Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0001720 ( Pmc/Corpus ); précédent : 0001719; suivant : 0001721 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A European phylogeography of
<italic>Rhinanthus minor</italic>
compared to
<italic>Rhinanthus angustifolius</italic>
: unexpected splits and signs of hybridization</title>
<author>
<name sortKey="Vrancken, Jerome" sort="Vrancken, Jerome" uniqKey="Vrancken J" first="Jérôme" last="Vrancken">Jérôme Vrancken</name>
<affiliation>
<nlm:aff id="au1">
<institution>Biodiversity Research Centre, Earth & Life Institute, Université catholique de Louvain</institution>
<addr-line>Croix du Sud 4–5, B-1348 Louvain-la-Neuve, Belgium</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>National Centre for Biosystematics, Natural History Museum, University of Oslo</institution>
<addr-line>P.O. Box 1172 Blindern, NO-0318 Oslo, Norway</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brochmann, Christian" sort="Brochmann, Christian" uniqKey="Brochmann C" first="Christian" last="Brochmann">Christian Brochmann</name>
<affiliation>
<nlm:aff id="au2">
<institution>National Centre for Biosystematics, Natural History Museum, University of Oslo</institution>
<addr-line>P.O. Box 1172 Blindern, NO-0318 Oslo, Norway</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wesselingh, Renate A" sort="Wesselingh, Renate A" uniqKey="Wesselingh R" first="Renate A" last="Wesselingh">Renate A. Wesselingh</name>
<affiliation>
<nlm:aff id="au1">
<institution>Biodiversity Research Centre, Earth & Life Institute, Université catholique de Louvain</institution>
<addr-line>Croix du Sud 4–5, B-1348 Louvain-la-Neuve, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22957160</idno>
<idno type="pmc">3434919</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434919</idno>
<idno type="RBID">PMC:3434919</idno>
<idno type="doi">10.1002/ece3.276</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000172</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000172</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A European phylogeography of
<italic>Rhinanthus minor</italic>
compared to
<italic>Rhinanthus angustifolius</italic>
: unexpected splits and signs of hybridization</title>
<author>
<name sortKey="Vrancken, Jerome" sort="Vrancken, Jerome" uniqKey="Vrancken J" first="Jérôme" last="Vrancken">Jérôme Vrancken</name>
<affiliation>
<nlm:aff id="au1">
<institution>Biodiversity Research Centre, Earth & Life Institute, Université catholique de Louvain</institution>
<addr-line>Croix du Sud 4–5, B-1348 Louvain-la-Neuve, Belgium</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>National Centre for Biosystematics, Natural History Museum, University of Oslo</institution>
<addr-line>P.O. Box 1172 Blindern, NO-0318 Oslo, Norway</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brochmann, Christian" sort="Brochmann, Christian" uniqKey="Brochmann C" first="Christian" last="Brochmann">Christian Brochmann</name>
<affiliation>
<nlm:aff id="au2">
<institution>National Centre for Biosystematics, Natural History Museum, University of Oslo</institution>
<addr-line>P.O. Box 1172 Blindern, NO-0318 Oslo, Norway</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wesselingh, Renate A" sort="Wesselingh, Renate A" uniqKey="Wesselingh R" first="Renate A" last="Wesselingh">Renate A. Wesselingh</name>
<affiliation>
<nlm:aff id="au1">
<institution>Biodiversity Research Centre, Earth & Life Institute, Université catholique de Louvain</institution>
<addr-line>Croix du Sud 4–5, B-1348 Louvain-la-Neuve, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and Evolution</title>
<idno type="ISSN">2045-7758</idno>
<idno type="eISSN">2045-7758</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Rhinanthus minor</italic>
and
<italic>Rhinanthus angustifolius</italic>
(Orobanchaceae) are annual hemiparasites, which occur sympatrically in Europe and are known to hybridize. We studied chloroplast and nuclear (amplified fragment length polymorphism [AFLP]) diversity in
<italic>R. minor</italic>
and compared genetic structuring in this species with
<italic>R. angustifolius</italic>
by analyzing the AFLP data for both species simultaneously. The AFLP data revealed that populations in Italy, Greece, and southeast Russia initially identified as
<italic>R. minor</italic>
were so distant from the other
<italic>R. minor</italic>
populations that they probably belong to another, yet unidentified taxon, and we refer to them as
<italic>Rhinanthus</italic>
sp.
<italic>R. minor</italic>
s.s. showed a clear geographic genetic structure in both the chloroplast DNA (cpDNA) and nuclear genome. The simultaneous analysis of both species shed new light on the previously published findings for
<italic>R. angustifolius</italic>
, because some populations now turned out to belong to
<italic>R. minor</italic>
. The admixture analysis revealed very few individuals of mixed
<italic>R. minor–R.angustifolius</italic>
ancestry in the natural populations in the west of Europe, while admixture levels were higher in the east. The combined haplotype network showed that haplotype H1 was shared among all species and is likely to be ancestral. H2 was more abundant in
<italic>R. angustifolius</italic>
and H3 in
<italic>R. minor</italic>
, and the latter probably arose from H1 in this species in the east of Europe. The occurrence of H3 in
<italic>R. angustifolius</italic>
may be explained by introgression from
<italic>R. minor</italic>
, but without interspecific admixture, these are likely to have been old hybridization events. Our study underlines the importance of including related species in phylogeographic studies.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Becquet, C" uniqKey="Becquet C">C Becquet</name>
</author>
<author>
<name sortKey="Przeworski, M" uniqKey="Przeworski M">M Przeworski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Jr" uniqKey="Bennett J">JR Bennett</name>
</author>
<author>
<name sortKey="Mathews, S" uniqKey="Mathews S">S Mathews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bohme, B" uniqKey="Bohme B">B Böhme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonin, A" uniqKey="Bonin A">A Bonin</name>
</author>
<author>
<name sortKey="Bellemain, E" uniqKey="Bellemain E">E Bellemain</name>
</author>
<author>
<name sortKey="Eidesen, Pb" uniqKey="Eidesen P">PB Eidesen</name>
</author>
<author>
<name sortKey="Pompanon, F" uniqKey="Pompanon F">F Pompanon</name>
</author>
<author>
<name sortKey="Brochmann, C" uniqKey="Brochmann C">C Brochmann</name>
</author>
<author>
<name sortKey="Taberlet, P" uniqKey="Taberlet P">P Taberlet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burban, C" uniqKey="Burban C">C Burban</name>
</author>
<author>
<name sortKey="Petit, Rj" uniqKey="Petit R">RJ Petit</name>
</author>
<author>
<name sortKey="Carcreff, E" uniqKey="Carcreff E">E Carcreff</name>
</author>
<author>
<name sortKey="Jactel, H" uniqKey="Jactel H">H Jactel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campion Bourget, F" uniqKey="Campion Bourget F">F Campion-Bourget</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chabert, A" uniqKey="Chabert A">A Chabert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlesworth, B" uniqKey="Charlesworth B">B Charlesworth</name>
</author>
<author>
<name sortKey="Bartolome, C" uniqKey="Bartolome C">C Bartolomé</name>
</author>
<author>
<name sortKey="Noel, V" uniqKey="Noel V">V Noël</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clement, M" uniqKey="Clement M">M Clement</name>
</author>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comps, B" uniqKey="Comps B">B Comps</name>
</author>
<author>
<name sortKey="Gomory, D" uniqKey="Gomory D">D Gömöry</name>
</author>
<author>
<name sortKey="Letouzey, J" uniqKey="Letouzey J">J Letouzey</name>
</author>
<author>
<name sortKey="Thiebaut, B" uniqKey="Thiebaut B">B Thiébaut</name>
</author>
<author>
<name sortKey="Petit, Rj" uniqKey="Petit R">RJ Petit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diamond, J" uniqKey="Diamond J">J Diamond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducarme, V" uniqKey="Ducarme V">V Ducarme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducarme, V" uniqKey="Ducarme V">V Ducarme</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducarme, V" uniqKey="Ducarme V">V Ducarme</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducarme, V" uniqKey="Ducarme V">V Ducarme</name>
</author>
<author>
<name sortKey="Risterucci, Am" uniqKey="Risterucci A">AM Risterucci</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducarme, V" uniqKey="Ducarme V">V Ducarme</name>
</author>
<author>
<name sortKey="Vrancken, J" uniqKey="Vrancken J">J Vrancken</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehrich, D" uniqKey="Ehrich D">D Ehrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eidesen, Pb" uniqKey="Eidesen P">PB Eidesen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evanno, G" uniqKey="Evanno G">G Evanno</name>
</author>
<author>
<name sortKey="Regnaut, S" uniqKey="Regnaut S">S Regnaut</name>
</author>
<author>
<name sortKey="Goudet, J" uniqKey="Goudet J">J Goudet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Excoffier, L" uniqKey="Excoffier L">L Excoffier</name>
</author>
<author>
<name sortKey="Laval, G" uniqKey="Laval G">G Laval</name>
</author>
<author>
<name sortKey="Schneider, S" uniqKey="Schneider S">S Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Felsenstein, J" uniqKey="Felsenstein J">J Felsenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaudeul, M" uniqKey="Gaudeul M">M Gaudeul</name>
</author>
<author>
<name sortKey="Taberlet, P" uniqKey="Taberlet P">P Taberlet</name>
</author>
<author>
<name sortKey="Till Bottraud, I" uniqKey="Till Bottraud I">I Till-Bottraud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutierrez Larena, B" uniqKey="Gutierrez Larena B">B Gutiérrez Larena</name>
</author>
<author>
<name sortKey="Fuertes Aguilar, J" uniqKey="Fuertes Aguilar J">J Fuertes Aguilar</name>
</author>
<author>
<name sortKey="Nieto Feliner, G" uniqKey="Nieto Feliner G">G Nieto Feliner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, Ta" uniqKey="Hall T">TA Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hambler, Dj" uniqKey="Hambler D">DJ Hambler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heuertz, M" uniqKey="Heuertz M">M Heuertz</name>
</author>
<author>
<name sortKey="Carnevale, S" uniqKey="Carnevale S">S Carnevale</name>
</author>
<author>
<name sortKey="Fineschi, S" uniqKey="Fineschi S">S Fineschi</name>
</author>
<author>
<name sortKey="Sebastiani, F" uniqKey="Sebastiani F">F Sebastiani</name>
</author>
<author>
<name sortKey="Hausman, Jf" uniqKey="Hausman J">JF Hausman</name>
</author>
<author>
<name sortKey="Paule, L" uniqKey="Paule L">L Paule</name>
</author>
<author>
<name sortKey="Vendramin, Gg" uniqKey="Vendramin G">GG Vendramin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hulten, E" uniqKey="Hulten E">E Hultén</name>
</author>
<author>
<name sortKey="Fries, M" uniqKey="Fries M">M Fries</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwak, Mm" uniqKey="Kwak M">MM Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwak, Mm" uniqKey="Kwak M">MM Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwak, Mm" uniqKey="Kwak M">MM Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lihova, J" uniqKey="Lihova J">J Lihová</name>
</author>
<author>
<name sortKey="Kucera, J" uniqKey="Kucera J">J Kucera</name>
</author>
<author>
<name sortKey="Perny, M" uniqKey="Perny M">M Perny</name>
</author>
<author>
<name sortKey="Marhold, K" uniqKey="Marhold K">K Marhold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muir, G" uniqKey="Muir G">G Muir</name>
</author>
<author>
<name sortKey="Schlotterer, C" uniqKey="Schlotterer C">C Schlötterer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Natalis, Lc" uniqKey="Natalis L">LC Natalis</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palme, Ae" uniqKey="Palme A">AE Palmé</name>
</author>
<author>
<name sortKey="Su, Q" uniqKey="Su Q">Q Su</name>
</author>
<author>
<name sortKey="Rautenberg, A" uniqKey="Rautenberg A">A Rautenberg</name>
</author>
<author>
<name sortKey="Manni, F" uniqKey="Manni F">F Manni</name>
</author>
<author>
<name sortKey="Lascoux, M" uniqKey="Lascoux M">M Lascoux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paun, O" uniqKey="Paun O">O Paun</name>
</author>
<author>
<name sortKey="Stuessy, Tf" uniqKey="Stuessy T">TF Stuessy</name>
</author>
<author>
<name sortKey="Horandl, E" uniqKey="Horandl E">E Hörandl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paun, O" uniqKey="Paun O">O Paun</name>
</author>
<author>
<name sortKey="Schonswetter, P" uniqKey="Schonswetter P">P Schönswetter</name>
</author>
<author>
<name sortKey="Winkler, M" uniqKey="Winkler M">M Winkler</name>
</author>
<author>
<name sortKey="Intrabiodiv, Consortium" uniqKey="Intrabiodiv C">Consortium Intrabiodiv</name>
</author>
<author>
<name sortKey="Tribsch, A" uniqKey="Tribsch A">A Tribsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petit, Rj" uniqKey="Petit R">RJ Petit</name>
</author>
<author>
<name sortKey="Csaikl, Um" uniqKey="Csaikl U">UM Csaikl</name>
</author>
<author>
<name sortKey="Bordacs, S" uniqKey="Bordacs S">S Bordács</name>
</author>
<author>
<name sortKey="Burg, K" uniqKey="Burg K">K Burg</name>
</author>
<author>
<name sortKey="Coart, E" uniqKey="Coart E">E Coart</name>
</author>
<author>
<name sortKey="Cottrell, J" uniqKey="Cottrell J">J Cottrell</name>
</author>
<author>
<name sortKey="Van Dam, B" uniqKey="Van Dam B">B van Dam</name>
</author>
<author>
<name sortKey="Deans, Jd" uniqKey="Deans J">JD Deans</name>
</author>
<author>
<name sortKey="Dumolin Lapegue, S" uniqKey="Dumolin Lapegue S">S Dumolin-Lapègue</name>
</author>
<author>
<name sortKey="Fineschi, S" uniqKey="Fineschi S">S Fineschi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pignatti, S" uniqKey="Pignatti S">S Pignatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pons, O" uniqKey="Pons O">O Pons</name>
</author>
<author>
<name sortKey="Petit, Rj" uniqKey="Petit R">RJ Petit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pritchard, Jk" uniqKey="Pritchard J">JK Pritchard</name>
</author>
<author>
<name sortKey="Stephens, M" uniqKey="Stephens M">M Stephens</name>
</author>
<author>
<name sortKey="Donnelly, P" uniqKey="Donnelly P">P Donnelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Remington, Cl" uniqKey="Remington C">CL Remington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rendell, S" uniqKey="Rendell S">S Rendell</name>
</author>
<author>
<name sortKey="Ennos, Ra" uniqKey="Ennos R">RA Ennos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rieseberg, Lh" uniqKey="Rieseberg L">LH Rieseberg</name>
</author>
<author>
<name sortKey="Soltis, De" uniqKey="Soltis D">DE Soltis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schonswetter, P" uniqKey="Schonswetter P">P Schönswetter</name>
</author>
<author>
<name sortKey="Tribsch, A" uniqKey="Tribsch A">A Tribsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slotte, T" uniqKey="Slotte T">T Slotte</name>
</author>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
<author>
<name sortKey="Lascoux, M" uniqKey="Lascoux M">M Lascoux</name>
</author>
<author>
<name sortKey="Ceplitis, A" uniqKey="Ceplitis A">A Ceplitis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taberlet, P" uniqKey="Taberlet P">P Taberlet</name>
</author>
<author>
<name sortKey="Gielly, L" uniqKey="Gielly L">L Gielly</name>
</author>
<author>
<name sortKey="Pautou, G" uniqKey="Pautou G">G Pautou</name>
</author>
<author>
<name sortKey="Bouvet, J" uniqKey="Bouvet J">J Bouvet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taberlet, P" uniqKey="Taberlet P">P Taberlet</name>
</author>
<author>
<name sortKey="Fumagalli, L" uniqKey="Fumagalli L">L Fumagalli</name>
</author>
<author>
<name sortKey="Wust Saucy, Ag" uniqKey="Wust Saucy A">AG Wust-Saucy</name>
</author>
<author>
<name sortKey="Cosson, Jf" uniqKey="Cosson J">JF Cosson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ter Borg, Sj" uniqKey="Ter Borg S">SJ ter Borg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="T Itel, J" uniqKey="T Itel J">J Těšitel</name>
</author>
<author>
<name sortKey=" Ha, P" uniqKey=" Ha P">P Říha</name>
</author>
<author>
<name sortKey="Svobodova, S" uniqKey="Svobodova S">S Svobodová</name>
</author>
<author>
<name sortKey="Malinova, T" uniqKey="Malinova T">T Malinová</name>
</author>
<author>
<name sortKey="Stech, M" uniqKey="Stech M">M Štech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vekemans, X" uniqKey="Vekemans X">X Vekemans</name>
</author>
<author>
<name sortKey="Beauwens, T" uniqKey="Beauwens T">T Beauwens</name>
</author>
<author>
<name sortKey="Lemaire, M" uniqKey="Lemaire M">M Lemaire</name>
</author>
<author>
<name sortKey="Roldan Ruiz, I" uniqKey="Roldan Ruiz I">I Roldán-Ruiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von So, R" uniqKey="Von So R">R von Soó</name>
</author>
<author>
<name sortKey="Webb, Da" uniqKey="Webb D">DA Webb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vrancken, J" uniqKey="Vrancken J">J Vrancken</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vrancken, J" uniqKey="Vrancken J">J Vrancken</name>
</author>
<author>
<name sortKey="Brochmann, C" uniqKey="Brochmann C">C Brochmann</name>
</author>
<author>
<name sortKey="Wesselingh, Ra" uniqKey="Wesselingh R">RA Wesselingh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Widmer, A" uniqKey="Widmer A">A Widmer</name>
</author>
<author>
<name sortKey="Lexer, C" uniqKey="Lexer C">C Lexer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winkler, M" uniqKey="Winkler M">M Winkler</name>
</author>
<author>
<name sortKey="Tribsch, A" uniqKey="Tribsch A">A Tribsch</name>
</author>
<author>
<name sortKey="Paun, O" uniqKey="Paun O">O Paun</name>
</author>
<author>
<name sortKey="Englisch, T" uniqKey="Englisch T">T Englisch</name>
</author>
<author>
<name sortKey="Intrabiodiv Consortium" uniqKey="Intrabiodiv Consortium">IntraBioDiv-Consortium</name>
</author>
<author>
