Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.

Identifieur interne : 000017 ( PubMed/Checkpoint ); précédent : 000016; suivant : 000018

Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.

Auteurs : S Amirpour Haredasht [Belgique] ; C J Taylor ; P. Maes ; W W Verstraeten ; J. Clement ; M. Barrios ; K. Lagrou ; M. Van Ranst ; P. Coppin ; D. Berckmans ; J-M Aerts

Source :

RBID : pubmed:23176630

Descripteurs français

English descriptors

Abstract

Wildlife-originated zoonotic diseases in general are a major contributor to emerging infectious diseases. Hantaviruses more specifically cause thousands of human disease cases annually worldwide, while understanding and predicting human hantavirus epidemics pose numerous unsolved challenges. Nephropathia epidemica (NE) is a human infection caused by Puumala virus, which is naturally carried and shed by bank voles (Myodes glareolus). The objective of this study was to develop a method that allows model-based predicting 3 months ahead of the occurrence of NE epidemics. Two data sets were utilized to develop and test the models. These data sets were concerned with NE cases in Finland and Belgium. In this study, we selected the most relevant inputs from all the available data for use in a dynamic linear regression (DLR) model. The number of NE cases in Finland were modelled using data from 1996 to 2008. The NE cases were predicted based on the time series data of average monthly air temperature (°C) and bank voles' trapping index using a DLR model. The bank voles' trapping index data were interpolated using a related dynamic harmonic regression model (DHR). Here, the DLR and DHR models used time-varying parameters. Both the DHR and DLR models were based on a unified state-space estimation framework. For the Belgium case, no time series of the bank voles' population dynamics were available. Several studies, however, have suggested that the population of bank voles is related to the variation in seed production of beech and oak trees in Northern Europe. Therefore, the NE occurrence pattern in Belgium was predicted based on a DLR model by using remotely sensed phenology parameters of broad-leaved forests, together with the oak and beech seed categories and average monthly air temperature (°C) using data from 2001 to 2009. Our results suggest that even without any knowledge about hantavirus dynamics in the host population, the time variation in NE outbreaks in Finland could be predicted 3 months ahead with a 34% mean relative prediction error (MRPE). This took into account solely the population dynamics of the carrier species (bank voles). The time series analysis also revealed that climate change, as represented by the vegetation index, changes in forest phenology derived from satellite images and directly measured air temperature, may affect the mechanics of NE transmission. NE outbreaks in Belgium were predicted 3 months ahead with a 40% MRPE, based only on the climatological and vegetation data, in this case, without any knowledge of the bank vole's population dynamics. In this research, we demonstrated that NE outbreaks can be predicted using climate and vegetation data or the bank vole's population dynamics, by using dynamic data-based models with time-varying parameters. Such a predictive modelling approach might be used as a step towards the development of new tools for the prevention of future NE outbreaks.

