Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development and verification of a water and sugar transport model using measured stem diameter variations.

Identifieur interne : 000030 ( PubMed/Corpus ); précédent : 000029; suivant : 000031

Development and verification of a water and sugar transport model using measured stem diameter variations.

Auteurs : Veerle De Schepper ; Kathy Steppe

Source :

RBID : pubmed:20176887

English descriptors

Abstract

In trees, water and sugars are transported by xylem and phloem conduits which are hydraulically linked. A simultaneous study of both flows is interesting, since they concurrently influence important processes such as stomatal regulation and growth. A few mathematical models have already been developed to investigate the influence of both hydraulically coupled flows. However, none of these models has so far been tested using real measured field data. In the present study, a comprehensive whole-tree model is developed that enables simulation of the stem diameter variations driven by both the water and sugar transport. Stem diameter variations are calculated as volume changes of both the xylem and the phloem tissue. These volume changes are dependent on: (i) water transport according to the cohesion-tension theory; (ii) sugar transport according to the Münch hypothesis; (iii) loading and unloading of sugars; and (iv) irreversible turgor-driven growth. The model considers three main compartments (crown, stem, and roots) and is verified by comparison with actual measured stem diameter variations and xylem sap flow rates. These measurements were performed on a young oak (Quercus robur L.) tree in controlled conditions and on an adult beech (Fagus sylvatica L.) tree in a natural forest. A good agreement was found between simulated and measured data. Hence, the model seemed to be a realistic representation of the processes observed in reality. Furthermore, the model is able to simulate several physiological variables which are relatively difficult to measure: phloem turgor, phloem osmotic pressure, and Münch's counterflow. Simulation of these variables revealed daily dynamics in their behaviour which were mainly induced by transpiration. Some of these dynamics are experimentally confirmed in the literature, while others are not.

DOI: 10.1093/jxb/erq018
PubMed: 20176887

Links to Exploration step

pubmed:20176887

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development and verification of a water and sugar transport model using measured stem diameter variations.</title>
<author>
<name sortKey="De Schepper, Veerle" sort="De Schepper, Veerle" uniqKey="De Schepper V" first="Veerle" last="De Schepper">Veerle De Schepper</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium. Veerle.DeSchepper@UGent.be</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20176887</idno>
<idno type="pmid">20176887</idno>
<idno type="doi">10.1093/jxb/erq018</idno>
<idno type="wicri:Area/PubMed/Corpus">000030</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development and verification of a water and sugar transport model using measured stem diameter variations.</title>
<author>
<name sortKey="De Schepper, Veerle" sort="De Schepper, Veerle" uniqKey="De Schepper V" first="Veerle" last="De Schepper">Veerle De Schepper</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium. Veerle.DeSchepper@UGent.be</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport</term>
<term>Carbohydrate Metabolism</term>
<term>Fagus (chemistry)</term>
<term>Fagus (growth & development)</term>
<term>Fagus (metabolism)</term>
<term>Models, Biological</term>
<term>Plant Stems (chemistry)</term>
<term>Plant Stems (growth & development)</term>
<term>Plant Stems (metabolism)</term>
<term>Quercus (chemistry)</term>
<term>Quercus (growth & development)</term>
<term>Quercus (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Fagus</term>
<term>Plant Stems</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fagus</term>
<term>Plant Stems</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fagus</term>
<term>Plant Stems</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Carbohydrate Metabolism</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In trees, water and sugars are transported by xylem and phloem conduits which are hydraulically linked. A simultaneous study of both flows is interesting, since they concurrently influence important processes such as stomatal regulation and growth. A few mathematical models have already been developed to investigate the influence of both hydraulically coupled flows. However, none of these models has so far been tested using real measured field data. In the present study, a comprehensive whole-tree model is developed that enables simulation of the stem diameter variations driven by both the water and sugar transport. Stem diameter variations are calculated as volume changes of both the xylem and the phloem tissue. These volume changes are dependent on: (i) water transport according to the cohesion-tension theory; (ii) sugar transport according to the Münch hypothesis; (iii) loading and unloading of sugars; and (iv) irreversible turgor-driven growth. The model considers three main compartments (crown, stem, and roots) and is verified by comparison with actual measured stem diameter variations and xylem sap flow rates. These measurements were performed on a young oak (Quercus robur L.) tree in controlled conditions and on an adult beech (Fagus sylvatica L.) tree in a natural forest. A good agreement was found between simulated and measured data. Hence, the model seemed to be a realistic representation of the processes observed in reality. Furthermore, the model is able to simulate several physiological variables which are relatively difficult to measure: phloem turgor, phloem osmotic pressure, and Münch's counterflow. Simulation of these variables revealed daily dynamics in their behaviour which were mainly induced by transpiration. Some of these dynamics are experimentally confirmed in the literature, while others are not.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20176887</PMID>
<DateCreated>
<Year>2010</Year>
<Month>05</Month>
<Day>20</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>08</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J. Exp. Bot.</ISOAbbreviation>
</Journal>
<ArticleTitle>Development and verification of a water and sugar transport model using measured stem diameter variations.</ArticleTitle>
<Pagination>
<MedlinePgn>2083-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erq018</ELocationID>
<Abstract>
<AbstractText>In trees, water and sugars are transported by xylem and phloem conduits which are hydraulically linked. A simultaneous study of both flows is interesting, since they concurrently influence important processes such as stomatal regulation and growth. A few mathematical models have already been developed to investigate the influence of both hydraulically coupled flows. However, none of these models has so far been tested using real measured field data. In the present study, a comprehensive whole-tree model is developed that enables simulation of the stem diameter variations driven by both the water and sugar transport. Stem diameter variations are calculated as volume changes of both the xylem and the phloem tissue. These volume changes are dependent on: (i) water transport according to the cohesion-tension theory; (ii) sugar transport according to the Münch hypothesis; (iii) loading and unloading of sugars; and (iv) irreversible turgor-driven growth. The model considers three main compartments (crown, stem, and roots) and is verified by comparison with actual measured stem diameter variations and xylem sap flow rates. These measurements were performed on a young oak (Quercus robur L.) tree in controlled conditions and on an adult beech (Fagus sylvatica L.) tree in a natural forest. A good agreement was found between simulated and measured data. Hence, the model seemed to be a realistic representation of the processes observed in reality. Furthermore, the model is able to simulate several physiological variables which are relatively difficult to measure: phloem turgor, phloem osmotic pressure, and Münch's counterflow. Simulation of these variables revealed daily dynamics in their behaviour which were mainly induced by transpiration. Some of these dynamics are experimentally confirmed in the literature, while others are not.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Schepper</LastName>
<ForeName>Veerle</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium. Veerle.DeSchepper@UGent.be</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steppe</LastName>
<ForeName>Kathy</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="Y">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20176887</ArticleId>
<ArticleId IdType="pii">erq018</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erq018</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000030 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000030 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20176887
   |texte=   Development and verification of a water and sugar transport model using measured stem diameter variations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20176887" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CheneBelgiqueV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024