<name sortKey="Schonswetter, P" uniqKey="Schonswetter P">P Schönswetter</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ecol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Ecol Evol</journal-id>
<journal-id journal-id-type="publisher-id">ece3</journal-id>
<journal-title-group>
<journal-title>Ecology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="ppub">2045-7758</issn>
<issn pub-type="epub">2045-7758</issn>
<publisher>
<publisher-name>Blackwell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22957160</article-id>
<article-id pub-id-type="pmc">3434919</article-id>
<article-id pub-id-type="doi">10.1002/ece3.276</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A European phylogeography of
<italic>Rhinanthus minor</italic>
compared to
<italic>Rhinanthus angustifolius</italic>
: unexpected splits and signs of hybridization</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Vrancken</surname>
<given-names>Jérôme</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brochmann</surname>
<given-names>Christian</given-names>
</name>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wesselingh</surname>
<given-names>Renate A</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>Biodiversity Research Centre, Earth & Life Institute, Université catholique de Louvain</institution>
<addr-line>Croix du Sud 4–5, B-1348 Louvain-la-Neuve, Belgium</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>National Centre for Biosystematics, Natural History Museum, University of Oslo</institution>
<addr-line>P.O. Box 1172 Blindern, NO-0318 Oslo, Norway</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Renate Wesselingh, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4-5, Box L7.07.04, 1348 Louvain-la-Neuve, Belgium. Fax: +32 (0)10 47 3490; E-mail:
<email>renate.wesselingh@uclouvain.be</email>
</corresp>
<fn>
<p>Funded by an FSR grant from the University of Louvain.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>7</month>
<year>2012</year>
</pub-date>
<volume>2</volume>
<issue>7</issue>
<fpage>1531</fpage>
<lpage>1548</lpage>
<history>
<date date-type="received">
<day>16</day>
<month>2</month>
<year>2012</year>
</date>
<date date-type="rev-recd">
<day>11</day>
<month>4</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>4</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 The Authors. Published by Blackwell Publishing Ltd.</copyright-statement>
<copyright-year>2012</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.5/">
<license-p>Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.</license-p>
</license>
</permissions>
<abstract>
<p>
<italic>Rhinanthus minor</italic>
and
<italic>Rhinanthus angustifolius</italic>
(Orobanchaceae) are annual hemiparasites, which occur sympatrically in Europe and are known to hybridize. We studied chloroplast and nuclear (amplified fragment length polymorphism [AFLP]) diversity in
<italic>R. minor</italic>
and compared genetic structuring in this species with
<italic>R. angustifolius</italic>
by analyzing the AFLP data for both species simultaneously. The AFLP data revealed that populations in Italy, Greece, and southeast Russia initially identified as
<italic>R. minor</italic>
were so distant from the other
<italic>R. minor</italic>
populations that they probably belong to another, yet unidentified taxon, and we refer to them as
<italic>Rhinanthus</italic>
sp.
<italic>R. minor</italic>
s.s. showed a clear geographic genetic structure in both the chloroplast DNA (cpDNA) and nuclear genome. The simultaneous analysis of both species shed new light on the previously published findings for
<italic>R. angustifolius</italic>
, because some populations now turned out to belong to
<italic>R. minor</italic>
. The admixture analysis revealed very few individuals of mixed
<italic>R. minor–R.angustifolius</italic>
ancestry in the natural populations in the west of Europe, while admixture levels were higher in the east. The combined haplotype network showed that haplotype H1 was shared among all species and is likely to be ancestral. H2 was more abundant in
<italic>R. angustifolius</italic>
and H3 in
<italic>R. minor</italic>
, and the latter probably arose from H1 in this species in the east of Europe. The occurrence of H3 in
<italic>R. angustifolius</italic>
may be explained by introgression from
<italic>R. minor</italic>
, but without interspecific admixture, these are likely to have been old hybridization events. Our study underlines the importance of including related species in phylogeographic studies.</p>
</abstract>
<kwd-group>
<kwd>AFLP</kwd>
<kwd>cpDNA</kwd>
<kwd>hybridization</kwd>
<kwd>introgression</kwd>
<kwd>phylogeography</kwd>
<kwd>
<italic>Rhinanthus</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>A growing number of studies have demonstrated wide-ranging sharing of chloroplast DNA (cpDNA) haplotypes across species boundaries in plants, often trees (e.g.,
<italic>Quercus</italic>
:
<xref ref-type="bibr" rid="b38">Petit et al. 2002</xref>
;
<italic>Betula</italic>
:
<xref ref-type="bibr" rid="b34">Palmé et al. 2003</xref>
;
<italic>Fraxinus</italic>
:
<xref ref-type="bibr" rid="b26">Heuertz et al. 2006</xref>
). The presence of an identical cpDNA haplotype in different species may result from three basic processes: convergent evolution, incomplete lineage sorting of ancient polymorphisms, and interspecific gene flow. Plants have for long been known for their high levels of interspecific gene flow (
<xref ref-type="bibr" rid="b44">Rieseberg and Soltis 1991</xref>
), and many studies addressing cpDNA haplotype sharing have indeed concluded that hybridization and subsequent backcrosses to one of the parental species account for this pattern (
<xref ref-type="bibr" rid="b23">Gutiérrez Larena et al. 2002</xref>
;
<xref ref-type="bibr" rid="b35">Paun et al. 2006</xref>
;
<xref ref-type="bibr" rid="b18">Eidesen 2007</xref>
;
<xref ref-type="bibr" rid="b31">Lihová et al. 2007</xref>
).</p>
<p>Such haplotype sharing resulting from hybridization is an important issue in phylogeographic studies as it may compromise the interpretation of species demographic histories by superimposing effects of recent processes onto older ones. Exploring and quantifying gene flow between species is thus of prime importance in plant phylogeography.</p>
<p>The genus
<italic>Rhinanthus</italic>
L. (Orobanchaceae) offers a good model system for the study of genetic interactions between closely related species. The genus comprises 25 annual hemiparasitic species in Europe (
<xref ref-type="bibr" rid="b52">von Soó and Webb 1972</xref>
), and hybridization is frequent (
<xref ref-type="bibr" rid="b6">Campion-Bourget 1980</xref>
).
<italic>Rhinanthus angustifolius</italic>
C. C. Gmelin and
<italic>Rhinanthus minor</italic>
L. (
<xref ref-type="fig" rid="fig01">Fig. 1</xref>
) are the two most widespread species of the genus and co-occur in a large part of their ranges. Both are grassland species with overlapping ecological requirements (
<xref ref-type="bibr" rid="b14">Ducarme and Wesselingh 2010</xref>
). They are diploid (2
<italic>n</italic>
= 22,
<xref ref-type="bibr" rid="b25">Hambler 1954</xref>
) and self-compatible, and their yellow flowers are pollinated by bumblebees (
<xref ref-type="bibr" rid="b30">Kwak 1980</xref>
;
<xref ref-type="bibr" rid="b33">Natalis and Wesselingh 2012</xref>
). The heavy seeds do not disperse very far and have a short life span, so no persistent seed bank is formed (
<xref ref-type="bibr" rid="b49">ter Borg 1972</xref>
). They have been known for a long time to form fertile hybrids (
<xref ref-type="bibr" rid="b7">Chabert 1899</xref>
;
<xref ref-type="bibr" rid="b28">Kwak 1978</xref>
;
<xref ref-type="bibr" rid="b6">Campion-Bourget 1980</xref>
). In natural, mixed populations, most hybrids are genetically close to
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b30">Kwak 1980</xref>
;
<xref ref-type="bibr" rid="b16">Ducarme et al. 2010</xref>
), probably due to a combination of the higher selfing rate of
<italic>R. minor</italic>
(
<xref ref-type="bibr" rid="b12">Ducarme 2008</xref>
) and a preference of the visiting bumblebees for
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b33">Natalis and Wesselingh 2012</xref>
). This should facilitate introgression from
<italic>R. minor</italic>
to
<italic>R. angustifolius</italic>
, and since F
<sub>1</sub>
hybrids predominantly have the
<italic>R. minor</italic>
cytoplasm, due to a low germination rate of F
<sub>1</sub>
seeds formed on
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b29">Kwak 1979</xref>
), this could lead to cpDNA introgression in the same direction as well.</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Inflorescence of
<italic>Rhinanthus minor</italic>
L., photographed by R. A. Wesselingh in population be1 (Braine-le-Château, Belgium), 27 May 2008.</p>
</caption>
<graphic xlink:href="ece30002-1531-f1"></graphic>
</fig>
<p>In a previous study of the phylogeography of
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b54">Vrancken et al. 2009</xref>
), we observed different patterns for cpDNA and nuclear diversity. The nuclear variation, as inferred from amplified fragment length polymorphism (AFLP) markers, was well-structured geographically, while no clear pattern could be observed in the cpDNA sequence diversity. As the most likely explanation for the absence of geographic structure within this usually phylogeographically informative marker system, we suggested cpDNA introgression through hybridization with
<italic>R. minor</italic>
.</p>
<p>In the present study, we investigate the level and geographic structuring of cpDNA and nuclear variation in 57 populations of
<italic>R. minor</italic>
sampled over most of its range, based on sequencing of two noncoding cpDNA regions and AFLP. Additionally, we included known natural hybrids between
<italic>R. minor</italic>
and
<italic>R. angustifolius</italic>
and a subset of the previously analyzed populations of
<italic>R. angustifolius</italic>
in the AFLP analysis to characterize the hybrids genetically and facilitate direct comparison between the species. These results were used to compare the patterns observed in
<italic>R. minor</italic>
with those previously obtained for
<italic>R. angustifolius</italic>
, to examine whether hybridization and cpDNA introgression rather than incomplete lineage sorting or convergent evolution could explain the absence of cpDNA structure in
<italic>R. angustifolius</italic>
.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Sampling and DNA isolation</title>
<p>Fifty-seven natural populations of
<italic>R. minor</italic>
were sampled from most of its distribution range in Europe (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
;
<xref ref-type="table" rid="tbl1">Table 1</xref>
). Seeds from four to 10 individuals at a minimum interindividual distance of 10 m were sampled from each population. DNA was isolated from a single seed using the Invisorb Spin Plant Mini Kit (Stratec Molecular, Berlin) and diluted with 50 µL of elution buffer. Seeds from populations that we did not sample ourselves were sown and the plants cultivated in a greenhouse in order to verify species identity based on morphology.</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Parsimony network connecting the 14 cpDNA haplotypes detected in
<italic>Rhinanthus minor</italic>
s.l. and the geographic distribution of the cpDNA haplotypes. Shaded areas represent the distribution range of
<italic>Rhinanthus minor</italic>
in Europe (redrawn from
<xref ref-type="bibr" rid="b27">Hultén and Fries 1986</xref>
). In the parsimony network, the size of the circles is proportional to the haplotype frequency. Arrows indicate indels, pointing toward the shorter of the two sequences, with the size of the arrowhead proportional to the size of the indel. The red asterisks indicate three populations analyzed as
<italic>Rhinanthus angustifolius</italic>
in
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
, but identified as
<italic>R. minor</italic>
in this study.</p>
</caption>
<graphic xlink:href="ece30002-1531-f2"></graphic>
</fig>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Sampling locations, chloroplast DNA (cpDNA) haplotypes, Nei's diversity for the cpDNA data, amplified fragment length polymorphism (AFLP) groups, Nei's unbiased gene diversity for AFLP, and rarity index (DW) of AFLP markers for the 57 populations of
<italic>Rhinanthus minor</italic>
s.l., population codes followed by an * are
<italic>Rhinanthus</italic>
sp. populations. The number of individuals analyzed is given for each marker. Values in parentheses are percentages of cpDNA haplotypes</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Population</th>
<th align="left" rowspan="1" colspan="1">Country</th>
<th align="left" rowspan="1" colspan="1">Latitude (°N)</th>
<th align="left" rowspan="1" colspan="1">Longitude (°E)</th>
<th align="left" rowspan="1" colspan="1">
<italic>n</italic>
cpDNA</th>
<th align="left" rowspan="1" colspan="1">cpDNA haplotypes</th>
<th align="left" rowspan="1" colspan="1">cpDNA diversity</th>
<th align="left" rowspan="1" colspan="1">
<italic>n</italic>
AFLP</th>
<th align="left" rowspan="1" colspan="1">AFLP diversity</th>
<th align="left" rowspan="1" colspan="1">DW</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">at1</td>
<td align="left" rowspan="1" colspan="1">Austria</td>
<td align="left" rowspan="1" colspan="1">47°45′</td>
<td align="left" rowspan="1" colspan="1">13°03′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.009</td>
<td align="left" rowspan="1" colspan="1">0.155</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">at2</td>
<td align="left" rowspan="1" colspan="1">Austria</td>
<td align="left" rowspan="1" colspan="1">47°11′</td>
<td align="left" rowspan="1" colspan="1">13°07′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H3(90) H27(10)</td>
<td align="left" rowspan="1" colspan="1">0.200</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0.090</td>
<td align="left" rowspan="1" colspan="1">0.221</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">at3</td>
<td align="left" rowspan="1" colspan="1">Austria</td>
<td align="left" rowspan="1" colspan="1">47°15′</td>
<td align="left" rowspan="1" colspan="1">13°34′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.017</td>
<td align="left" rowspan="1" colspan="1">0.228</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">be1</td>
<td align="left" rowspan="1" colspan="1">Belgium</td>
<td align="left" rowspan="1" colspan="1">50°40′</td>
<td align="left" rowspan="1" colspan="1">04°14′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">0.007</td>
<td align="left" rowspan="1" colspan="1">0.219</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">be2</td>
<td align="left" rowspan="1" colspan="1">Belgium</td>
<td align="left" rowspan="1" colspan="1">50°11′</td>
<td align="left" rowspan="1" colspan="1">05°12′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.040</td>
<td align="left" rowspan="1" colspan="1">0.155</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">dk1</td>
<td align="left" rowspan="1" colspan="1">Denmark</td>
<td align="left" rowspan="1" colspan="1">54°47′</td>
<td align="left" rowspan="1" colspan="1">11°53′</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">en1</td>
<td align="left" rowspan="1" colspan="1">England</td>
<td align="left" rowspan="1" colspan="1">54°37′</td>
<td align="left" rowspan="1" colspan="1">-00°39′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(50) H24(50)</td>
<td align="left" rowspan="1" colspan="1">0.670</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.048</td>
<td align="left" rowspan="1" colspan="1">0.140</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">en2</td>
<td align="left" rowspan="1" colspan="1">England</td>
<td align="left" rowspan="1" colspan="1">54°10′</td>
<td align="left" rowspan="1" colspan="1">-01°06′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1(30) H3(20) H24(50)</td>
<td align="left" rowspan="1" colspan="1">0.690</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.075</td>
<td align="left" rowspan="1" colspan="1">0.163</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">en3</td>
<td align="left" rowspan="1" colspan="1">England</td>
<td align="left" rowspan="1" colspan="1">54°18′</td>
<td align="left" rowspan="1" colspan="1">-00°49′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H24</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.026</td>
<td align="left" rowspan="1" colspan="1">0.157</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fi1</td>
<td align="left" rowspan="1" colspan="1">Finland</td>
<td align="left" rowspan="1" colspan="1">66°22′</td>
<td align="left" rowspan="1" colspan="1">29°32′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(75) H3(25)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.043</td>
<td align="left" rowspan="1" colspan="1">0.144</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fi2</td>
<td align="left" rowspan="1" colspan="1">Finland</td>
<td align="left" rowspan="1" colspan="1">66°22′</td>
<td align="left" rowspan="1" colspan="1">29°35′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1(40) H3(60)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.106</td>
<td align="left" rowspan="1" colspan="1">0.217</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fi3</td>
<td align="left" rowspan="1" colspan="1">Finland</td>
<td align="left" rowspan="1" colspan="1">66°22′</td>
<td align="left" rowspan="1" colspan="1">29°35′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(50) H3(50)</td>
<td align="left" rowspan="1" colspan="1">0.510</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.100</td>
<td align="left" rowspan="1" colspan="1">0.201</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fr1</td>
<td align="left" rowspan="1" colspan="1">France</td>
<td align="left" rowspan="1" colspan="1">45°54′</td>
<td align="left" rowspan="1" colspan="1">06°34′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.032</td>
<td align="left" rowspan="1" colspan="1">0.312</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fr2</td>
<td align="left" rowspan="1" colspan="1">France</td>
<td align="left" rowspan="1" colspan="1">44°50′</td>
