Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Refined pipe theory for mechanistic modeling of wood development.

Identifieur interne : 000046 ( PubMed/Corpus ); précédent : 000045; suivant : 000047

Refined pipe theory for mechanistic modeling of wood development.

Auteurs : Gaby Deckmyn ; Sam P. Evans ; Tim J. Randle

Source :

RBID : pubmed:16510386

English descriptors

Abstract

We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).

PubMed: 16510386

Links to Exploration step

pubmed:16510386

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Refined pipe theory for mechanistic modeling of wood development.</title>
<author>
<name sortKey="Deckmyn, Gaby" sort="Deckmyn, Gaby" uniqKey="Deckmyn G" first="Gaby" last="Deckmyn">Gaby Deckmyn</name>
<affiliation>
<nlm:affiliation>Research Group of Plant and Vegetation Ecology, University of Antwerpen, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, Sam P" sort="Evans, Sam P" uniqKey="Evans S" first="Sam P" last="Evans">Sam P. Evans</name>
</author>
<author>
<name sortKey="Randle, Tim J" sort="Randle, Tim J" uniqKey="Randle T" first="Tim J" last="Randle">Tim J. Randle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16510386</idno>
<idno type="pmid">16510386</idno>
<idno type="wicri:Area/PubMed/Corpus">000046</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000046</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Refined pipe theory for mechanistic modeling of wood development.</title>
<author>
<name sortKey="Deckmyn, Gaby" sort="Deckmyn, Gaby" uniqKey="Deckmyn G" first="Gaby" last="Deckmyn">Gaby Deckmyn</name>
<affiliation>
<nlm:affiliation>Research Group of Plant and Vegetation Ecology, University of Antwerpen, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, Sam P" sort="Evans, Sam P" uniqKey="Evans S" first="Sam P" last="Evans">Sam P. Evans</name>
</author>
<author>
<name sortKey="Randle, Tim J" sort="Randle, Tim J" uniqKey="Randle T" first="Tim J" last="Randle">Tim J. Randle</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="ISSN">0829-318X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Fagus (anatomy & histology)</term>
<term>Fagus (growth & development)</term>
<term>Fagus (physiology)</term>
<term>Models, Biological</term>
<term>Pinus (anatomy & histology)</term>
<term>Pinus (growth & development)</term>
<term>Pinus (physiology)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Transpiration</term>
<term>Quercus (anatomy & histology)</term>
<term>Quercus (growth & development)</term>
<term>Quercus (physiology)</term>
<term>Seasons</term>
<term>Trees (anatomy & histology)</term>
<term>Trees (growth & development)</term>
<term>Wood (growth & development)</term>
<term>Wood (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Fagus</term>
<term>Pinus</term>
<term>Plant Leaves</term>
<term>Quercus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fagus</term>
<term>Pinus</term>
<term>Plant Leaves</term>
<term>Quercus</term>
<term>Trees</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fagus</term>
<term>Pinus</term>
<term>Quercus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Models, Biological</term>
<term>Plant Transpiration</term>
<term>Seasons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16510386</PMID>
<DateCreated>
<Year>2006</Year>
<Month>03</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>03</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0829-318X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>26</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Refined pipe theory for mechanistic modeling of wood development.</ArticleTitle>
<Pagination>
<MedlinePgn>703-17</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deckmyn</LastName>
<ForeName>Gaby</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Research Group of Plant and Vegetation Ecology, University of Antwerpen, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Evans</LastName>
<ForeName>Sam P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Randle</LastName>
<ForeName>Tim J</ForeName>
<Initials>TJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16510386</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000046 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000046 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16510386
   |texte=   Refined pipe theory for mechanistic modeling of wood development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16510386" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CheneBelgiqueV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024