DOI: 10.1111/zph.12021
PubMed: 23176630


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23176630

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.</title>
<author>
<name sortKey="Haredasht, S Amirpour" sort="Haredasht, S Amirpour" uniqKey="Haredasht S" first="S Amirpour" last="Haredasht">S Amirpour Haredasht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, BelgiumDepartment of Engineering, Lancaster University, Lancaster, UKNational Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Leuven, BelgiumRoyal Netherlands Meteorological Institute (KNMI), Climate Observations, De Bilt, The NetherlandsEindhoven University of Technology, Applied Physics, Eindhoven, The NetherlandsDepartment of Experimental Laboratory Medicine, KU Leuven, Leuven, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, BelgiumDepartment of Engineering, Lancaster University, Lancaster, UKNational Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Leuven, BelgiumRoyal Netherlands Meteorological Institute (KNMI), Climate Observations, De Bilt, The NetherlandsEindhoven University of Technology, Applied Physics, Eindhoven, The NetherlandsDepartment of Experimental Laboratory Medicine, KU Leuven, Leuven</wicri:regionArea>
<wicri:noRegion>Leuven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taylor, C J" sort="Taylor, C J" uniqKey="Taylor C" first="C J" last="Taylor">C J Taylor</name>
</author>
<author>
<name sortKey="Maes, P" sort="Maes, P" uniqKey="Maes P" first="P" last="Maes">P. Maes</name>
</author>
<author>
<name sortKey="Verstraeten, W W" sort="Verstraeten, W W" uniqKey="Verstraeten W" first="W W" last="Verstraeten">W W Verstraeten</name>
</author>
<author>
<name sortKey="Clement, J" sort="Clement, J" uniqKey="Clement J" first="J" last="Clement">J. Clement</name>
</author>
<author>
<name sortKey="Barrios, M" sort="Barrios, M" uniqKey="Barrios M" first="M" last="Barrios">M. Barrios</name>
</author>
<author>
<name sortKey="Lagrou, K" sort="Lagrou, K" uniqKey="Lagrou K" first="K" last="Lagrou">K. Lagrou</name>
</author>
<author>
<name sortKey="Van Ranst, M" sort="Van Ranst, M" uniqKey="Van Ranst M" first="M" last="Van Ranst">M. Van Ranst</name>
</author>
<author>
<name sortKey="Coppin, P" sort="Coppin, P" uniqKey="Coppin P" first="P" last="Coppin">P. Coppin</name>
</author>
<author>
<name sortKey="Berckmans, D" sort="Berckmans, D" uniqKey="Berckmans D" first="D" last="Berckmans">D. Berckmans</name>
</author>
<author>
<name sortKey="Aerts, J M" sort="Aerts, J M" uniqKey="Aerts J" first="J-M" last="Aerts">J-M Aerts</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23176630</idno>
<idno type="pmid">23176630</idno>
<idno type="doi">10.1111/zph.12021</idno>
<idno type="wicri:Area/PubMed/Corpus">000018</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000018</idno>
<idno type="wicri:Area/PubMed/Curation">000018</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000018</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000018</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.</title>
<author>
<name sortKey="Haredasht, S Amirpour" sort="Haredasht, S Amirpour" uniqKey="Haredasht S" first="S Amirpour" last="Haredasht">S Amirpour Haredasht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, BelgiumDepartment of Engineering, Lancaster University, Lancaster, UKNational Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Leuven, BelgiumRoyal Netherlands Meteorological Institute (KNMI), Climate Observations, De Bilt, The NetherlandsEindhoven University of Technology, Applied Physics, Eindhoven, The NetherlandsDepartment of Experimental Laboratory Medicine, KU Leuven, Leuven, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, BelgiumDepartment of Engineering, Lancaster University, Lancaster, UKNational Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Leuven, BelgiumRoyal Netherlands Meteorological Institute (KNMI), Climate Observations, De Bilt, The NetherlandsEindhoven University of Technology, Applied Physics, Eindhoven, The NetherlandsDepartment of Experimental Laboratory Medicine, KU Leuven, Leuven</wicri:regionArea>
<wicri:noRegion>Leuven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taylor, C J" sort="Taylor, C J" uniqKey="Taylor C" first="C J" last="Taylor">C J Taylor</name>
</author>
<author>
<name sortKey="Maes, P" sort="Maes, P" uniqKey="Maes P" first="P" last="Maes">P. Maes</name>
</author>
<author>
<name sortKey="Verstraeten, W W" sort="Verstraeten, W W" uniqKey="Verstraeten W" first="W W" last="Verstraeten">W W Verstraeten</name>
</author>
<author>
<name sortKey="Clement, J" sort="Clement, J" uniqKey="Clement J" first="J" last="Clement">J. Clement</name>
</author>
<author>
<name sortKey="Barrios, M" sort="Barrios, M" uniqKey="Barrios M" first="M" last="Barrios">M. Barrios</name>
</author>
<author>
<name sortKey="Lagrou, K" sort="Lagrou, K" uniqKey="Lagrou K" first="K" last="Lagrou">K. Lagrou</name>
</author>
<author>
<name sortKey="Van Ranst, M" sort="Van Ranst, M" uniqKey="Van Ranst M" first="M" last="Van Ranst">M. Van Ranst</name>
</author>
<author>
<name sortKey="Coppin, P" sort="Coppin, P" uniqKey="Coppin P" first="P" last="Coppin">P. Coppin</name>
</author>
<author>
<name sortKey="Berckmans, D" sort="Berckmans, D" uniqKey="Berckmans D" first="D" last="Berckmans">D. Berckmans</name>
</author>
<author>
<name sortKey="Aerts, J M" sort="Aerts, J M" uniqKey="Aerts J" first="J-M" last="Aerts">J-M Aerts</name>
</author>
</analytic>
<series>
<title level="j">Zoonoses and public health</title>
<idno type="eISSN">1863-2378</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Arvicolinae (growth & development)</term>
<term>Arvicolinae (virology)</term>
<term>Belgium (epidemiology)</term>
<term>Climate</term>
<term>Disease Outbreaks</term>
<term>Fagus (growth & development)</term>
<term>Finland (epidemiology)</term>
<term>Forests</term>
<term>Hemorrhagic Fever with Renal Syndrome (epidemiology)</term>
<term>Hemorrhagic Fever with Renal Syndrome (transmission)</term>
<term>Hemorrhagic Fever with Renal Syndrome (veterinary)</term>