<td align="left" rowspan="1" colspan="1">06°20′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H22</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.107</td>
<td align="left" rowspan="1" colspan="1">0.166</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fr3</td>
<td align="left" rowspan="1" colspan="1">France</td>
<td align="left" rowspan="1" colspan="1">47°20′</td>
<td align="left" rowspan="1" colspan="1">03°36′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1(10) H3(90)</td>
<td align="left" rowspan="1" colspan="1">0.200</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.117</td>
<td align="left" rowspan="1" colspan="1">0.301</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">fr4</td>
<td align="left" rowspan="1" colspan="1">France</td>
<td align="left" rowspan="1" colspan="1">45°14′</td>
<td align="left" rowspan="1" colspan="1">06°11′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.009</td>
<td align="left" rowspan="1" colspan="1">0.183</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">de1</td>
<td align="left" rowspan="1" colspan="1">Germany</td>
<td align="left" rowspan="1" colspan="1">48°00′</td>
<td align="left" rowspan="1" colspan="1">07°52′</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">H1(33) H2(67)</td>
<td align="left" rowspan="1" colspan="1">0.670</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.033</td>
<td align="left" rowspan="1" colspan="1">0.141</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">gr1*</td>
<td align="left" rowspan="1" colspan="1">Greece</td>
<td align="left" rowspan="1" colspan="1">41°07′</td>
<td align="left" rowspan="1" colspan="1">22°20′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">0.713</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">gr2*</td>
<td align="left" rowspan="1" colspan="1">Greece</td>
<td align="left" rowspan="1" colspan="1">40°50′</td>
<td align="left" rowspan="1" colspan="1">21°59′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.007</td>
<td align="left" rowspan="1" colspan="1">0.676</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">gr3*</td>
<td align="left" rowspan="1" colspan="1">Greece</td>
<td align="left" rowspan="1" colspan="1">40°37′</td>
<td align="left" rowspan="1" colspan="1">22°06′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.015</td>
<td align="left" rowspan="1" colspan="1">0.518</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hu1</td>
<td align="left" rowspan="1" colspan="1">Hungary</td>
<td align="left" rowspan="1" colspan="1">47°28′</td>
<td align="left" rowspan="1" colspan="1">17°02′</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.078</td>
<td align="left" rowspan="1" colspan="1">0.142</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">is1</td>
<td align="left" rowspan="1" colspan="1">Iceland</td>
<td align="left" rowspan="1" colspan="1">65°19′</td>
<td align="left" rowspan="1" colspan="1">-13°50′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.065</td>
<td align="left" rowspan="1" colspan="1">0.187</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">is2</td>
<td align="left" rowspan="1" colspan="1">Iceland</td>
<td align="left" rowspan="1" colspan="1">65°35′</td>
<td align="left" rowspan="1" colspan="1">-14°04′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.022</td>
<td align="left" rowspan="1" colspan="1">0.149</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">is3</td>
<td align="left" rowspan="1" colspan="1">Iceland</td>
<td align="left" rowspan="1" colspan="1">65°37′</td>
<td align="left" rowspan="1" colspan="1">-14°16′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(25) H25(75)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">0.141</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">is4</td>
<td align="left" rowspan="1" colspan="1">Iceland</td>
<td align="left" rowspan="1" colspan="1">65°39′</td>
<td align="left" rowspan="1" colspan="1">-20°16′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(50) H3(50)</td>
<td align="left" rowspan="1" colspan="1">0.670</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.040</td>
<td align="left" rowspan="1" colspan="1">0.164</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ir1</td>
<td align="left" rowspan="1" colspan="1">Ireland</td>
<td align="left" rowspan="1" colspan="1">53°07′</td>
<td align="left" rowspan="1" colspan="1">-09°17′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.045</td>
<td align="left" rowspan="1" colspan="1">0.208</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ir2</td>
<td align="left" rowspan="1" colspan="1">Ireland</td>
<td align="left" rowspan="1" colspan="1">53°20′</td>
<td align="left" rowspan="1" colspan="1">-07°30′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.015</td>
<td align="left" rowspan="1" colspan="1">0.267</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ir3</td>
<td align="left" rowspan="1" colspan="1">Ireland</td>
<td align="left" rowspan="1" colspan="1">54°07′</td>
<td align="left" rowspan="1" colspan="1">-07°35′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H2</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.018</td>
<td align="left" rowspan="1" colspan="1">0.149</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">it1*</td>
<td align="left" rowspan="1" colspan="1">Italy</td>
<td align="left" rowspan="1" colspan="1">41°50′</td>
<td align="left" rowspan="1" colspan="1">13°20′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.042</td>
<td align="left" rowspan="1" colspan="1">0.508</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">it2*</td>
<td align="left" rowspan="1" colspan="1">Italy</td>
<td align="left" rowspan="1" colspan="1">42°46′</td>
<td align="left" rowspan="1" colspan="1">13°37′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(25) H21(75)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.156</td>
<td align="left" rowspan="1" colspan="1">1.894</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">it3*</td>
<td align="left" rowspan="1" colspan="1">Italy</td>
<td align="left" rowspan="1" colspan="1">42°47′</td>
<td align="left" rowspan="1" colspan="1">13°36′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">0.628</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">nl1</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">52°17′</td>
<td align="left" rowspan="1" colspan="1">05°44′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.045</td>
<td align="left" rowspan="1" colspan="1">0.137</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">nl2</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">53°18′</td>
<td align="left" rowspan="1" colspan="1">05°04′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.039</td>
<td align="left" rowspan="1" colspan="1">0.136</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">no1</td>
<td align="left" rowspan="1" colspan="1">Norway</td>
<td align="left" rowspan="1" colspan="1">61°23′</td>
<td align="left" rowspan="1" colspan="1">08°18′</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">H3(67) H27(33)</td>
<td align="left" rowspan="1" colspan="1">0.670</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.143</td>
<td align="left" rowspan="1" colspan="1">0.378</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">no2</td>
<td align="left" rowspan="1" colspan="1">Norway</td>
<td align="left" rowspan="1" colspan="1">61°35′</td>
<td align="left" rowspan="1" colspan="1">08°55′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1(50) H3(20) H29(30)</td>
<td align="left" rowspan="1" colspan="1">0.690</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.052</td>
<td align="left" rowspan="1" colspan="1">0.123</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">no3</td>
<td align="left" rowspan="1" colspan="1">Norway</td>
<td align="left" rowspan="1" colspan="1">61°35′</td>
<td align="left" rowspan="1" colspan="1">09°00′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H23(25) H28(75)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.010</td>
<td align="left" rowspan="1" colspan="1">0.179</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">no4</td>
<td align="left" rowspan="1" colspan="1">Norway</td>
<td align="left" rowspan="1" colspan="1">61°29′</td>
<td align="left" rowspan="1" colspan="1">08°37′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3(75) H29(25)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.050</td>
<td align="left" rowspan="1" colspan="1">0.155</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">pt1</td>
<td align="left" rowspan="1" colspan="1">Portugal</td>
<td align="left" rowspan="1" colspan="1">40°12′</td>
<td align="left" rowspan="1" colspan="1">-08°25′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.136</td>
<td align="left" rowspan="1" colspan="1">0.227</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ru1*</td>
<td align="left" rowspan="1" colspan="1">Russia</td>
<td align="left" rowspan="1" colspan="1">43°27′</td>
<td align="left" rowspan="1" colspan="1">41°42′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.047</td>
<td align="left" rowspan="1" colspan="1">1.013</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">sc1</td>
<td align="left" rowspan="1" colspan="1">Scotland</td>
<td align="left" rowspan="1" colspan="1">56°09′</td>
<td align="left" rowspan="1" colspan="1">-03°20′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.049</td>
<td align="left" rowspan="1" colspan="1">0.131</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">sc2</td>
<td align="left" rowspan="1" colspan="1">Scotland</td>
<td align="left" rowspan="1" colspan="1">56°09′</td>
<td align="left" rowspan="1" colspan="1">-03°21′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.007</td>
<td align="left" rowspan="1" colspan="1">0.129</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es1</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°59′</td>
<td align="left" rowspan="1" colspan="1">-05°91′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(50) H26(50)</td>
<td align="left" rowspan="1" colspan="1">0.670</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.044</td>
<td align="left" rowspan="1" colspan="1">0.150</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es2</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°27′</td>
<td align="left" rowspan="1" colspan="1">-05°65′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H26</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.011</td>
<td align="left" rowspan="1" colspan="1">0.172</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es3</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°32′</td>
<td align="left" rowspan="1" colspan="1">-05°44′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.029</td>
<td align="left" rowspan="1" colspan="1">0.176</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es4</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°31′</td>
<td align="left" rowspan="1" colspan="1">-05°42′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(75) H26(25)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.040</td>
<td align="left" rowspan="1" colspan="1">0.200</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es5</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°34′</td>
<td align="left" rowspan="1" colspan="1">-05°17′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">0.164</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es6</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°28′</td>
<td align="left" rowspan="1" colspan="1">-05°14′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1(80) H26(20)</td>
<td align="left" rowspan="1" colspan="1">0.360</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">0.164</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">es7</td>
<td align="left" rowspan="1" colspan="1">Spain</td>
<td align="left" rowspan="1" colspan="1">40°36′</td>
<td align="left" rowspan="1" colspan="1">-05°14′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1(75) H26(25)</td>
<td align="left" rowspan="1" colspan="1">0.500</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.027</td>
<td align="left" rowspan="1" colspan="1">0.150</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">se1</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">56°45′</td>
<td align="left" rowspan="1" colspan="1">13°00′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.025</td>
<td align="left" rowspan="1" colspan="1">0.129</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">se2</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">56°40′</td>
<td align="left" rowspan="1" colspan="1">12°48′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H1(40) H3(60)</td>
<td align="left" rowspan="1" colspan="1">0.530</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.055</td>
<td align="left" rowspan="1" colspan="1">0.185</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">se3</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">63°17′</td>
<td align="left" rowspan="1" colspan="1">12°20′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H31</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.018</td>
<td align="left" rowspan="1" colspan="1">0.164</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">se4</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">68°21′</td>
<td align="left" rowspan="1" colspan="1">18°49′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3(50) H31(50)</td>
<td align="left" rowspan="1" colspan="1">0.670</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">0.033</td>
<td align="left" rowspan="1" colspan="1">0.122</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">se5</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">55°20′</td>
<td align="left" rowspan="1" colspan="1">13°10′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H30</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.055</td>
<td align="left" rowspan="1" colspan="1">0.123</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ch1</td>
<td align="left" rowspan="1" colspan="1">Switzerland</td>
<td align="left" rowspan="1" colspan="1">46°27′</td>
<td align="left" rowspan="1" colspan="1">09°35′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.003</td>
<td align="left" rowspan="1" colspan="1">0.210</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ch2</td>
<td align="left" rowspan="1" colspan="1">Switzerland</td>
<td align="left" rowspan="1" colspan="1">46°27′</td>
<td align="left" rowspan="1" colspan="1">09°33′</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.037</td>
<td align="left" rowspan="1" colspan="1">0.146</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ch3</td>
<td align="left" rowspan="1" colspan="1">Switzerland</td>
<td align="left" rowspan="1" colspan="1">46°26′</td>
<td align="left" rowspan="1" colspan="1">09°47′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.031</td>
<td align="left" rowspan="1" colspan="1">0.174</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">cy1</td>
<td align="left" rowspan="1" colspan="1">Wales</td>
<td align="left" rowspan="1" colspan="1">51°39′</td>
<td align="left" rowspan="1" colspan="1">-04°43′</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">0.000</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.045</td>
<td align="left" rowspan="1" colspan="1">0.166</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>For
<italic>R. angustifolius</italic>
, we randomly selected a subset of up to four individuals (
<xref ref-type="table" rid="tbl4">Appendix A1</xref>
) from most of the populations analyzed in the previous paper (
<xref ref-type="bibr" rid="b54">Vrancken et al. 2009</xref>
). AFLPs for these plants were rerun in the laboratory and reanalyzed together with
<italic>R. minor</italic>
to allow direct comparison between the two species.</p>
<p>To examine whether interspecific hybrids could be detected in the natural populations, we used plants of known descent as reference. In a garden experiment conducted in 2007, a mixed population was created with potted plants grown from seed from a
<italic>R. minor</italic>
population in the nature reserve Housta-Dardenne (Braine-le-Château, Belgium; population be1,
<xref ref-type="table" rid="tbl1">Table 1</xref>
) and from a
<italic>R. angustifolius</italic>
population in the reserve Doode Bemde (Oud-Heverlee, Belgium; population BE3;
<xref ref-type="table" rid="tbl4">Appendix A1</xref>
). Seeds were obtained by open pollination, and the potential F
<sub>1</sub>
hybrid status of these seeds was assessed by DNA extraction from a single seed and the use of one microsatellite and two species-specific random amplified polymorphic DNA (RAPD) markers (
<xref ref-type="bibr" rid="b12">Ducarme 2008</xref>
;
<xref ref-type="bibr" rid="b15">Ducarme et al. 2008</xref>
). We used the DNA of four of the identified F
<sub>1</sub>
hybrids, and DNA from leaf samples of their respective maternal parents, two
<italic>R. angustifolius</italic>
and two
<italic>R. minor</italic>
plants, in the AFLP analysis. We also used DNA extracted from leaf samples collected in 2004 in a naturally mixed population of the two species in the nature reserve of Kalkense Meersen, Uitbergen (province of Oost-Vlaanderen, Belgium), where the species have grown together for at least 12 years (
<xref ref-type="bibr" rid="b16">Ducarme et al. 2010</xref>
). The hybrid status of these plants was assessed with eight species-specific markers, five RAPD, and three inter-simple sequence repeat (ISSR) markers (
<xref ref-type="bibr" rid="b13">Ducarme and Wesselingh 2005</xref>
;
<xref ref-type="bibr" rid="b16">Ducarme et al. 2010</xref>
), resulting in a hybrid index that ranged from –4 (
<italic>R. minor</italic>
) to +4 (
<italic>R. angustifolius</italic>
). We used DNA of nine plants, two plants with index +4, two with +2, two with 0 and all markers present (and therefore potential F
<sub>1</sub>
hybrids), two with –2, and one with –4.</p>
</sec>
<sec>
<title>cpDNA sequencing</title>
<p>We have shown that cpDNA is inherited maternally in
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b53">Vrancken and Wesselingh 2010</xref>
). The non-coding
<italic>trn</italic>
T
<italic>trn</italic>
L spacer and the
<italic>trn</italic>
L intron were amplified with primers a-b and c-d, respectively (
