></date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="435">435</biblScope>
<biblScope unit="page" to="449">449</biblScope>
</imprint>
</monogr>
<idno type="istex">5D421CC4F89E8DC813B046226D6BCA108BA55CD1</idno>
<idno type="DOI">10.1111/j.1365-2486.2005.00922.x</idno>
<idno type="ArticleID">GCB922</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>acclimation</term>
</item>
<item>
<term>ANPP ecosystem model</term>
</item>
<item>
<term>PnET</term>
</item>
<item>
<term>production</term>
</item>
<item>
<term>Rd : A</term>
</item>
<item>
<term>respiration</term>
</item>
<item>
<term>temperature</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2005-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5D421CC4F89E8DC813B046226D6BCA108BA55CD1/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="GLOBAL CHANGE BIOLOGY">Global Change Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="03003">
<doi origin="wiley">10.1111/gcb.2005.11.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="11">11</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2005-03">March 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2486.2005.00922.x</doi>
<idGroup>
<id type="unit" value="GCB922"></id>
<id type="supplier" value="922"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2005-03-04"></event>
<event type="publishedOnlineFinalForm" date="2005-03-04"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="435">435</numbering>
<numbering type="pageLast" number="449">449</numbering>
</numberingGroup>
<correspondenceTo> Kirk R. Wythers, fax +612 625 5212, e‐mail:
<email normalForm="kwythers@umn.edu">kwythers@umn.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB922.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 29 September 2003; revised version received 16 September 2004; accepted 21 October 2004</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="7"></count>
<count type="formulaTotal" number="3"></count>
<count type="referenceTotal" number="90"></count>
<count type="wordTotal" number="11374"></count>
<count type="linksCrossRef" number="126"></count>
</countGroup>
<titleGroup>
<title type="main">Foliar respiration acclimation to temperature and temperature variable
<i>Q</i>
<sub>10</sub>
alter ecosystem carbon balance</title>
<title type="shortAuthors">K. R. WYTHERS
<i>et al.</i>
</title>
<title type="short">FOLIAR RESPIRATION ACCLIMATION ALTERS ECOSYSTEM CARBON BALANCE</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Kirk R.</givenNames>
<familyName>Wythers</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Peter B.</givenNames>
<familyName>Reich</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>Mark G.</givenNames>
<familyName>Tjoelker</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>Paul B.</givenNames>
<familyName>Bolstad</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>Department of Forest Science, Texas A&M University, College Station, TX 77843‐2135, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">acclimation</keyword>
<keyword xml:id="k2">ANPP ecosystem model</keyword>
<keyword xml:id="k3">PnET</keyword>
<keyword xml:id="k4">production</keyword>
<keyword xml:id="k5">
<i>Rd</i>
 : 
<i>A</i>
</keyword>
<keyword xml:id="k6">respiration</keyword>
<keyword xml:id="k7">temperature</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant
<i>Q</i>
<sub>10</sub>
of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static
<i>Q</i>
<sub>10</sub>
of respiration to describe the short‐term temperature response and ignore temperature acclimation.</p>
<p>We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (
<i>Rd</i>
<sub>acclim</sub>
) that accounts for temperature acclimation, and a temperature‐variable
<i>Q</i>
<sub>10</sub>
algorithm (
<i>Q</i>
<sub>10var</sub>
). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios.</p>
<p>The
<i>Rd</i>
<sub>acclim</sub>
algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The
<i>Q</i>
<sub>10var</sub>
algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the
<i>Rd</i>
<sub>acclim</sub>
and
<i>Q</i>
<sub>10var</sub>
algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site.</p>
<p>The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive
<i>Q</i>
<sub>10</sub>
have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>FOLIAR RESPIRATION ACCLIMATION ALTERS ECOSYSTEM CARBON BALANCE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kirk R.</namePart>
<namePart type="family">Wythers</namePart>
<affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter B.</namePart>
<namePart type="family">Reich</namePart>
<affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark G.</namePart>
<namePart type="family">Tjoelker</namePart>
<affiliation>Department of Forest Science, Texas A&M University, College Station, TX 77843‐2135, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul B.</namePart>
<namePart type="family">Bolstad</namePart>
<affiliation>Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N., Saint Paul, MN 55108, USA,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-03</dateIssued>
<edition>Received 29 September 2003; revised version received 16 September 2004; accepted 21 October 2004</edition>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">7</extent>
<extent unit="formulas">3</extent>
<extent unit="references">90</extent>
<extent unit="words">11374</extent>
</physicalDescription>
<abstract lang="en">The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>acclimation</topic>
<topic>ANPP ecosystem model</topic>
<topic>PnET</topic>
<topic>production</topic>
<topic>Rd : A</topic>
<topic>respiration</topic>
<topic>temperature</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>435</start>
<end>449</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">5D421CC4F89E8DC813B046226D6BCA108BA55CD1</identifier>
<identifier type="DOI">10.1111/j.1365-2486.2005.00922.x</identifier>
<identifier type="ArticleID">GCB922</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000409 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000409 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5D421CC4F89E8DC813B046226D6BCA108BA55CD1
   |texte=   Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024