Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure?

Identifieur interne : 000040 ( PubMed/Corpus ); précédent : 000039; suivant : 000041

Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure?

Auteurs : An Saveyn ; Kathy Steppe ; Raoul Lemeur

Source :

RBID : pubmed:17204535

English descriptors

Abstract

Daytime CO2 efflux rates (FCO2) from tree stems are often reported to be lower than expected from the exponential relationship between temperature and respiration. Explanations of daytime depression in FCO2 have focused on the possible role of internal CO2 transport in the xylem. However, another possible cause that has been overlooked is the daily dynamics of the water status in the living stem tissues and its influence on stem growth rate and thus respiration. The objective of this study was to assess the daily dynamics of stem water status and growth rate and to determine the extent to which they may be linked to daily variations in stem FCO2.

DOI: 10.1093/aob/mcl268
PubMed: 17204535

Links to Exploration step

pubmed:17204535

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure?</title>
<author>
<name sortKey="Saveyn, An" sort="Saveyn, An" uniqKey="Saveyn A" first="An" last="Saveyn">An Saveyn</name>
<affiliation>
<nlm:affiliation>Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium. an.saveyn@UGent.be</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</author>
<author>
<name sortKey="Lemeur, Raoul" sort="Lemeur, Raoul" uniqKey="Lemeur R" first="Raoul" last="Lemeur">Raoul Lemeur</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17204535</idno>
<idno type="pmid">17204535</idno>
<idno type="doi">10.1093/aob/mcl268</idno>
<idno type="wicri:Area/PubMed/Corpus">000040</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000040</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure?</title>
<author>
<name sortKey="Saveyn, An" sort="Saveyn, An" uniqKey="Saveyn A" first="An" last="Saveyn">An Saveyn</name>
<affiliation>
<nlm:affiliation>Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium. an.saveyn@UGent.be</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</author>
<author>
<name sortKey="Lemeur, Raoul" sort="Lemeur, Raoul" uniqKey="Lemeur R" first="Raoul" last="Lemeur">Raoul Lemeur</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="ISSN">0305-7364</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Dioxide (metabolism)</term>
<term>Circadian Rhythm</term>
<term>Fagus (anatomy & histology)</term>
<term>Fagus (growth & development)</term>
<term>Fagus (metabolism)</term>
<term>Plant Stems (anatomy & histology)</term>
<term>Plant Stems (growth & development)</term>
<term>Plant Stems (metabolism)</term>
<term>Quercus (anatomy & histology)</term>
<term>Quercus (growth & development)</term>
<term>Quercus (metabolism)</term>
<term>Trees (anatomy & histology)</term>
<term>Trees (growth & development)</term>
<term>Trees (metabolism)</term>
<term>Water (metabolism)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Fagus</term>
<term>Plant Stems</term>
<term>Quercus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fagus</term>
<term>Plant Stems</term>
<term>Quercus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fagus</term>
<term>Plant Stems</term>
<term>Quercus</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circadian Rhythm</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Daytime CO2 efflux rates (FCO2) from tree stems are often reported to be lower than expected from the exponential relationship between temperature and respiration. Explanations of daytime depression in FCO2 have focused on the possible role of internal CO2 transport in the xylem. However, another possible cause that has been overlooked is the daily dynamics of the water status in the living stem tissues and its influence on stem growth rate and thus respiration. The objective of this study was to assess the daily dynamics of stem water status and growth rate and to determine the extent to which they may be linked to daily variations in stem FCO2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17204535</PMID>
<DateCreated>
<Year>2007</Year>
<Month>03</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0305-7364</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>99</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2007</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann. Bot.</ISOAbbreviation>
</Journal>
<ArticleTitle>Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure?</ArticleTitle>
<Pagination>
<MedlinePgn>477-85</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Daytime CO2 efflux rates (FCO2) from tree stems are often reported to be lower than expected from the exponential relationship between temperature and respiration. Explanations of daytime depression in FCO2 have focused on the possible role of internal CO2 transport in the xylem. However, another possible cause that has been overlooked is the daily dynamics of the water status in the living stem tissues and its influence on stem growth rate and thus respiration. The objective of this study was to assess the daily dynamics of stem water status and growth rate and to determine the extent to which they may be linked to daily variations in stem FCO2.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">FCO2 of young beech and oak stems were measured under controlled conditions. Relative stem turgor pressure (Psi(p)), obtained from simulations with the 'RCGro' model, was used as an indicator of the water status in the living stem tissues. Daily dynamics of stem growth were derived from Psi(p): growth was assumed to occur when Psi(p) exceeded a relative threshold value.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">There was a strong correspondence between fluctuations in FCO2 and simulated Psi(p). The non-growth conditions during daytime coincided with depressions in FCO2. Moreover, FCO2 responded to changes in Psi(p) in the absence of growth, indicating also that maintenance processes were influenced by the water status in the living stem tissues.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Daytime depressions in stem FCO2 correlate with the daily dynamics of turgor, as a measure of the water status in the living stem tissues: it is suggested that water status of tree stems is a potentially important determinant of stem FCO2, as it influences the rate of growth and maintenance processes in the living tissues of the stem.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saveyn</LastName>
<ForeName>An</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium. an.saveyn@UGent.be</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steppe</LastName>
<ForeName>Kathy</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemeur</LastName>
<ForeName>Raoul</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1996 Nov-Dec;16(11_12):877-881</RefSource>
<PMID Version="1">14871779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1998 Mar;18(3):155-166</RefSource>
<PMID Version="1">12651385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1987 Sep;3(3):225-33</RefSource>
<PMID Version="1">14975815</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2006 Jun;29(6):1149-58</RefSource>
<PMID Version="1">17080940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2005 Sep;167(3):815-28</RefSource>
<PMID Version="1">16101918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2006 Jul;98(1):93-105</RefSource>
<PMID Version="1">16720633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 1965 Mar;8(2):264-75</RefSource>
<PMID Version="1">5876240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2007 Jan;27(1):43-52</RefSource>
<PMID Version="1">17169905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2005 Jan;56(409):135-44</RefSource>
<PMID Version="1">15569708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1968 Jul;43(7):1056-62</RefSource>
<PMID Version="1">16656882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2000 Sep;51(350):1515-29</RefSource>
<PMID Version="1">11006303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1994 May;14(5):481-95</RefSource>
<PMID Version="1">14967684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2002 Feb;22(2-3):105-16</RefSource>
<PMID Version="1">11830407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2006 Mar;26(3):257-73</RefSource>
<PMID Version="1">16356899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2004 May;24(5):571-8</RefSource>
<PMID Version="1">14996661</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002940" MajorTopicYN="N">Circadian Rhythm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2802950</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17204535</ArticleId>
<ArticleId IdType="pii">mcl268</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcl268</ArticleId>
<ArticleId IdType="pmc">PMC2802950</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000040 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000040 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17204535
   |texte=   Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17204535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CheneBelgiqueV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024