<xref ref-type="bibr" rid="b47">Taberlet et al. 1991</xref>
). Fragments were amplified by polymerase chain reaction (PCR) in a 25 µL volume using 3 µL extracted DNA, 0.025 U/µL Taq DNA polymerase (Roche Applied Science, Penzberg, Germany), 2.5 µL PCR buffer 10×, 1.5 mM MgCl
<sub>2</sub>
, 0.2 mg/mL bovine serum albumin, 0.2 µM dNTPs, and 0.25 µL of each 20 µM primer. Amplification was performed for 5 min at 94°C (1×), 1 min at 94°C, 1 min at 55°C, 2 min at 72°C (30 cycles), and 7 min at 72°C (1×) using the Gene Amp PCR System 9700 thermocycler (Perkin-Elmer, Waltham, Massachusetts, USA). The amplification products were checked on 1% agarose gels and samples were diluted 10 times before sequencing. Sequencing reactions were performed forward using 1 µL of 5 µM a or c primers and 4 µL of diluted PCR product. PCR products were dye-labeled using a Big Dye Terminator Kit (Applied Biosystems, Foster City, California, USA) and reactions were run on an ABI 3100 automated sequencer (Applied Biosystems, Foster City, California, USA). Sequences were manually aligned using BioEdit (
<xref ref-type="bibr" rid="b24">Hall 1999</xref>
).</p>
</sec>
<sec>
<title>AFLP fingerprinting</title>
<p>The three primer combinations used for AFLP analysis of
<italic>R. minor</italic>
were identical to those used for
<italic>R. angustifolius</italic>
in our previous study (
<xref ref-type="bibr" rid="b54">Vrancken et al. 2009</xref>
). The AFLP protocol followed
<xref ref-type="bibr" rid="b22">Gaudeul et al. (2000)</xref>
. Amplification products for the three primer combinations were mixed in the following proportions: 2 µL—FAM, 2 µL—NED, and 3 µL—VIC and diluted with 14 µL purified water. A total of 3 µL of this mix were loaded with 11.7 µL HiDi formamide and 0.3 µL GENESCAN ROX 500 on a PCR plate and run on an ABI 3100. ABI chromatographs were imported and analyzed in the GENESCAN 3.7 analysis software (Applied Biosystems, Foster City, California, USA). AFLP fragments were scored with GENOGRAPHER 1.6 (
<ext-link ext-link-type="uri" xlink:href="http://hordeum.oscs.montana.edu/genographer/">http://hordeum.oscs.montana.edu/genographer/</ext-link>
). The AFLP reactions and analyses of one randomly chosen individual for each of 24
<italic>R. minor</italic>
populations (6% of the 399 individuals analyzed) were duplicated to serve as a blind sample in order to test the reproducibility of the scoring and to calculate the error rate. Two other
<italic>R. minor</italic>
individuals were run on each plate to check for among-plate repeatability (
<xref ref-type="bibr" rid="b4">Bonin et al. 2004</xref>
).</p>
</sec>
<sec>
<title>cpDNA data analysis</title>
<p>Analyses were performed on the
<italic>R. minor</italic>
dataset consisting of the combined cpDNA regions. Indels were treated as a single mutation event. An unrooted haplotype network also including the haplotypes found in
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b54">Vrancken et al. 2009</xref>
) was constructed using the program TCS version 1.21 (
<xref ref-type="bibr" rid="b9">Clement et al. 2000</xref>
). Diversity and population differentiation for
<italic>R. minor</italic>
only were calculated with the program PERMUT version 2.0 (
<ext-link ext-link-type="uri" xlink:href="http://www.pierroton.inra.fr/genetics/labo/Software/Permut/">http://www.pierroton.inra.fr/genetics/labo/Software/Permut/</ext-link>
;
<xref ref-type="bibr" rid="b40">Pons and Petit 1996</xref>
). Computed parameters included the mean within-population gene diversity (
<italic>h</italic>
<sub>S</sub>
), the total gene diversity (
<italic>h</italic>
<sub>T</sub>
), the coefficient of genetic differentiation over all populations (
<italic>G</italic>
<sub>ST</sub>
), and equivalent parameters computed by taking into account the similarities between haplotypes (
<italic>v</italic>
<sub>S</sub>
,
<italic>v</italic>
<sub>T</sub>
,
<italic>N</italic>
<sub>ST</sub>
). In order to statistically compare the two parameters of genetic differentiation (
<xref ref-type="bibr" rid="b5">Burban et al. 1999</xref>
), a permutation test with 1000 random permutations of haplotype identities was performed using the same program. Additionally, Nei's gene diversity was computed for all populations with ARLEQUIN version 3.0 (
<xref ref-type="bibr" rid="b20">Excoffier et al. 2005</xref>
). Isolation by distance was assessed with a Mantel test as described below for the AFLP data, with molecular differentiation between-population pairs quantified with
<italic>F</italic>
<sub>ST</sub>
using the results of an analysis of molecular variance (AMOVA in ARLEQUIN 3.0).</p>
</sec>
<sec>
<title>AFLP data analysis</title>
<p>For the entire dataset (including
<italic>R. minor</italic>
,
<italic>R. angustifolius</italic>
and known hybrids), we constructed a binary matrix by scoring bands with sizes between 50 and 500 base pairs (bp). Presence of unambiguous bands was scored as 1 and absence as 0. Bands that were not perfectly reproducible between replicates were eliminated from the matrix (23 out of 204 bands). We calculated a matrix of genetic distances between individuals in the full dataset using the module Restdist in PHYLIP 3.69 (
<xref ref-type="bibr" rid="b21">Felsenstein 2004</xref>
), and a Neighbor-Joining (NJ) tree was then produced with PHYLIP 3.69 and drawn with FIGTREE v.1.3.1 (Andrew Rambaut,
<ext-link ext-link-type="uri" xlink:href="http://tree.bio.ed.ac.uk/">http://tree.bio.ed.ac.uk/</ext-link>
).</p>
<p>Genetic structuring was further investigated using a Bayesian model-based clustering algorithm implemented in STRUCTURE (
<xref ref-type="bibr" rid="b41">Pritchard et al. 2000</xref>
). We analyzed our dataset with STRUCTURE version 2.3.2.1 at the Bioportal, University of Oslo (
<ext-link ext-link-type="uri" xlink:href="http//www.bioportal.uio.no">http//www.bioportal.uio.no</ext-link>
) using the admixture model, uncorrelated allele frequencies models, no prior information, and the following parameters:
<italic>K</italic>
from 1 to 12, 25 replicate runs for each
<italic>K</italic>
, a burn-in period of 2 × 10
<sup>5</sup>
and 10
<sup>6</sup>
iterations. The optimal number of clusters
<italic>K</italic>
in our dataset was selected using the methods described by
<xref ref-type="bibr" rid="b19">Evanno et al. (2005)</xref>
using the R script Structure-sum-2011 (
<xref ref-type="bibr" rid="b17">Ehrich 2006</xref>
).
<italic>F</italic>
<sub>ST</sub>
computations for
<italic>R. minor</italic>
populations were conducted using ARLEQUIN version 3.0 (
<xref ref-type="bibr" rid="b20">Excoffier et al. 2005</xref>
). Pairwise
<italic>F</italic>
<sub>ST</sub>
values for the STRUCTURE clusters were computed with AFLPSURV 1.0 (
<xref ref-type="bibr" rid="b51">Vekemans et al. 2002</xref>
) by pooling populations of all species in each cluster. Gene diversity within
<italic>R. minor</italic>
populations and STRUCTURE clusters (entire dataset), estimated by the Nei's unbiased diversity estimator were computed using AFLPSURV 1.0 (
<xref ref-type="bibr" rid="b51">Vekemans et al. 2002</xref>
). The R script AFLPdat (
<xref ref-type="bibr" rid="b17">Ehrich 2006</xref>
) was used to calculate the frequency-down-weighted (DW) marker value for
<italic>R. minor</italic>
populations. This DW value is an estimator of differentiation expressed by the rarity of markers present in a population (
<xref ref-type="bibr" rid="b45">Schönswetter and Tribsch 2005</xref>
). To test for isolation by distance for
<italic>R. minor</italic>
populations, the correlation between pairwise
<italic>F</italic>
<sub>ST</sub>
values computed with ARLEQUIN and geographical distances between the populations in kilometers between the populations was estimated with a Mantel test (1000 replications) using the Microsoft Excel add-on POPTOOLS (
<ext-link ext-link-type="uri" xlink:href="http://www.poptools.org/">http://www.poptools.org/</ext-link>
).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>cpDNA: molecular variation, genetic diversity, and geographic structure in
<italic>R. minor</italic>
</title>
<p>The alignment of the concatenated matrix of the
<italic>trn</italic>
T-
<italic>trn</italic>
L spacer and
<italic>trn</italic>
L intron sequences for the 295 successfully sequenced individuals (
<xref ref-type="table" rid="tbl1">Table 1</xref>
) was 1130 bp long. Twelve variable sites were found (1.1%): eight substitutions and four indels. These mutations distinguished 14 haplotypes shown on the parsimony network (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
). Two haplotypes were frequent: H1 and H3 were found in 50 out of the 57 populations. Together they were present in 81% of the individuals, while the other haplotypes were rare and often restricted to one population (
<xref ref-type="table" rid="tbl2">Table 2</xref>
).</p>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<p>Sequence polymorphism in the 14 chloroplast DNA (cpDNA) haplotypes found in
<italic>Rhinanthus minor</italic>
. Haplotype identification numbers were given according the numbering started for
<italic>Rhinanthus angustifolius</italic>
haplotypes in
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
. The numbers above each column indicate the nucleotide positions, and Freq is the haplotype frequency across all populations</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="10" rowspan="1">
<italic>trn</italic>
T
<italic>-trn</italic>
L spacer</th>
<th align="left" colspan="2" rowspan="1">
<italic>trn</italic>
L intron</th>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="10" rowspan="1">
<hr></hr>
</th>
<th align="left" colspan="2" rowspan="1">
<hr></hr>
</th>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">94</th>
<th align="left" rowspan="1" colspan="1">254</th>
<th align="left" rowspan="1" colspan="1">273</th>
<th align="left" rowspan="1" colspan="1">279</th>
<th align="left" rowspan="1" colspan="1">289</th>
<th align="left" rowspan="1" colspan="1">313</th>
<th align="left" rowspan="1" colspan="1">324</th>
<th align="left" rowspan="1" colspan="1">386</th>
<th align="left" rowspan="1" colspan="1">506</th>
<th align="left" rowspan="1" colspan="1">621</th>
<th align="left" rowspan="1" colspan="1">294</th>
<th align="left" rowspan="1" colspan="1">361</th>
<th align="left" rowspan="1" colspan="1">Freq</th>
<th align="left" rowspan="1" colspan="1">Present in population(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">H1</td>
<td align="left" rowspan="1" colspan="1">TATAGTA</td>
<td align="left" rowspan="1" colspan="1">A</td>
<td align="left" rowspan="1" colspan="1">AATATTA</td>
<td align="left" rowspan="1" colspan="1">AAATATT</td>
<td align="left" rowspan="1" colspan="1">A</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">A</td>
<td align="left" rowspan="1" colspan="1">
<bold>- - - - - - - - - - - - - - - - - - -</bold>
</td>
<td align="left" rowspan="1" colspan="1">G</td>
<td align="left" rowspan="1" colspan="1">A</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">A</td>
<td align="left" rowspan="1" colspan="1">0.41</td>
<td align="left" rowspan="1" colspan="1">dk1, en1-2, fi1-3, fr3, de1, gr1-3, is1-4, it1-3, no2, pt1, ru1, sc1-2, es1, es3-7, se1-2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H2</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.02</td>
<td align="left" rowspan="1" colspan="1">de1, ir2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H3</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.40</td>
<td align="left" rowspan="1" colspan="1">at1-3, be1-2, en2, fi1-3, fr1, fr3-4, hu1, is4, ir1-2, nl1-2, no1-2, no4, se2, ch1-3, cy1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H21</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">- - - - - - -</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">it2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H22</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">G</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">fr2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H23</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">- - - - - - -</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.00</td>
<td align="left" rowspan="1" colspan="1">no3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H24</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.04</td>
<td align="left" rowspan="1" colspan="1">en1-3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H25</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">is3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H26</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.03</td>
<td align="left" rowspan="1" colspan="1">es1-2, es4, es6-7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H27</td>
<td align="left" rowspan="1" colspan="1">
<bold>- - - - - - -</bold>
</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">at2, no1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H28</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">- - - - - - -</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">no3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H29</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">
<bold>- - - - - - -</bold>
</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">no2, no4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H30</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">TCTATCCTATATATTTATT</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">0.01</td>
<td align="left" rowspan="1" colspan="1">se5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">H31</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">…………………</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">.</td>
<td align="left" rowspan="1" colspan="1">T</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">0.02</td>
<td align="left" rowspan="1" colspan="1">se3-4</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>We defined five informal haplotype groups: H1, close to H1, H3, close to H3, and H2 (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
). Among the 57 populations, 36 were monomorphic for one haplotype and 11 had two close haplotypes, H1 and close to H1, or H3 and close to H3. Combinations of haplotypes H1, H2, and H3 or derived haplotypes were observed in 10 populations, mainly in Scandinavia, and two of these had a total of three haplotypes detected among 10 sampled individuals. The haplotype groups had different geographical distributions (
<xref ref-type="table" rid="tbl2">Table 2</xref>
;
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
). Haplotype H3 was more abundant in the alpine region and in the central part of our sampling area, and the haplotypes derived from it were almost exclusively found in Scandinavia. H1 was found in all the southern regions and was predominant in the Atlantic and northwestern Europe, while its derived haplotypes were more widespread than for H3, but each was only found in a single population except for H26, which occurred in three Spanish populations. The mean within-population gene diversity for western populations was 0.21, with values ranging from 0 to 0.69 (
<xref ref-type="table" rid="tbl1">Table 1</xref>
). We observed high genetic differentiation (
<italic>G</italic>
<sub>ST</sub>
= 0.69) among the western and northern populations, excluding the southeastern populations in Italy, Greece, and Russia. Differentiation was significantly higher when similarity between haplotypes was taken into account (
<italic>N</italic>
<sub>ST</sub>
= 0.77). The Mantel test was significant for western populations (test statistic = 0.100,
<italic>P</italic>
= 0.002), showing that geographically distant populations were more differentiated than adjacent ones. As only two haplo-types were observed in the southeastern populations (H1 and H21), gene diversity within populations was low (mean: 0.07) and tests for differentiation and isolation by distance were not performed.</p>
</sec>
<sec>
<title>AFLP variation in
<italic>R. minor</italic>
</title>
<p>We scored 181 polymorphic markers in the 399 individuals that were successfully analyzed: 289 that were originally identified as
<italic>R. minor</italic>
(
<xref ref-type="table" rid="tbl1">Table 1</xref>
), 93 belonging to
<italic>R. angustifolius</italic>
, and 17 individuals used in the hybrid detection test. The average reproducibility was 97.5% for the three primer pairs.</p>
<p>In the combined dataset including both
<italic>R. minor</italic>
and
<italic>R. angustifolius</italic>
samples, the STRUCTURE analyses identified nine clusters as being most optimal (
<xref ref-type="app" rid="app2">Appendix A2</xref>
). The three runs with the highest LnP(D) values, over –19,850, all had the same composition, with standard deviations for
<italic>q</italic>
-values of individual samples of 0.015 or less. Seven of the clusters contained predominantly
<italic>R. minor</italic>
individuals, while most of the
<italic>R. angustifolius</italic>
individuals were assigned to a single cluster. The remaining cluster, South, contained three individuals from an Italian population, all four plants from the G2 group (a single population) previously detected in
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b54">Vrancken et al. 2009</xref>
), plus some isolated individuals from various other
<italic>R. minor</italic>
populations. The seven
<italic>R. minor</italic>
clusters had different geographical distributions (
<xref ref-type="fig" rid="fig03">Fig. 3</xref>
). The Spanish, Italian, Greek, and Russian clusters were restricted almost completely to their respective countries in the south of Europe, while the other clusters had much wider distributions. The Atlantic cluster was strongly represented in Iceland, the British Isles, and northern Scandinavia, while the Central cluster was dominant in the Alps and also represented in western Scandinavia. The West cluster was only found in France, Belgium, and the Netherlands, and in one Finnish population.</p>
<fig id="fig03" position="float">
<label>Figure 3</label>
<caption>
<p>Geographic distribution of the nine clusters detected in the STRUCTURE analysis of the AFLP data. The pie charts depict population means of
<italic>q</italic>
-values for each cluster calculated from individual averages for the three highest scoring STRUCTURE runs for
