Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.

Identifieur interne : 000027 ( PubMed/Corpus ); précédent : 000026; suivant : 000028

The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.

Auteurs : Yongshuo H. Fu ; Matteo Campioli ; Gaby Deckmyn ; Ivan A. Janssens

Source :

RBID : pubmed:23071786

English descriptors

Abstract

Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.

DOI: 10.1371/journal.pone.0047324
PubMed: 23071786

Links to Exploration step

pubmed:23071786

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.</title>
<author>
<name sortKey="Fu, Yongshuo H" sort="Fu, Yongshuo H" uniqKey="Fu Y" first="Yongshuo H" last="Fu">Yongshuo H. Fu</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Antwerp, Wilrijk, Belgium. Yongshuo.Fu@ua.ac.be</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Campioli, Matteo" sort="Campioli, Matteo" uniqKey="Campioli M" first="Matteo" last="Campioli">Matteo Campioli</name>
</author>
<author>
<name sortKey="Deckmyn, Gaby" sort="Deckmyn, Gaby" uniqKey="Deckmyn G" first="Gaby" last="Deckmyn">Gaby Deckmyn</name>
</author>
<author>
<name sortKey="Janssens, Ivan A" sort="Janssens, Ivan A" uniqKey="Janssens I" first="Ivan A" last="Janssens">Ivan A. Janssens</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23071786</idno>
<idno type="pmid">23071786</idno>
<idno type="doi">10.1371/journal.pone.0047324</idno>
<idno type="wicri:Area/PubMed/Corpus">000027</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000027</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.</title>
<author>
<name sortKey="Fu, Yongshuo H" sort="Fu, Yongshuo H" uniqKey="Fu Y" first="Yongshuo H" last="Fu">Yongshuo H. Fu</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Antwerp, Wilrijk, Belgium. Yongshuo.Fu@ua.ac.be</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Campioli, Matteo" sort="Campioli, Matteo" uniqKey="Campioli M" first="Matteo" last="Campioli">Matteo Campioli</name>
</author>
<author>
<name sortKey="Deckmyn, Gaby" sort="Deckmyn, Gaby" uniqKey="Deckmyn G" first="Gaby" last="Deckmyn">Gaby Deckmyn</name>
</author>
<author>
<name sortKey="Janssens, Ivan A" sort="Janssens, Ivan A" uniqKey="Janssens I" first="Ivan A" last="Janssens">Ivan A. Janssens</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance</term>
<term>Belgium</term>
<term>Betula</term>
<term>Climate Change</term>
<term>Fagus</term>
<term>Models, Biological</term>
<term>Plant Shoots (physiology)</term>
<term>Quercus</term>
<term>Seasons</term>
<term>Temperature</term>
<term>Trees (growth & development)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Belgium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Betula</term>
<term>Climate Change</term>
<term>Fagus</term>
<term>Models, Biological</term>
<term>Quercus</term>
<term>Seasons</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23071786</PMID>
<DateCreated>
<Year>2012</Year>
<Month>10</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.</ArticleTitle>
<Pagination>
<MedlinePgn>e47324</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0047324</ELocationID>
<Abstract>
<AbstractText>Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Yongshuo H</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Antwerp, Wilrijk, Belgium. Yongshuo.Fu@ua.ac.be</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Campioli</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deckmyn</LastName>
<ForeName>Gaby</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janssens</LastName>
<ForeName>Ivan A</ForeName>
<Initials>IA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Jul 16;329(5989):277-8; author reply 278</RefSource>
<PMID Version="1">20647448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2006 Oct;26(10):1249-56</RefSource>
<PMID Version="1">16815827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Jan 2;421(6918):37-42</RefSource>
<PMID Version="1">12511946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biometeorol. 2012 Jan;56(1):153-64</RefSource>
<PMID Version="1">21298448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Mar 19;327(5972):1461-2</RefSource>
<PMID Version="1">20299580</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2010 Jun;186(4):900-10</RefSource>
<PMID Version="1">20406403</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2008 Feb;28(2):311-20</RefSource>
<PMID Version="1">18055441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2006 Sep;26(9):1165-72</RefSource>
<PMID Version="1">16740492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2005 Jul;25(7):915-27</RefSource>
<PMID Version="1">15870058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3149-60</RefSource>
<PMID Version="1">20819809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jan 3;451(7174):49-52</RefSource>
<PMID Version="1">18172494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 2000 Dec 7;207(3):337-47</RefSource>
<PMID Version="1">11082304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1995 Nov;15(11):697-704</RefSource>
<PMID Version="1">14965987</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2007 Jul;22(7):357-65</RefSource>
<PMID Version="1">17478009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2008 Dec;28(12):1873-82</RefSource>
<PMID Version="1">19193570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 2004 Mar 21;227(2):175-86</RefSource>
<PMID Version="1">14990382</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001530" MajorTopicYN="N" Type="Geographic">Belgium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3468505</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23071786</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0047324</ArticleId>
<ArticleId IdType="pii">PONE-D-12-07442</ArticleId>
<ArticleId IdType="pmc">PMC3468505</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000027 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000027 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23071786
   |texte=   The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23071786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CheneBelgiqueV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024