<term>Hemorrhagic Fever with Renal Syndrome (virology)</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Models, Biological</term>
<term>Population Dynamics</term>
<term>Puumala virus (isolation & purification)</term>
<term>Quercus (growth & development)</term>
<term>Seeds (growth & development)</term>
<term>Temperature</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Belgium</term>
<term>Finland</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Hemorrhagic Fever with Renal Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arvicolinae</term>
<term>Fagus</term>
<term>Quercus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Puumala virus</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Hemorrhagic Fever with Renal Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Hemorrhagic Fever with Renal Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Arvicolinae</term>
<term>Hemorrhagic Fever with Renal Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Climate</term>
<term>Disease Outbreaks</term>
<term>Forests</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Models, Biological</term>
<term>Population Dynamics</term>
<term>Temperature</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Belgique</term>
<term>Finlande</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wildlife-originated zoonotic diseases in general are a major contributor to emerging infectious diseases. Hantaviruses more specifically cause thousands of human disease cases annually worldwide, while understanding and predicting human hantavirus epidemics pose numerous unsolved challenges. Nephropathia epidemica (NE) is a human infection caused by Puumala virus, which is naturally carried and shed by bank voles (Myodes glareolus). The objective of this study was to develop a method that allows model-based predicting 3 months ahead of the occurrence of NE epidemics. Two data sets were utilized to develop and test the models. These data sets were concerned with NE cases in Finland and Belgium. In this study, we selected the most relevant inputs from all the available data for use in a dynamic linear regression (DLR) model. The number of NE cases in Finland were modelled using data from 1996 to 2008. The NE cases were predicted based on the time series data of average monthly air temperature (°C) and bank voles' trapping index using a DLR model. The bank voles' trapping index data were interpolated using a related dynamic harmonic regression model (DHR). Here, the DLR and DHR models used time-varying parameters. Both the DHR and DLR models were based on a unified state-space estimation framework. For the Belgium case, no time series of the bank voles' population dynamics were available. Several studies, however, have suggested that the population of bank voles is related to the variation in seed production of beech and oak trees in Northern Europe. Therefore, the NE occurrence pattern in Belgium was predicted based on a DLR model by using remotely sensed phenology parameters of broad-leaved forests, together with the oak and beech seed categories and average monthly air temperature (°C) using data from 2001 to 2009. Our results suggest that even without any knowledge about hantavirus dynamics in the host population, the time variation in NE outbreaks in Finland could be predicted 3 months ahead with a 34% mean relative prediction error (MRPE). This took into account solely the population dynamics of the carrier species (bank voles). The time series analysis also revealed that climate change, as represented by the vegetation index, changes in forest phenology derived from satellite images and directly measured air temperature, may affect the mechanics of NE transmission. NE outbreaks in Belgium were predicted 3 months ahead with a 40% MRPE, based only on the climatological and vegetation data, in this case, without any knowledge of the bank vole's population dynamics. In this research, we demonstrated that NE outbreaks can be predicted using climate and vegetation data or the bank vole's population dynamics, by using dynamic data-based models with time-varying parameters. Such a predictive modelling approach might be used as a step towards the development of new tools for the prevention of future NE outbreaks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23176630</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1863-2378</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Zoonoses and public health</Title>
<ISOAbbreviation>Zoonoses Public Health</ISOAbbreviation>
</Journal>
<ArticleTitle>Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>461-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/zph.12021</ELocationID>
<Abstract>
<AbstractText>Wildlife-originated zoonotic diseases in general are a major contributor to emerging infectious diseases. Hantaviruses more specifically cause thousands of human disease cases annually worldwide, while understanding and predicting human hantavirus epidemics pose numerous unsolved challenges. Nephropathia epidemica (NE) is a human infection caused by Puumala virus, which is naturally carried and shed by bank voles (Myodes glareolus). The objective of this study was to develop a method that allows model-based predicting 3 months ahead of the occurrence of NE epidemics. Two data sets were utilized to develop and test the models. These data sets were concerned with NE cases in Finland and Belgium. In this study, we selected the most relevant inputs from all the available data for use in a dynamic linear regression (DLR) model. The number of NE cases in Finland were modelled using data from 1996 to 2008. The NE cases were predicted based on the time series data of average monthly air temperature (°C) and bank voles' trapping index using a DLR model. The bank voles' trapping index data were interpolated using a related dynamic harmonic regression model (DHR). Here, the DLR and DHR models used time-varying parameters. Both the DHR and DLR models were based on a unified