<italic>K</italic>
= 9 for populations of
<italic>Rhinanthus minor</italic>
s.l., while the uppercase population codes indicate the locations of the
<italic>Rhinanthus angustifolius</italic>
populations discussed in the text.</p>
</caption>
<graphic xlink:href="ece30002-1531-f3"></graphic>
</fig>
<p>Our previous study on
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b54">Vrancken et al. 2009</xref>
) distinguished five AFLP groups for this species. The reanalysis of part of the samples in combination with
<italic>R. minor</italic>
shed new light on one of these groups, G4. The Danish population DK2, which was geographically isolated from the other, eastern European populations in this group, fell squarely into the
<italic>R. minor</italic>
Central cluster (
<xref ref-type="fig" rid="fig04">Fig. 4</xref>
) and turned out to be genetically closest to
<italic>R. minor</italic>
samples from Iceland. We had not been able to grow plants from the seeds of this Danish population (they were too old to germinate), and an inquiry at the source of the seeds, the Botanical Garden of the University of Copenhagen, could not confirm the identity of the plants in the wild population where they had been sampled, but based on our results, it is highly likely that the seeds had been sampled on
<italic>R. minor</italic>
plants. The remaining populations in the G4 group, from Poland (PL1) and Romania (RO1), belonged to the
<italic>R. minor</italic>
Central cluster (
<xref ref-type="fig" rid="fig04">Fig. 4</xref>
), and again, these should be considered as
<italic>R. minor</italic>
and not
<italic>R. angustifolius</italic>
. The two Bulgarian populations BG1 and BG2, which had been classified in two AFLP groups by
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
, G4 and G5, turned out to contain both
<italic>R. angustifolius</italic>
and
<italic>R. minor</italic>
plants, 2 + 2 in BG1 and 3 + 1 in BG3.</p>
<fig id="fig04" position="float">
<label>Figure 4</label>
<caption>
<p>Within-individual proportions of ancestry (
<italic>q</italic>
-values) produced by the STRUCTURE analysis. The colors used for the nine clusters are the same as in
<xref ref-type="fig" rid="fig03">Fig. 3</xref>
; the population codes can be found in
<xref ref-type="table" rid="tbl1">Table 1</xref>
and
<xref ref-type="table" rid="tbl4">Appendix A1</xref>
. From top to bottom:
<italic>Rhinanthus angustifolius</italic>
populations (uppercase population codes), with the AFLP groups from
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
indicated on the right; P and F1: four F
<sub>1</sub>
hybrids surrounded by their maternal parents; mixed pop: the mixed population in descending order of hybrid index (from +4 to –4); the
<italic>R. minor</italic>
and
<italic>Rhinanthus</italic>
sp. populations (lowercase population codes).</p>
</caption>
<graphic xlink:href="ece30002-1531-f4"></graphic>
</fig>
<p>The NJ tree (
<xref ref-type="fig" rid="fig05">Fig. 5</xref>
) showed a clear separation among plants identified as
<italic>R. minor</italic>
. The main bulk of
<italic>R. minor</italic>
plants, belonging to the Atlantic, West, Central, and Spanish clusters, was found at one end, while the remaining clusters (Italian, Greek, and Russian) are at the opposite end, close to the
<italic>R. angustifolius</italic>
AFLP cluster. The South cluster did not form a single branch; its members were spread out over the tree, often on very long branches (
<xref ref-type="fig" rid="fig05">Fig. 5</xref>
).</p>
<fig id="fig05" position="float">
<label>Figure 5</label>
<caption>
<p>Unrooted Neighbor-Joining (NJ) tree based on AFLP data for
<italic>Rhinanthus minor</italic>
,
<italic>Rhinanthus</italic>
sp., and
<italic>R. angustifolius</italic>
. The names of eight of the nine AFLP clusters detected in the STRUCTURE analysis presented in this paper are shown in colored boxes. Branches belonging to the ninth cluster, South, are indicated in light green. AFLP groups (G1–G5) from
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
are underlined and bold, other labels indicate hybrids (red) and specific populations or individuals discussed in the text, population codes as in
<xref ref-type="fig" rid="fig04">Fig. 4</xref>
,
<xref ref-type="table" rid="tbl1">Table 1</xref>
, and
<xref ref-type="table" rid="tbl4">Appendix A1</xref>
.</p>
</caption>
<graphic xlink:href="ece30002-1531-f5"></graphic>
</fig>
<p>Pairwise
<italic>F</italic>
<sub>ST</sub>
computed for the clusters (
<xref ref-type="table" rid="tbl3">Table 3</xref>
) confirmed the strong differentiation between the three southeastern groups (Italian, Greek, and Russian) on the one hand and the remaining
<italic>R. minor</italic>
clusters on the other hand. These southeastern
<italic>R. minor</italic>
clusters were less differentiated from
<italic>R. angustifolius</italic>
than from the other
<italic>R. minor</italic>
clusters.</p>
<table-wrap id="tbl3" position="float">
<label>Table 3</label>
<caption>
<p>Pairwise
<italic>F</italic>
<sub>ST</sub>
values between AFLP clusters detected by STRUCTURE (under diagonal) and Nei's unbiased gene diversity within each AFLP group (bold on diagonal)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">
<italic>n</italic>
</th>
<th align="left" rowspan="1" colspan="1">Atlantic</th>
<th align="left" rowspan="1" colspan="1">West</th>
<th align="left" rowspan="1" colspan="1">Central</th>
<th align="left" rowspan="1" colspan="1">Spanish</th>
<th align="left" rowspan="1" colspan="1">Italian</th>
<th align="left" rowspan="1" colspan="1">Greek</th>
<th align="left" rowspan="1" colspan="1">Russian</th>
<th align="left" rowspan="1" colspan="1">South</th>
<th align="left" rowspan="1" colspan="1">
<italic>R. angustifolius</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Atlantic</td>
<td align="left" rowspan="1" colspan="1">112</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1122</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">West</td>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">0.2021</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1530</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Central</td>
<td align="left" rowspan="1" colspan="1">79</td>
<td align="left" rowspan="1" colspan="1">0.1155</td>
<td align="left" rowspan="1" colspan="1">0.1225</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1280</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Spanish</td>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">0.2289</td>
<td align="left" rowspan="1" colspan="1">0.2981</td>
<td align="left" rowspan="1" colspan="1">0.2178</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1067</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Italian</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">0.5492</td>
<td align="left" rowspan="1" colspan="1">0.4695</td>
<td align="left" rowspan="1" colspan="1">0.5188</td>
<td align="left" rowspan="1" colspan="1">0.5650</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1444</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Greek</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">0.5738</td>
<td align="left" rowspan="1" colspan="1">0.5026</td>
<td align="left" rowspan="1" colspan="1">0.5397</td>
<td align="left" rowspan="1" colspan="1">0.5918</td>
<td align="left" rowspan="1" colspan="1">0.4120</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1457</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Russian</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">0.4903</td>
<td align="left" rowspan="1" colspan="1">0.4229</td>
<td align="left" rowspan="1" colspan="1">0.4553</td>
<td align="left" rowspan="1" colspan="1">0.5065</td>
<td align="left" rowspan="1" colspan="1">0.4136</td>
<td align="left" rowspan="1" colspan="1">0.4351</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1915</bold>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">South</td>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">0.3282</td>
<td align="left" rowspan="1" colspan="1">0.2748</td>
<td align="left" rowspan="1" colspan="1">0.2993</td>
<td align="left" rowspan="1" colspan="1">0.3783</td>
<td align="left" rowspan="1" colspan="1">0.3269</td>
<td align="left" rowspan="1" colspan="1">0.3931</td>
<td align="left" rowspan="1" colspan="1">0.2976</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.2205</bold>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>R. angustifolius</italic>
</td>
<td align="left" rowspan="1" colspan="1">81</td>
<td align="left" rowspan="1" colspan="1">0.4449</td>
<td align="left" rowspan="1" colspan="1">0.3783</td>
<td align="left" rowspan="1" colspan="1">0.4115</td>
<td align="left" rowspan="1" colspan="1">0.4828</td>
<td align="left" rowspan="1" colspan="1">0.2862</td>
<td align="left" rowspan="1" colspan="1">0.3680</td>
<td align="left" rowspan="1" colspan="1">0.3583</td>
<td align="left" rowspan="1" colspan="1">0.1968</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1614</bold>
</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>Based on these clear differences observed between the northwestern and southeastern clusters, populations from these two areas were treated separately in subsequent analyses and will be referred to as “
<italic>R. minor”</italic>
for individuals of the Atlantic, West, Central, and Spanish clusters and “
<italic>Rhinanthus</italic>
sp.” for plants from Italy, Greece, and Russia.</p>
<p>On average, gene diversity within
<italic>R. minor</italic>
populations was 0.045, while it was 0.047 for the
<italic>Rhinanthus</italic>
sp. populations. High values were observed in the populations where admixture between AFLP clusters was observed (
<xref ref-type="table" rid="tbl1">Table 1</xref>
). The rarity of AFLP markers within populations estimated by the DW values in
<italic>R. minor</italic>
ranged from 0.137 in south Sweden to 0.631 in Norway (
<xref ref-type="table" rid="tbl1">Table 1</xref>
), with an average of 0.241. The slope of the regression of DW values on latitude was positive, but not significant (
<italic>P</italic>
= 0.423). Among the southeastern
<italic>Rhinanthus</italic>
sp. populations, DW values were much higher, on average 0.850, with the highest score recorded in Russia (1.89). Genetic differentiation among Atlantic, West, Central, and Spanish
<italic>R. minor</italic>
populations was relatively high (
<italic>F</italic>
<sub>ST</sub>
= 0.581), and the Mantel test (test statistic = 0.21,
<italic>P</italic>
< 0.001) showed an effect of isolation by distance. For the southeastern
<italic>Rhinanthus</italic>
sp. populations genetic differentiation was much stronger (
<italic>F</italic>
<sub>ST</sub>
= 0.835) and the Mantel test (test statistic = 0.77,
<italic>P</italic>
< 0.001) demonstrated a strong effect of isolation by distance.</p>
</sec>
<sec>
<title>AFLP structuring in
<italic>R. angustifolius</italic>
</title>
<p>Of the five AFLP groups presented in
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
, group G4 turned out to belong entirely to
<italic>R. minor</italic>
. Group G1, the largest group, formed part of the
<italic>R. angustifolius</italic>
AFLP cluster in the current analysis, together with group G5 and one population in G3—the Romanian population RO2. The other population in G3, the Turkish population TR1, showed a mixture of the Russian, the
<italic>R. angustifolius</italic>
, and the South cluster in the current STRUCTURE analysis (
<xref ref-type="fig" rid="fig04">Fig. 4</xref>
), and it is on the Russian branch of the NJ tree (
<xref ref-type="fig" rid="fig05">Fig. 5</xref>
), which may indicate a mixed
<italic>Rhinanthus</italic>
sp.–
<italic>R. angustifolius</italic>
ancestry. The French population FR5, which formed a distinct AFLP group on its own, G2, in the previous analysis, now mainly grouped with the South cluster. Its intermediate position on the NJ tree (
<xref ref-type="fig" rid="fig05">Fig. 5</xref>
) might indicate a mixed ancestry between
<italic>R. minor</italic>
and
<italic>R. angustifolius</italic>
, but since the South cluster is not confined to a single position on the NJ tree, this is harder to interpret, and a third
<italic>Rhinanthus</italic>
species may even be involved.</p>
</sec>
<sec>
<title>Admixture: known hybrids</title>
<p>The F
<sub>1</sub>
hybrids from the garden experiment had
<italic>q</italic>
-values for the
<italic>R. angustifolius</italic>
cluster close to the expected value of 50%: 50% and 54% for the two F
<sub>1</sub>
hybrids produced by
<italic>R. angustifolius</italic>
mothers, and 40% and 45% for the two hybrids produced by
<italic>R. minor</italic>
mothers (
<xref ref-type="fig" rid="fig05">Fig. 5</xref>
). The two intermediate hybrids with hybrid index 0 from the mixed natural population had comparable scores, 50% and 44%. More deviation from the expected values was found for the hybrids with hybrid indices closer to either of the parental species: the two hybrids with hybrid index +2 for eight RAPD/ISSR markers, which were expected to have
<italic>q</italic>
-values around 75%, had scores of 46% and 90%, while the two hybrids with index –2 (expected
<italic>q</italic>
-value 25%) had 2% and 16%. The plants with +4 (97% and 97%) and –4 (0.2%) were probably indeed pure
<italic>R. angustifolius</italic>
and
<italic>R. minor</italic>
, respectively, without signs of hybridization.</p>
</sec>
<sec>
<title>Admixture in
<italic>R. minor</italic>
and
<italic>Rhinanthus</italic>
sp</title>
<p>Within
<italic>R. minor</italic>
, 57 individuals had a maximum
<italic>q</italic>
-value of less than 0.95, corresponding to 23% of the 245 individuals in the four main clusters. For the individuals in the Atlantic cluster, most of the admixture was with West and Central, but some populations in Scotland and Ireland contained plants with high
<italic>q</italic>
-values for the Spanish cluster, between 0.06 and 0.28 (
<xref ref-type="fig" rid="fig05">Fig. 5</xref>
). In the Central cluster, most admixture came from Atlantic, with
<italic>q</italic>
-values around 0.30 for two plants in a Swedish population and 0.40 for two individuals in a Norwegian population. Admixture scores for the individuals in the West cluster were always below 0.10. In the Spanish cluster, five individuals from two populations had
<italic>q</italic>
-values between 0.13 and 0.46 for the Atlantic cluster. The three
<italic>R. minor</italic>
individuals in the South cluster showed considerable admixture with Atlantic and West.</p>
<p>In the west, admixture with
<italic>R. angustifolius</italic>
was found in only two plants: one from DK2 and one individual from an English population, both with
<italic>q</italic>
= 0.02. This was in contrast with the eastern populations: of the nine individuals that were originally recognized as
<italic>R. angustifolius</italic>
by
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
and now identified as belonging to the Central cluster of
<italic>R. minor</italic>
, seven had
<italic>q</italic>
-values for Central below 0.95, with considerable admixture with either Atlantic (PL1, 3 individuals) or
<italic>R. angustifolius</italic>
and/or South (BG1, BG3, RO1, 4 ind.).</p>
<p>In the southeastern
<italic>Rhinanthus</italic>
sp. populations, admixture was much rarer. No admixture was found in the Greek and Italian clusters. One individual in the Russian cluster had a
<italic>q</italic>
-value of 0.29 for the Greek cluster. The Italian population in the South cluster showed no admixture at all, in contrast with all the other plants in this cluster.</p>
</sec>
<sec>
<title>Admixture with
<italic>R. minor</italic>
in
<italic>R. angustifolius</italic>
</title>
<p>Admixture levels varied considerably among
<italic>R. angustifolius</italic>
AFLP groups. For the main group G1,
<italic>q</italic>
-values below 0.95 were only found in three individuals (5%) in BE1, SC3, and NL5. The Romanian population RO2 (AFLP group G3) clustered with the other
<italic>R. angustifolius</italic>
, with a
<italic>q</italic>
-value of 0.11 for South in one individual. Of the 14 individuals in the original G5 cluster, six (43%) had
<italic>R. angustifolius q</italic>
-values below 0.95, and showed admixture with West, South, and Italian. As mentioned earlier, TR1 (AFLP group G3) and FR5 (AFLP group G2) had
<italic>R. angustifolius q</italic>
-values well below 0.5 and were admixtured with Russian and South (TR1) or South only (FR5).</p>
</sec>
<sec>
<title>cpDNA haplotype sharing between
<italic>R. minor</italic>
and
<italic>R. angustifolius</italic>
</title>
<p>The
<italic>R. minor</italic>
AFLP clusters differed considerably in their frequencies of the main cpDNA haplotype groups (
<xref ref-type="fig" rid="fig06">Fig. 6</xref>
). Haplotype H3 dominated in the Central and West clusters and was absent from the Spanish cluster, while H1 was dominant in the Spanish cluster, abundant in the Atlantic cluster and rare in the Central and West cluster. All three haplotypes were found in
<italic>R. angustifolius</italic>
, but H3 almost exclusively in the G1 group. The complete haplotype network (
<xref ref-type="fig" rid="fig07">Fig. 7</xref>
) shows the relative frequencies of all haplotypes found in the AFLP clusters discussed in this paper. Only haplotype H1 was shared among the three taxa, while H2, H3, and H19 occurred in both
<italic>R. angustifolius</italic>
and
<italic>R. minor</italic>
, although H2 was only found in two populations in
<italic>R. minor</italic>
, ir2 (
<italic>n</italic>
= 4) and de1 (
<italic>n</italic>
= 2).</p>
<fig id="fig06" position="float">
<label>Figure 6</label>
<caption>
<p>Distribution of cpDNA haplotypes over the nine AFLP clusters, with the haplotypes for
<italic>Rhinanthus angustifolius</italic>
further subdivided into the main groups detected by
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
.</p>
</caption>
<graphic xlink:href="ece30002-1531-f6"></graphic>
</fig>
<fig id="fig07" position="float">
<label>Figure 7</label>
<caption>
<p>Parsimony network for all cpDNA haplotypes detected in
<italic>R. minor</italic>
s.s. (light green),
<italic>Rhinanthus</italic>
sp. (dark green), and
<italic>Rhinanthus angustifolius</italic>
(yellow).</p>
</caption>
<graphic xlink:href="ece30002-1531-f7"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<sec>
<title>
<italic>Rhinanthus minor</italic>
: an unexpected split</title>
<p>The populations originally identified as
<italic>Rhinanthus minor</italic>
that were sampled in Italy, Greece, and Russia (Caucasus), although morphologically similar to this species, turned out to be strongly genetically differentiated from all other
<italic>R. minor</italic>
populations from central, western, and northern Europe. The fact that they turned out to be genetically more similar to but still distinct from
<italic>R. angustifolius</italic>
argues for treating these populations as a distinct taxon at the species level, here tentatively named
<italic>Rhinanthus</italic>
sp. At present, we only have data to show that they are closer to
<italic>R. angustifolius</italic>
, but detailed morphological examination of these populations in combination with a comprehensive phylogeny of the genus would be needed to determine the affinities of this taxon and name it appropriately. A possible candidate is
<italic>Rhinanthus personatus</italic>
(Behr.) Beg., a species described from Italy (
<xref ref-type="bibr" rid="b39">Pignatti 1982</xref>
). The Flora Europaea treats it under
<italic>R. minor</italic>
and not as a separate species, since it appears to differ morphologically from
<italic>R. minor</italic>
only in the corolla throat, which is more or less closed (
<xref ref-type="bibr" rid="b52">von Soó and Webb 1972</xref>
). Detailed morpho-logical analysis of the variation in this character both within and among the taxa
<italic>R. minor</italic>
,
<italic>R. personatus</italic>
,
<italic>Rhinanthus</italic>
sp. in Italy, Greece, and Russia is needed to establish whether the genetic divergence is reflected in a consistent morphological differentiation.</p>
</sec>
<sec>
<title>
<italic>Rhinanthus minor</italic>
: a species phylogeography</title>
<p>For the
<italic>Rhinanthus minor</italic>
s.s. populations, the cpDNA and AFLP datasets showed similar patterns, suggesting that the data collected, rather than reflecting independent gene phylo-geographies, describe a reliable species phylogeography for
<italic>R. minor</italic>
. Analyses of the distribution of the genetic variation with the cpDNA and AFLP datasets showed that although some populations in the south of Europe had high genetic diversity, there was no decrease of genetic diversity with latitude in either marker type. Equal levels of variation at high latitudes is in contrast with what is usually observed for thermophilous species, which typically present the highest genetic diversity in the south and a decrease in this variation toward the north, due to repeated bottlenecks and founder effects during recolonization of previously glaciated areas (
<xref ref-type="bibr" rid="b48">Taberlet et al. 1998</xref>
).</p>
<p>Several hypotheses may explain the high level of genetic diversity in the north of Europe: mid-latitude survival, secondary contact in Scandinavia, hybridization with other species, notably the nordic
<italic>Rhinanthus groenlandicus</italic>
, and an eastern refugium that was not sampled at lower latitudes. We discuss each of them hereafter.</p>
<p>Occurring nowadays in cold regions such as Iceland and northern Scandinavia,
<italic>R. minor</italic>
may have managed to survive glacial periods under the harsh climatic conditions at the edge of the ice sheets that covered central and northern Europe during the last glaciations. This hypothesis of mid-latitude survival of
<italic>R. minor</italic>
populations is reinforced by the observation of relatively high DW values in northern areas (
<xref ref-type="table" rid="tbl1">Table 1</xref>
). High DW values indicate an abundance of rare markers, which are a proxy for genetic divergence, good indicators of historical processes, and generally associated with glacial refugia (
<xref ref-type="bibr" rid="b10">Comps et al. 2001</xref>
;
<xref ref-type="bibr" rid="b55">Widmer and Lexer 2001</xref>
;
<xref ref-type="bibr" rid="b36">Paun et al. 2008</xref>
;
<xref ref-type="bibr" rid="b56">Winkler et al. 2010</xref>
).</p>
<p>On the other hand, low levels of differentiation among populations, which is often observed when intermediate-latitude survival of a species is suspected (
<xref ref-type="bibr" rid="b43">Rendell and Ennos 2002</xref>
;
<xref ref-type="bibr" rid="b34">Palmé et al. 2003</xref>
), was not found among the
<italic>R. minor</italic>
populations. Instead, we see divergence along an east–west axis, with the AFLP cluster Atlantic and cpDNA haplotype H1 in the west and the Central cluster with cpDNA haplotype H3 in the east, with the West cluster in between the two other clusters in France and Belgium. The Spanish cluster was clearly differentiated from the three more northern clusters in the AFLP analysis, and also distinguished by the complete absence of haplotype H3. It is likely that the Pyrenees have formed a barrier for gene exchange both during and after the ice ages. Iceland was probably recolonized by
<italic>R. minor</italic>
in historical times by humans transporting cattle (
<xref ref-type="bibr" rid="b11">Diamond 2005</xref>
), and gene flow among the Spanish and Atlantic populations may have taken place in a similar way.</p>
<p>The phylogroups from central Europe extend from south to north and meet in Scandinavia. The high genetic diversity observed in Scandinavia may be caused by lineages expanding from southern regions that have come into contact in the north (
<xref ref-type="bibr" rid="b42">Remington 1968</xref>
;
<xref ref-type="bibr" rid="b48">Taberlet et al. 1998</xref>
). Still, the abundance of rare AFLP markers and the occurrence of unique cpDNA haplotypes in Scandinavia do not agree with a hypothesis of exclusively southern survival followed by colonization of the northern areas and hybridization by two distinct southern lineages. The rare markers and haplotypes found in the north should then also have been found in populations at lower latitudes, which was only the case for H27 (Norway and Austria). It is more likely that refugia were located at latitudes north of the Alps, from Belgium to the Ukraine. Unfortunately we did not sample enough populations from this region to be able to confirm that it was the direct source for the high genetic variation in the north. The Alps would contain less genetic variation today, since these would have been recolonized from the surrounding plains after the ice retreated.</p>
<p>A third explanation would be hybridization with another
<italic>Rhinanthus</italic>
species, notably
<italic>R. groenlandicus</italic>
(Ostenf.) Chabert, which only occurs in northern Europe above 60°N and in the mountains in Norway, plus on the Faroe Islands and Iceland (
<xref ref-type="bibr" rid="b52">von Soó and Webb 1972</xref>
). Although treated as a separate species in the Flora Europaea (
<xref ref-type="bibr" rid="b52">von Soó and Webb 1972</xref>
),
<italic>R. groenlandicus</italic>
is considered a subspecies of
<italic>R. minor</italic>
(
<italic>R. minor</italic>
ssp.
<italic>groenlandicus</italic>
[Chabert] Neuman) in Scandinavia (
<ext-link ext-link-type="uri" xlink:href="http://linnaeus.nrm.se/flora/">http://linnaeus.nrm.se/flora/</ext-link>
), and it is possible that our samples from Norway contained genetic material from this (sub)species.</p>
<p>With the lack of
<italic>R. minor</italic>
samples from the east of Europe, we cannot exclude that colonization of Scandinavia occurred from a separate, more eastern lineage, but the
<italic>R. minor</italic>
samples from Poland, Bulgaria, and Romania fell within the Central cluster and did not share any haplotypes with the Scandinavian populations (
<xref ref-type="fig" rid="fig07">Fig. 7</xref>
). Furthermore, the rare cpDNA haplotypes were only found in western Scandinavia, which would not argue for an eastern origin.</p>
<p>In contrast to
<italic>R. minor</italic>
s.s., the data collected for the
<italic>Rhinanthus</italic>
sp. populations in Greece, Italy, and Russia did not yield useful phylogeographic patterns. The observation of the common H1 haplotype as the only one detected in Greece, Russia, and Italy together with H21, a haplotype only found in one of the Italian populations, did not give much phylogeographic information. The AFLP data did not have more helpful information for phylogeographic inferences, as each region formed an independent genetic cluster. Further sampling in Turkey and Eastern Europe would be needed to resolve the relations within this group and with
<italic>R. minor</italic>
.</p>
</sec>
<sec>
<title>Origins of haplotype sharing</title>
<p>Our data confirmed the preliminary information about significant cpDNA haplotype sharing between
<italic>R. angustifolius</italic>
and
<italic>R. minor</italic>
. Although only four out of 32 haplotypes described for the two species were shared, these haplotypes were found in 83% of all
<italic>R. minor</italic>
individuals and in 60% of all
<italic>R. angustifolius</italic>
individuals. The presence of an identical cpDNA haplotype in different species may result from various and nonexclusive processes including convergent evolution, incomplete lineage sorting, and interspecific gene flow. Given the fact that hybridization between
<italic>R. minor</italic>
and
<italic>R. angustifolius</italic>
, both widespread and occurring in similar habitats, has long been shown to be successful and common where the two species meet (
<xref ref-type="bibr" rid="b6">Campion-Bourget 1980</xref>
;
<xref ref-type="bibr" rid="b30">Kwak 1980</xref>
;
<xref ref-type="bibr" rid="b13">Ducarme and Wesselingh 2005</xref>
;
<xref ref-type="bibr" rid="b16">Ducarme et al. 2010</xref>
), gene flow between these species could be one explanation for the extensive haplotype sharing. We have looked at all three hypotheses to explain our results.</p>
<p>Given our dataset, homoplasy is an unlikely explanation. Even if for each shared haplotype the probability of an independent identical mutation is not completely zero, since the differences between the main haplotypes consist of a single point mutation, it is hard to imagine how these independent emergences could have resulted in the predominance of these haplotypes in both species over large parts of their ranges.</p>
<p>Due to their position in the haplotype networks and their abundance, the shared haplotypes, especially H1, probably represent ancient haplotypes that would predate the species split and are likely to have been inherited by
<italic>R. minor</italic>
,
<italic>Rhinanthus</italic>
sp., and
<italic>R. angustifolius</italic>
from a common ancestor. This hypothesis is reinforced by the fact that the other haplotypes, which are less abundant and represent terminal haplotypes in the haplotype networks, are all species specific. Haplotype sharing due to conservation of ancestral polymorphisms has been detected in several closely related species (
<xref ref-type="bibr" rid="b8">Charlesworth et al. 2005</xref>
). In plants, this mechanism has been proposed to explain extensive allele sharing between two closely related sympatric oak species (
<xref ref-type="bibr" rid="b32">Muir and Schlötterer 2005</xref>
).</p>
<p>Although DNA phylogenies have been published for the Orobanchaceae (
<xref ref-type="bibr" rid="b2">Bennett and Mathews 2006</xref>
), and the Rhinanthoid clade (
<xref ref-type="bibr" rid="b50">Těšitel et al. 2010</xref>
), no complete molecular phylogeny exists for the genus
<italic>Rhinanthus</italic>
. The few molecular studies that have included
<italic>R. minor</italic>
or
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b3">Böhme 2001</xref>
; Těšitel et al. 2010) show
<italic>R. alectorolophus</italic>
as the earliest-branching lineage in the genus, based on internal transcribed spacer (ITS) sequence data. We have detected haplotypes H1, H2, H13, and H31 in
<italic>R. alectorolophus</italic>
, along with three unique haplotypes derived from H1 and H2, and
<italic>R. alectorolophus</italic>
does not hybridize with
<italic>R. minor</italic>
(R. A. Wesselingh, unpubl. data). In two other species,
<italic>Rhinanthus freynii</italic>
from Italy and
<italic>Rhinanthus rumelicus</italic>
from Greece, we found H1 and H2, respectively. This suggests that H1 and H2 are ancient haplotypes in the genus, as they are shared by several species. However, given its abundance and the number of derived haplotypes in
<italic>R. minor</italic>
, it is likely that H3 has evolved later, and only in
<italic>R. minor</italic>
. If this is indeed the case, then the presence of H3 in five
<italic>R. angustifolius</italic>
individuals across Europe can only be explained by hybridization or convergent evolution. The former explanation is very likely in population BG1, which was a mixed population with two
<italic>R. angustifolius</italic>
and two
<italic>R. minor</italic>
individuals in our dataset. The two
<italic>R. minor</italic>
plants in this population carried H3, and one of the
<italic>R. angustifolius</italic>
plants had H3 as well. The other three
<italic>R. angustifolius</italic>
populations with H3 present in one or two individuals were found in southern Sweden, the North Sea coast of the Netherlands, and in the Czech Republic, all areas where hybridization with cpDNA introgression could have occurred given the geographic distribution of
<italic>R. minor</italic>
and its haplotype H3. In none of these individuals, or in other individuals of the same populations, did we find increased levels of admixture, so if the presence of haplotype H3 is a trace of hybridization, it is likely not recent. Haplotype H12, derived from H3, was only found in a single individual in a German
<italic>R. angustifolius</italic>
population (DE2), and it may have arisen after an ancient hybridization event as well.</p>
<p>Haplotype H2, which is much more prevalent in
<italic>R. angustifolius</italic>
, was only found in two
<italic>R. minor</italic>
populations; one in Ireland, which was monomorphic for this haplotype, and one in southern Germany. This would suggest that H2 was not originally present in
<italic>R. minor</italic>
, but that was acquired through hybridization with
<italic>R. angustifolius</italic>
. While hybridization as a source for cpDNA haplotype introgression would be possible in Germany,
<italic>R. angustifolius</italic>
does not occur in Ireland, so hybridization in situ would be an unlikely explanation for the occurrence of H2 in an Irish population, leaving convergent evolution by a second occurrence of the single point mutation that separates H1 from H2, or an ancient polymorphism. Introgression of cpDNA from
<italic>R. angustifolius</italic>
to
<italic>R. minor</italic>
would require sufficiently extensive F
<sub>1</sub>
hybrid formation to overcome the low germination rate of F
<sub>1</sub>
hybrids with
<italic>R. angustifolius</italic>
cytoplasm (
<xref ref-type="bibr" rid="b29">Kwak 1979</xref>
;
<xref ref-type="bibr" rid="b6">Campion-Bourget 1980</xref>
), which makes this even more unlikely, plus the fact that in mixed populations, introgression generally takes place toward
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b16">Ducarme et al. 2010</xref>
).</p>
</sec>
<sec>
<title>Phylogeographic consequences of gene flow</title>
<p>If all occurrences of H3 within
<italic>R. angustifolius</italic>
are caused by interspecific gene flow, then removing these from the cpDNA dataset might facilitate the detection of a phylogeographic signal in
<italic>R. angustifolius</italic>
(
<xref ref-type="bibr" rid="b44">Rieseberg and Soltis 1991</xref>
). However, even without H3, there is no clear geographical distribution of the two haplogroups H1 and H2 that is congruent with the division between AFLP group G1 on one side and G3 and G5 on the other. Both haplotypes H1 and H2 were probably present in both eastern and western Europe at the beginning of the expansion of
<italic>R. angustifolius</italic>
, which is likely to have coincided with an increase in human populations and livestock grazing, which creates the open grassland habitat necessary for the species. The expansion of the species into northern Europe probably predates the formation of derived haplotypes, especially from H2, which are usually restricted to one or only a few populations. While the original haplotypes were similar in the different
<italic>R. angustifolius</italic>
lineages, H3 in
<italic>R. minor</italic>
probably arose early in central Europe and spread with the Central cluster. Both species have a low natural seed and pollen dispersal, so the lack of genetic structure within G1 in
<italic>R. angustifolius</italic>
, which covers most of central and western Europe, is difficult to explain. We may hypothesize that it occurred more often in hay meadows than
<italic>R. minor</italic>
, which is more abundant on poorer, dryer soils, and that
<italic>R. angustifolius</italic>
has thus profited more from human hay and livestock transport than
<italic>R. minor</italic>
.</p>
<p>In conclusion, the AFLP analysis was able to unequivocally distinguish
<italic>R. minor</italic>
from
<italic>R. angustifolius</italic>
, and correctly identify hybrids between these species. Other taxa were also identified, in particular
<italic>Rhinanthus</italic>
sp. in southeastern Europe, and possibly the French population that clustered separately from
<italic>R. angustifolius</italic>
. This population formed a separate AFLP cluster, South, which also included highly divergent individuals from other populations that were on separate branches in the NJ tree, and this cluster should probably not be interpreted as a phylogenetic signal. It is possible that yet another
<italic>Rhinanthus</italic>
species is involved in the ancestry of the population from the French Pyrenees; five species are known to occur in France (
<xref ref-type="bibr" rid="b6">Campion-Bourget 1980</xref>
). To correctly identify the unknown taxa, a molecular phylogeny of the whole genus should be constructed and combined with a morphological analysis. The low resolution of traditional phylogenetic markers such as ITS in this genus (Těšitel et al. 2010) may pose problems, but our AFLP analyses have shown that sufficient genetic variation is present. Isolation-migration analysis (