state-space estimation framework. For the Belgium case, no time series of the bank voles' population dynamics were available. Several studies, however, have suggested that the population of bank voles is related to the variation in seed production of beech and oak trees in Northern Europe. Therefore, the NE occurrence pattern in Belgium was predicted based on a DLR model by using remotely sensed phenology parameters of broad-leaved forests, together with the oak and beech seed categories and average monthly air temperature (°C) using data from 2001 to 2009. Our results suggest that even without any knowledge about hantavirus dynamics in the host population, the time variation in NE outbreaks in Finland could be predicted 3 months ahead with a 34% mean relative prediction error (MRPE). This took into account solely the population dynamics of the carrier species (bank voles). The time series analysis also revealed that climate change, as represented by the vegetation index, changes in forest phenology derived from satellite images and directly measured air temperature, may affect the mechanics of NE transmission. NE outbreaks in Belgium were predicted 3 months ahead with a 40% MRPE, based only on the climatological and vegetation data, in this case, without any knowledge of the bank vole's population dynamics. In this research, we demonstrated that NE outbreaks can be predicted using climate and vegetation data or the bank vole's population dynamics, by using dynamic data-based models with time-varying parameters. Such a predictive modelling approach might be used as a step towards the development of new tools for the prevention of future NE outbreaks.</AbstractText>
<CopyrightInformation>© 2012 Blackwell Verlag GmbH.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Haredasht</LastName>
<ForeName>S Amirpour</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, BelgiumDepartment of Engineering, Lancaster University, Lancaster, UKNational Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Leuven, BelgiumRoyal Netherlands Meteorological Institute (KNMI), Climate Observations, De Bilt, The NetherlandsEindhoven University of Technology, Applied Physics, Eindhoven, The NetherlandsDepartment of Experimental Laboratory Medicine, KU Leuven, Leuven, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>C J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maes</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Verstraeten</LastName>
<ForeName>W W</ForeName>
<Initials>WW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clement</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barrios</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lagrou</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van Ranst</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coppin</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berckmans</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aerts</LastName>
<ForeName>J-M</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Zoonoses Public Health</MedlineTA>
<NlmUniqueID>101300786</NlmUniqueID>
<ISSNLinking>1863-1959</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003411" MajorTopicYN="N">Arvicolinae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001530" MajorTopicYN="N" Type="Geographic">Belgium</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005387" MajorTopicYN="N" Type="Geographic">Finland</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006480" MajorTopicYN="N">Hemorrhagic Fever with Renal Syndrome</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029262" MajorTopicYN="N">Puumala virus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015047" MajorTopicYN="N">Zoonoses</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bank voles</Keyword>
<Keyword MajorTopicYN="N">climate change</Keyword>
<Keyword MajorTopicYN="N">hantaviruses</Keyword>
<Keyword MajorTopicYN="N">human disease</Keyword>
<Keyword MajorTopicYN="N">model</Keyword>
<Keyword MajorTopicYN="N">nephropathia epidemica</Keyword>
<Keyword MajorTopicYN="N">population dynamics</Keyword>
<Keyword MajorTopicYN="N">prediction</Keyword>
<Keyword MajorTopicYN="N">rodent-born diseases</Keyword>
<Keyword MajorTopicYN="N">satellite</Keyword>
<Keyword MajorTopicYN="N">time series</Keyword>
<Keyword MajorTopicYN="N">zoonoses</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23176630</ArticleId>
<ArticleId IdType="doi">10.1111/zph.12021</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aerts, J M" sort="Aerts, J M" uniqKey="Aerts J" first="J-M" last="Aerts">J-M Aerts</name>
<name sortKey="Barrios, M" sort="Barrios, M" uniqKey="Barrios M" first="M" last="Barrios">M. Barrios</name>
<name sortKey="Berckmans, D" sort="Berckmans, D" uniqKey="Berckmans D" first="D" last="Berckmans">D. Berckmans</name>
<name sortKey="Clement, J" sort="Clement, J" uniqKey="Clement J" first="J" last="Clement">J. Clement</name>
<name sortKey="Coppin, P" sort="Coppin, P" uniqKey="Coppin P" first="P" last="Coppin">P. Coppin</name>
<name sortKey="Lagrou, K" sort="Lagrou, K" uniqKey="Lagrou K" first="K" last="Lagrou">K. Lagrou</name>
<name sortKey="Maes, P" sort="Maes, P" uniqKey="Maes P" first="P" last="Maes">P. Maes</name>
<name sortKey="Taylor, C J" sort="Taylor, C J" uniqKey="Taylor C" first="C J" last="Taylor">C J Taylor</name>
<name sortKey="Van Ranst, M" sort="Van Ranst, M" uniqKey="Van Ranst M" first="M" last="Van Ranst">M. Van Ranst</name>
<name sortKey="Verstraeten, W W" sort="Verstraeten, W W" uniqKey="Verstraeten W" first="W W" last="Verstraeten">W W Verstraeten</name>
</noCountry>
<country name="Belgique">
<noRegion>
<name sortKey="Haredasht, S Amirpour" sort="Haredasht, S Amirpour" uniqKey="Haredasht S" first="S Amirpour" last="Haredasht">S Amirpour Haredasht</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23176630
   |texte=   Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23176630" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a CheneBelgiqueV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024