<xref ref-type="bibr" rid="b1">Becquet and Przeworski 2009</xref>
) would be a powerful tool to separate incomplete lineage sorting from hybridization, but requires sufficient sequence variation, plus it assumes no hybridization with other populations than those sampled (
<xref ref-type="bibr" rid="b46">Slotte et al. 2008</xref>
), which poses problems in the case of
<italic>Rhinanthus</italic>
, where taxon limits are not clearly defined.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We thank the Fonds Spécial de Recherche (FSR) of Université catholique de Louvain and the Fonds National de Recherche Scientifique (FNRS) for their financial support to this study. We thank D. Ehrich for her assistance in data analysis, and L. Dhondt (UCL) and L. G. Kvernstuen (Oslo) for their help in the laboratory, as well as the numerous people and organizations who helped in collecting seed samples: L. Balogh, S. t. Borg, J. Dicker, K. Georgson, S. Griffin, A. Huttunen, H. Kristinsson, M. Kwak, K. Lundquist, M. Méndez, V. Onipchenko, J. Pewtress, T. Rich, D. Seawright, G. Smith, H. Solstad, E. Taupinart, T. Torbjörn, the Botanical Garden of the University of Coimbra, Hortus Botanicus Universität Salzburg, and Botanisk hage Oslo. O. Paun and three anonymous reviewers provided useful feedback on an earlier version of the manuscript. This is publication no. BRC251 of the Biodiversity Research Center of the Université catholique de Louvain.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becquet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Przeworski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Learning about modes of speciation by computational approaches</article-title>
<source>Evolution</source>
<year>2009</year>
<volume>63</volume>
<fpage>2547</fpage>
<lpage>2562</lpage>
<pub-id pub-id-type="pmid">19228187</pub-id>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Mathews</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A</article-title>
<source>Am. J. Bot</source>
<year>2006</year>
<volume>93</volume>
<fpage>1039</fpage>
<lpage>1051</lpage>
<pub-id pub-id-type="pmid">21642169</pub-id>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Böhme</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Neues über das isolierte Vorkommen von
<italic>Rhinanthus rumelicus</italic>
Velen. (Drüsiger Klappertopf) bei Jena</article-title>
<source>Haussknechtia</source>
<year>2001</year>
<volume>8</volume>
<fpage>85</fpage>
<lpage>92</lpage>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bellemain</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Eidesen</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Pompanon</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Brochmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Taberlet</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>How to track and assess genotyping errors in population genetics studies</article-title>
<source>Mol. Ecol</source>
<year>2004</year>
<volume>13</volume>
<fpage>3261</fpage>
<lpage>3273</lpage>
<pub-id pub-id-type="pmid">15487987</pub-id>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burban</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Carcreff</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jactel</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Rangewide variation of the maritime pine bast scale
<italic>Matsucoccus feytaudi</italic>
Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host</article-title>
<source>Mol. Ecol</source>
<year>1999</year>
<volume>8</volume>
<fpage>1593</fpage>
<lpage>1602</lpage>
<pub-id pub-id-type="pmid">10583823</pub-id>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campion-Bourget</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>L’hybridation interspécifique expérimentale chez les cinq principales espèces de
<italic>Rhinanthus</italic>
L. de France</article-title>
<source>Revue de Cytologie et de Biologie végétales—le Botaniste</source>
<year>1980</year>
<volume>3</volume>
<fpage>221</fpage>
<lpage>280</lpage>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chabert</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Étude sur le genre
<italic>Rhinanthus</italic>
</article-title>
<source>Bulletin de l’Herbier Boissier</source>
<year>1899</year>
<volume>7</volume>
<fpage>512</fpage>
<lpage>542</lpage>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Charlesworth</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bartolomé</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Noël</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The detection of shared and ancestral polymorphisms</article-title>
<source>Genet. Res</source>
<year>2005</year>
<volume>86</volume>
<fpage>149</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="pmid">16207392</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>TCS: a computer program to estimate gene genealogies</article-title>
<source>Mol. Ecol</source>
<year>2000</year>
<volume>9</volume>
<fpage>1657</fpage>
<lpage>1659</lpage>
<pub-id pub-id-type="pmid">11050560</pub-id>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comps</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gömöry</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Letouzey</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Thiébaut</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech</article-title>
<source>Genetics</source>
<year>2001</year>
<volume>157</volume>
<fpage>389</fpage>
<lpage>397</lpage>
<pub-id pub-id-type="pmid">11139519</pub-id>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Diamond</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>Collapse: how societies choose to fail or succeed</source>
<year>2005</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Penguin Books</publisher-name>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ducarme</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Ecological and genetical aspects of natural hybridization in
<italic>Rhinanthus</italic>
L</article-title>
<year>2008</year>
<publisher-loc>Louvain-la-Neuve, Belgium</publisher-loc>
<publisher-name>Université catholique de Louvain</publisher-name>
<comment>Ph.D. thesis</comment>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducarme</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Detecting hybridization in mixed populations of
<italic>Rhinanthus minor</italic>
and
<italic>Rhinanthus angustifolius</italic>
</article-title>
<source>Folia Geobot</source>
<year>2005</year>
<volume>40</volume>
<fpage>151</fpage>
<lpage>161</lpage>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducarme</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Performance of two
<italic>Rhinanthus</italic>
species under different hydric conditions</article-title>
<source>Plant Ecol</source>
<year>2010</year>
<volume>206</volume>
<fpage>263</fpage>
<lpage>277</lpage>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducarme</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Risterucci</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Development of microsatellite markers in
<italic>Rhinanthus angustifolius</italic>
and cross-species amplification</article-title>
<source>Mol. Ecol. Resour</source>
<year>2008</year>
<volume>8</volume>
<fpage>384</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="pmid">21585799</pub-id>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducarme</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vrancken</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Hybridization in annual plants: patterns and dynamics during a four-year study in mixed
<italic>Rhinanthus</italic>
populations</article-title>
<source>Folia Geobot</source>
<year>2010</year>
<volume>45</volume>
<fpage>387</fpage>
<lpage>405</lpage>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ehrich</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>AFLPdat: a collection of R functions for convenient handling of AFLP data</article-title>
<source>Mol. Ecol. Notes</source>
<year>2006</year>
<volume>6</volume>
<fpage>603</fpage>
<lpage>604</lpage>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Eidesen</surname>
<given-names>PB</given-names>
</name>
</person-group>
<article-title>Arctic-alpine plants on the move: individual and comparative phylogeographies reveal responses to climate change</article-title>
<year>2007</year>
<publisher-loc>Oslo, Norway</publisher-loc>
<publisher-name>University of Oslo</publisher-name>
<comment>Ph.D. thesis</comment>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evanno</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Regnaut</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Goudet</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study</article-title>
<source>Mol. Ecol</source>
<year>2005</year>
<volume>14</volume>
<fpage>2611</fpage>
<lpage>2620</lpage>
<pub-id pub-id-type="pmid">15969739</pub-id>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Excoffier</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Laval</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis</article-title>
<source>Evol. Bioinform</source>
<year>2005</year>
<volume>1</volume>
<fpage>47</fpage>
<lpage>50</lpage>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Felsenstein</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>PHYLIP—Phylogeny Inference Package (version 3.2)</article-title>
<source>Cladistics</source>
<year>2004</year>
<volume>5</volume>
<fpage>164</fpage>
<lpage>166</lpage>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaudeul</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taberlet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Till-Bottraud</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Genetic diversity in an endangered alpine plant,
<italic>Eryngium alpinum</italic>
L. (Apiaceae), inferred from amplified fragment length polymorphism markers</article-title>
<source>Mol. Ecol</source>
<year>2000</year>
<volume>9</volume>
<fpage>1625</fpage>
<lpage>1637</lpage>
<pub-id pub-id-type="pmid">11050557</pub-id>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gutiérrez Larena</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fuertes Aguilar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nieto Feliner</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Glacial-induced altitudinal migrations in
<italic>Armeria</italic>
(Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing</article-title>
<source>Mol. Ecol</source>
<year>2002</year>
<volume>11</volume>
<fpage>1965</fpage>
<lpage>1974</lpage>
<pub-id pub-id-type="pmid">12296941</pub-id>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hall</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT</article-title>
<source>Nucleic Acids Symp. Ser</source>
<year>1999</year>
<volume>41</volume>
<fpage>95</fpage>
<lpage>98</lpage>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hambler</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Cytology of the Scrophulariaceae and Orobanchaceae</article-title>
<source>Nature</source>
<year>1954</year>
<volume>174</volume>
<fpage>838</fpage>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heuertz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Carnevale</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fineschi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sebastiani</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hausman</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Paule</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vendramin</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>Chloroplast DNA phylogeography of European ashes,
<italic>Fraxinus</italic>
sp. (Oleaceae): roles of hybridization and life history traits</article-title>
<source>Mol. Ecol</source>
<year>2006</year>
<volume>15</volume>
<fpage>2131</fpage>
<lpage>2140</lpage>
<pub-id pub-id-type="pmid">16780430</pub-id>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hultén</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fries</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Atlas of North European vascular plants: north of the Tropic of Cancer</source>
<year>1986</year>
<publisher-loc>Koeltz, Königstein</publisher-loc>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwak</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Pollination, hybridization and ethological isolation of
<italic>Rhinanthus minor</italic>
and
<italic>R. serotinus</italic>
(Rhinanthoideae: Scrophulariaceae) by bumblebees (
<italic>Bombus</italic>
Latr.)</article-title>
<source>Taxon</source>
<year>1978</year>
<volume>27</volume>
<fpage>145</fpage>
<lpage>158</lpage>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwak</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Maintenance of species integrity in sympatrically occurring
<italic>Rhinanthus minor</italic>
and
<italic>R. serotinus</italic>
in the Netherlands</article-title>
<source>Oecologia</source>
<year>1979</year>
<volume>41</volume>
<fpage>1</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwak</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Artificial and natural hybridization and introgression in
<italic>Rhinanthus</italic>
(Scrophulariaceae) in relation to bumblebee pollination</article-title>
<source>Taxon</source>
<year>1980</year>
<volume>29</volume>
<fpage>613</fpage>
<lpage>628</lpage>
</element-citation>
</ref>
<ref id="b31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lihová</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kucera</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Perny</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Marhold</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Hybridization between two polyploid
<italic>Cardamine</italic>
(Brassicaceae) species in North-western Spain: discordance between morphological and genetic variation patterns</article-title>
<source>Ann. Bot</source>
<year>2007</year>
<volume>99</volume>
<fpage>1083</fpage>
<lpage>1096</lpage>
<pub-id pub-id-type="pmid">17495984</pub-id>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muir</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schlötterer</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (
<italic>Quercus</italic>
spp.)</article-title>
<source>Mol. Ecol</source>
<year>2005</year>
<volume>14</volume>
<fpage>549</fpage>
<lpage>561</lpage>
<pub-id pub-id-type="pmid">15660945</pub-id>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Natalis</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Shared pollinators and pollen transfer dynamics in two hybridizing species,
<italic>Rhinanthus minor</italic>
and
<italic>R. angustifolius</italic>
</article-title>
<source>Oecologia</source>
<year>2012</year>
<comment>
<italic>In press</italic>
</comment>
</element-citation>
</ref>
<ref id="b34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palmé</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Rautenberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Manni</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lascoux</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Postglacial recolonization and cpDNA variation of silver birch,
<italic>Betula pendula</italic>
</article-title>
<source>Mol. Ecol</source>
<year>2003</year>
<volume>12</volume>
<fpage>201</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="pmid">12492888</pub-id>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paun</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Stuessy</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Hörandl</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic
<italic>Ranunculus cassubicus</italic>
complex</article-title>
<source>New Phytol</source>
<year>2006</year>
<volume>171</volume>
<fpage>223</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="pmid">16771996</pub-id>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paun</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Schönswetter</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Intrabiodiv</surname>
<given-names>Consortium</given-names>
</name>
<name>
<surname>Tribsch</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole
<italic>Ranunculus alpestris</italic>
group (Ranunculaceae) in the European Alps and the Carpathians</article-title>
<source>Mol. Ecol</source>
<year>2008</year>
<volume>17</volume>
<fpage>4263</fpage>
<lpage>4275</lpage>
<pub-id pub-id-type="pmid">19378404</pub-id>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petit</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Csaikl</surname>
<given-names>UM</given-names>
</name>
<name>
<surname>Bordács</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Burg</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Coart</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cottrell</surname>
<given-names>J</given-names>
</name>
<name>
<surname>van Dam</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Deans</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Dumolin-Lapègue</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fineschi</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations</article-title>
<source>For. Ecol. Manag</source>
<year>2002</year>
<volume>156</volume>
<fpage>5</fpage>
<lpage>26</lpage>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pignatti</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Flora d’Italia</source>
<year>1982</year>
<volume>II</volume>
<publisher-loc>Bologna, Italy</publisher-loc>
<publisher-name>Edagricole</publisher-name>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pons</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Measuring and testing genetic differentiation with ordered versus unordered alleles</article-title>
<source>Genetics</source>
<year>1996</year>
<volume>144</volume>
<fpage>1237</fpage>
<lpage>1245</lpage>
<pub-id pub-id-type="pmid">8913764</pub-id>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pritchard</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Inference of population structure using multilocus genotype data</article-title>
<source>Genetics</source>
<year>2000</year>
<volume>155</volume>
<fpage>945</fpage>
<lpage>959</lpage>
<pub-id pub-id-type="pmid">10835412</pub-id>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Remington</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Suture-zones of hybrid interaction between recently joined biotas</article-title>
<source>Evol. Biol</source>
<year>1968</year>
<volume>2</volume>
<fpage>321</fpage>
<lpage>428</lpage>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rendell</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ennos</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Chloroplast DNA diversity in
<italic>Calluna vulgaris</italic>
(heather) populations in Europe</article-title>
<source>Mol. Ecol</source>
<year>2002</year>
<volume>11</volume>
<fpage>69</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">11903905</pub-id>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rieseberg</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Soltis</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Phylogenetic consequences of cytoplasmic gene flow in plants</article-title>
<source>Evol. Trends Plant</source>
<year>1991</year>
<volume>5</volume>
<fpage>65</fpage>
<lpage>84</lpage>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schönswetter</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tribsch</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Vicariance and dispersal in the alpine perennial
<italic>Bupleurum stellatum</italic>
L. (Apiaceae)</article-title>
<source>Taxon</source>
<year>2005</year>
<volume>54</volume>
<fpage>725</fpage>
<lpage>732</lpage>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slotte</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lascoux</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ceplitis</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Polyploid speciation did not confer instant reproductive isolation in
<italic>Capsella</italic>
(Brassicaceae)</article-title>
<source>Mol. Biol. Evol</source>
<year>2008</year>
<volume>25</volume>
<fpage>1472</fpage>
<lpage>1481</lpage>
<pub-id pub-id-type="pmid">18417485</pub-id>
</element-citation>
</ref>
<ref id="b47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taberlet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gielly</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pautou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bouvet</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Universal primers for amplification of three non-coding regions of chloroplast DNA</article-title>
<source>Plant Mol. Biol</source>
<year>1991</year>
<volume>17</volume>
<fpage>1105</fpage>
<lpage>1109</lpage>
<pub-id pub-id-type="pmid">1932684</pub-id>
</element-citation>
</ref>
<ref id="b48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taberlet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fumagalli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wust-Saucy</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Cosson</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Comparative phylogeography and postglacial colonization routes in Europe</article-title>
<source>Mol. Ecol</source>
<year>1998</year>
<volume>7</volume>
<fpage>453</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="pmid">9628000</pub-id>
</element-citation>
</ref>
<ref id="b49">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>ter Borg</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Variability of
<italic>Rhinanthus serotinus</italic>
(Schönh.) Oborny in relation to the environment</article-title>
<year>1972</year>
<publisher-loc>Groningen, The Netherlands</publisher-loc>
<publisher-name>University of Groningen</publisher-name>
<comment>Ph.D. thesis</comment>
</element-citation>
</ref>
<ref id="b50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Těšitel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Říha</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Svobodová</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Malinová</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Štech</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Phylogeny, life history evolution and biogeography of the Rhinanthoid Orobanchaceae</article-title>
<source>Folia Geobot</source>
<year>2010</year>
<volume>45</volume>
<fpage>347</fpage>
<lpage>367</lpage>
</element-citation>
</ref>
<ref id="b51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vekemans</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Beauwens</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lemaire</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roldán-Ruiz</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size</article-title>
<source>Mol. Ecol</source>
<year>2002</year>
<volume>11</volume>
<fpage>139</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="pmid">11903911</pub-id>
</element-citation>
</ref>
<ref id="b52">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>von Soó</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>DA</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Tutin</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Heywood</surname>
<given-names>VH</given-names>
</name>
<name>
<surname>Burges</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Valentine</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Walters</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>
<italic>Rhinanthus</italic>
L</article-title>
<source>Flora Europaea Volume 3, Diapensiaceae to Myoporaceae</source>
<year>1972</year>
<publisher-loc>Cambridge, U.K.</publisher-loc>
<publisher-name>Cambridge Univ. Press</publisher-name>
<fpage>276</fpage>
<lpage>280</lpage>
</element-citation>
</ref>
<ref id="b53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vrancken</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Inheritance of the chloroplast genome in
<italic>Rhinanthus angustifolius</italic>
(Orobanchaceae)</article-title>
<source>Plant Ecol. Evol</source>
<year>2010</year>
<volume>143</volume>
<fpage>239</fpage>
<lpage>242</lpage>
</element-citation>
</ref>
<ref id="b54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vrancken</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brochmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wesselingh</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>How did an annual plant react to Pleistocene glaciations? Postglacial history of
<italic>Rhinanthus angustifolius</italic>
in Europe</article-title>
<source>Biol. J. Linn. Soc</source>
<year>2009</year>
<volume>98</volume>
<fpage>1</fpage>
<lpage>13</lpage>
</element-citation>
</ref>
<ref id="b55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Widmer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lexer</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Glacial refugia: sanctuaries for allelic richness, but not for gene diversity</article-title>
<source>Trends Ecol. Evol</source>
<year>2001</year>
<volume>16</volume>
<fpage>267</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="pmid">11369091</pub-id>
</element-citation>
</ref>
<ref id="b56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winkler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tribsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Paun</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Englisch</surname>
<given-names>T</given-names>
</name>
<name>
<surname>IntraBioDiv-Consortium</surname>
</name>
<name>
<surname>Schönswetter</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Pleistocene distribution range shifts were accompanied by breeding system divergence within
<italic>Hornungia alpina</italic>
(Brassicaceae) in the Alps</article-title>
<source>Mol. Phylogenet. Evol</source>
<year>2010</year>
<volume>54</volume>
<fpage>571</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="pmid">19695334</pub-id>
</element-citation>
</ref>
</ref-list>
<app-group>
<app id="app1">
<title>Appendix A1</title>
<table-wrap id="tbl4" position="anchor">
<caption>
<p>
<italic>Rhinanthus angustifolius</italic>
populations studied in
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009)</xref>
and rerun for AFLP comparison with
<italic>R. minor</italic>
populations</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Population</th>
<th align="left" rowspan="1" colspan="1">Pop 2009
<xref ref-type="table-fn" rid="tf4-1">1</xref>
</th>
<th align="left" rowspan="1" colspan="1">Country</th>
<th align="left" rowspan="1" colspan="1">Locality</th>
<th align="left" rowspan="1" colspan="1">Latitude</th>
<th align="left" rowspan="1" colspan="1">Longitude</th>
<th align="left" rowspan="1" colspan="1">
<italic>n</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">BE3</td>
<td align="left" rowspan="1" colspan="1">P1</td>
<td align="left" rowspan="1" colspan="1">Belgium</td>
<td align="left" rowspan="1" colspan="1">Doode Bemde</td>
<td align="left" rowspan="1" colspan="1">50°49′</td>
<td align="left" rowspan="1" colspan="1">4°38′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BG1
<xref ref-type="table-fn" rid="tf4-2">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">P2</td>
<td align="left" rowspan="1" colspan="1">Bulgaria</td>
<td align="left" rowspan="1" colspan="1">Ogoja</td>
<td align="left" rowspan="1" colspan="1">42°54′</td>
<td align="left" rowspan="1" colspan="1">23°30′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BG2</td>
<td align="left" rowspan="1" colspan="1">P3</td>
<td align="left" rowspan="1" colspan="1">Bulgaria</td>
<td align="left" rowspan="1" colspan="1">Gintsi</td>
<td align="left" rowspan="1" colspan="1">43°03′</td>
<td align="left" rowspan="1" colspan="1">23°06′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BG3
<xref ref-type="table-fn" rid="tf4-2">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">P4</td>
<td align="left" rowspan="1" colspan="1">Bulgaria</td>
<td align="left" rowspan="1" colspan="1">Dragalavtsi</td>
<td align="left" rowspan="1" colspan="1">42°40′</td>
<td align="left" rowspan="1" colspan="1">23°18′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CZ1</td>
<td align="left" rowspan="1" colspan="1">P19</td>
<td align="left" rowspan="1" colspan="1">Czech Republic</td>
<td align="left" rowspan="1" colspan="1">Bohemian forest</td>
<td align="left" rowspan="1" colspan="1">48°46′</td>
<td align="left" rowspan="1" colspan="1">13°54′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CZ2</td>
<td align="left" rowspan="1" colspan="1">P20</td>
<td align="left" rowspan="1" colspan="1">Czech Republic</td>
<td align="left" rowspan="1" colspan="1">Bílé Karpaty</td>
<td align="left" rowspan="1" colspan="1">48°53′</td>
<td align="left" rowspan="1" colspan="1">17°42′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DK2
<xref ref-type="table-fn" rid="tf4-2">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">P5</td>
<td align="left" rowspan="1" colspan="1">Denmark</td>
<td align="left" rowspan="1" colspan="1">Arnum</td>
<td align="left" rowspan="1" colspan="1">55°15′</td>
<td align="left" rowspan="1" colspan="1">8°59′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FI4</td>
<td align="left" rowspan="1" colspan="1">P6</td>
<td align="left" rowspan="1" colspan="1">Finland</td>
<td align="left" rowspan="1" colspan="1">Joensuu</td>
<td align="left" rowspan="1" colspan="1">62°36′</td>
<td align="left" rowspan="1" colspan="1">29°45′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FR5</td>
<td align="left" rowspan="1" colspan="1">P7</td>
<td align="left" rowspan="1" colspan="1">France</td>
<td align="left" rowspan="1" colspan="1">Seissan</td>
<td align="left" rowspan="1" colspan="1">43°30′</td>
<td align="left" rowspan="1" colspan="1">0°36′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DE2</td>
<td align="left" rowspan="1" colspan="1">P11</td>
<td align="left" rowspan="1" colspan="1">Germany</td>
<td align="left" rowspan="1" colspan="1">Coerde</td>
<td align="left" rowspan="1" colspan="1">51°58′</td>
<td align="left" rowspan="1" colspan="1">7°38′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NL3</td>
<td align="left" rowspan="1" colspan="1">P12</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">Utrecht</td>
<td align="left" rowspan="1" colspan="1">52°06′</td>
<td align="left" rowspan="1" colspan="1">5°10′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NL4</td>
<td align="left" rowspan="1" colspan="1">P13</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">Meijendel</td>
<td align="left" rowspan="1" colspan="1">52°09′</td>
<td align="left" rowspan="1" colspan="1">4°23′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NL5</td>
<td align="left" rowspan="1" colspan="1">P14</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">Populierenlaantje</td>
<td align="left" rowspan="1" colspan="1">53°02′</td>
<td align="left" rowspan="1" colspan="1">6°39′</td>
<td align="left" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NL6</td>
<td align="left" rowspan="1" colspan="1">P15</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">Katwijk</td>
<td align="left" rowspan="1" colspan="1">52°12′</td>
<td align="left" rowspan="1" colspan="1">4°25′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NL7</td>
<td align="left" rowspan="1" colspan="1">P16</td>
<td align="left" rowspan="1" colspan="1">Netherlands</td>
<td align="left" rowspan="1" colspan="1">Wageningen</td>
<td align="left" rowspan="1" colspan="1">51°58′</td>
<td align="left" rowspan="1" colspan="1">5°40′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PL1
<xref ref-type="table-fn" rid="tf4-2">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">P17</td>
<td align="left" rowspan="1" colspan="1">Poland</td>
<td align="left" rowspan="1" colspan="1">Bialowieza</td>
<td align="left" rowspan="1" colspan="1">52°40′</td>
<td align="left" rowspan="1" colspan="1">23°50′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PL2</td>
<td align="left" rowspan="1" colspan="1">P18</td>
<td align="left" rowspan="1" colspan="1">Poland</td>
<td align="left" rowspan="1" colspan="1">Warsaw</td>
<td align="left" rowspan="1" colspan="1">52°10′</td>
<td align="left" rowspan="1" colspan="1">21°04′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">RO1
<xref ref-type="table-fn" rid="tf4-2">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">P21</td>
<td align="left" rowspan="1" colspan="1">Romania</td>
<td align="left" rowspan="1" colspan="1">Bârsa</td>
<td align="left" rowspan="1" colspan="1">46°25′</td>
<td align="left" rowspan="1" colspan="1">22°07′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">RO2</td>
<td align="left" rowspan="1" colspan="1">P22</td>
<td align="left" rowspan="1" colspan="1">Romania</td>
<td align="left" rowspan="1" colspan="1">Iasi</td>
<td align="left" rowspan="1" colspan="1">47°09′</td>
<td align="left" rowspan="1" colspan="1">27°38′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">RU2</td>
<td align="left" rowspan="1" colspan="1">P23</td>
<td align="left" rowspan="1" colspan="1">Russia</td>
<td align="left" rowspan="1" colspan="1">Kovkenicy</td>
<td align="left" rowspan="1" colspan="1">60°38′</td>
<td align="left" rowspan="1" colspan="1">33°13′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">RU3</td>
<td align="left" rowspan="1" colspan="1">P24</td>
<td align="left" rowspan="1" colspan="1">Russia</td>
<td align="left" rowspan="1" colspan="1">Liski</td>
<td align="left" rowspan="1" colspan="1">51°09′</td>
<td align="left" rowspan="1" colspan="1">40°00′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SC3</td>
<td align="left" rowspan="1" colspan="1">P25</td>
<td align="left" rowspan="1" colspan="1">Scotland</td>
<td align="left" rowspan="1" colspan="1">Battleby</td>
<td align="left" rowspan="1" colspan="1">56°27′</td>
<td align="left" rowspan="1" colspan="1">–3°28′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SE6</td>
<td align="left" rowspan="1" colspan="1">P26</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">Ringenäs</td>
<td align="left" rowspan="1" colspan="1">56°41′</td>
<td align="left" rowspan="1" colspan="1">12°43′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SE7</td>
<td align="left" rowspan="1" colspan="1">P27</td>
<td align="left" rowspan="1" colspan="1">Sweden</td>
<td align="left" rowspan="1" colspan="1">Johanneshus</td>
<td align="left" rowspan="1" colspan="1">56°08′</td>
<td align="left" rowspan="1" colspan="1">13°42′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TR1</td>
<td align="left" rowspan="1" colspan="1">P28</td>
<td align="left" rowspan="1" colspan="1">Turkey</td>
<td align="left" rowspan="1" colspan="1">Cankiri</td>
<td align="left" rowspan="1" colspan="1">40°36′</td>
<td align="left" rowspan="1" colspan="1">33°38′</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TR2</td>
<td align="left" rowspan="1" colspan="1">P29</td>
<td align="left" rowspan="1" colspan="1">Turkey</td>
<td align="left" rowspan="1" colspan="1">Hensi</td>
<td align="left" rowspan="1" colspan="1">39°22′</td>
<td align="left" rowspan="1" colspan="1">42°43′</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf4-1">
<label>1</label>
<p>Population numbers used in
<xref ref-type="bibr" rid="b54">Vrancken et al. (2009).</xref>
</p>
</fn>
<fn id="tf4-2">
<label>2</label>
<p>Populations identified as
<italic>R. minor</italic>
(see text), the two Bulgarian populations are mixed.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</app>
<app id="app2">
<title>Appendix A2</title>
<p>Structure-sum-2011 (
<xref ref-type="bibr" rid="b17">Ehrich 2006</xref>
) summary of STRUCTURE results for the complete AFLP dataset for
<italic>Rhinanthus minor</italic>
and
<italic>Rhinanthus angustifolius</italic>
. For each value of
<italic>K</italic>
, 25 runs were performed, for which the LnP(D) values are shown individually in (a). The mean delta
<italic>K</italic>
(Evanno et al. 2005) is shown for
<italic>K</italic>
from 2 to 12 for all runs (b) and without the outlier run for
<italic>K</italic>
= 10 (c).</p>
<p>
<inline-graphic xlink:href="ece30002-1531-fu1.jpg" mimetype="image"></inline-graphic>
</p>
</app>
</app-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0001720 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0001720 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024