Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003

Identifieur interne : 000032 ( PascalFrancis/Corpus ); précédent : 000031; suivant : 000033

Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003

Auteurs : F. Jonard ; F. Andre ; Q. Ponette ; C. Vincke ; M. Jonard

Source :

RBID : Pascal:12-0078708

Descripteurs français

English descriptors

Abstract

Sap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density (SFD) data, mean stomatal conductance of individual trees (Gs) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and Gs and on their sensitivity to environmental variables (vapour pressure deficit (D), incoming solar radiation (RG), and relative extractable water (REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands (P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand (P < 0.0001). At reference conditions, Gs was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of Gs to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech Gs to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-1694
A02 01      @0 JHYDA7
A03   1    @0 J. hydrol. : (Amst.)
A05       @2 409
A06       @2 1-2
A08 01  1  ENG  @1 Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003
A11 01  1    @1 JONARD (F.)
A11 02  1    @1 ANDRE (F.)
A11 03  1    @1 PONETTE (Q.)
A11 04  1    @1 VINCKE (C.)
A11 05  1    @1 JONARD (M.)
A14 01      @1 Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2 @2 1348 Louvain-la-Neuve @3 BEL @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 371-381
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 13239 @5 354000507274950320
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0078708
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Journal of hydrology : (Amsterdam)
A66 01      @0 GBR
C01 01    ENG  @0 Sap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density (SFD) data, mean stomatal conductance of individual trees (Gs) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and Gs and on their sensitivity to environmental variables (vapour pressure deficit (D), incoming solar radiation (RG), and relative extractable water (REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands (P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand (P < 0.0001). At reference conditions, Gs was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of Gs to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech Gs to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.
C02 01  2    @0 001E01N
C02 02  2    @0 226A
C03 01  2  FRE  @0 Densité @5 01
C03 01  2  ENG  @0 density @5 01
C03 01  2  SPA  @0 Densidad @5 01
C03 02  2  FRE  @0 Arbre @5 02
C03 02  2  ENG  @0 trees @5 02
C03 03  2  FRE  @0 Sécheresse @5 03
C03 03  2  ENG  @0 drought @5 03
C03 03  2  SPA  @0 Sequedad @5 03
C03 04  2  FRE  @0 Ecoulement @5 04
C03 04  2  ENG  @0 flow @5 04
C03 05  2  FRE  @0 Sol @2 NT @5 05
C03 05  2  ENG  @0 soils @2 NT @5 05
C03 05  2  SPA  @0 Suelo @2 NT @5 05
C03 06  2  FRE  @0 Teneur eau @5 06
C03 06  2  ENG  @0 water content @5 06
C03 06  2  SPA  @0 Contenido en agua @5 06
C03 07  2  FRE  @0 Profondeur @5 07
C03 07  2  ENG  @0 depth @5 07
C03 07  2  SPA  @0 Profundidad @5 07
C03 08  2  FRE  @0 Réflectométrie domaine temporel @5 08
C03 08  2  ENG  @0 time domain reflectometry @5 08
C03 09  2  FRE  @0 Modèle @5 09
C03 09  2  ENG  @0 models @5 09
C03 09  2  SPA  @0 Modelo @5 09
C03 10  2  FRE  @0 Pression @5 10
C03 10  2  ENG  @0 pressure @5 10
C03 10  2  SPA  @0 Presión @5 10
C03 11  2  FRE  @0 Rayonnement solaire @5 11
C03 11  2  ENG  @0 solar radiation @5 11
C03 12  2  FRE  @0 Mixage @5 12
C03 12  2  ENG  @0 mixing @5 12
C03 12  2  SPA  @0 Mezcla @5 12
C03 13  2  FRE  @0 Air @5 13
C03 13  2  ENG  @0 air @5 13
C03 14  2  FRE  @0 Réglementation @5 14
C03 14  2  ENG  @0 regulations @5 14
C03 15  2  FRE  @0 Ressource @5 15
C03 15  2  ENG  @0 resources @5 15
C03 16  2  FRE  @0 Hydraulique @5 16
C03 16  2  ENG  @0 hydraulics @5 16
C03 16  2  SPA  @0 Hidraúlica @5 16
C03 17  2  FRE  @0 Pluie @5 17
C03 17  2  ENG  @0 rainfall @5 17
C03 17  2  SPA  @0 Lluvia @5 17
C03 18  2  FRE  @0 Fagus @2 NY @5 18
C03 18  2  ENG  @0 Fagus @2 NY @5 18
C03 18  2  SPA  @0 Fagus @2 NY @5 18
C03 19  2  FRE  @0 Quercus @2 NY @5 19
C03 19  2  ENG  @0 Quercus @2 NY @5 19
C03 19  2  SPA  @0 Quercus @2 NY @5 19
C07 01  2  FRE  @0 Dicotyledoneae @2 NY
C07 01  2  ENG  @0 Dicotyledoneae @2 NY
C07 02  2  FRE  @0 Angiospermae @2 NY
C07 02  2  ENG  @0 angiosperms @2 NY
C07 02  2  SPA  @0 Angiospermae @2 NY
C07 03  2  FRE  @0 Spermatophyta @2 NY
C07 03  2  ENG  @0 Spermatophyta @2 NY
C07 03  2  SPA  @0 Spermatophyta @2 NY
C07 04  2  FRE  @0 Plantae @2 NY
C07 04  2  ENG  @0 Plantae @2 NY
N21       @1 058
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0078708 INIST
ET : Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003
AU : JONARD (F.); ANDRE (F.); PONETTE (Q.); VINCKE (C.); JONARD (M.)
AF : Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2/1348 Louvain-la-Neuve/Belgique (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : Journal of hydrology : (Amsterdam); ISSN 0022-1694; Coden JHYDA7; Royaume-Uni; Da. 2011; Vol. 409; No. 1-2; Pp. 371-381; Bibl. 3/4 p.
LA : Anglais
EA : Sap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density (SFD) data, mean stomatal conductance of individual trees (Gs) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and Gs and on their sensitivity to environmental variables (vapour pressure deficit (D), incoming solar radiation (RG), and relative extractable water (REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands (P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand (P < 0.0001). At reference conditions, Gs was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of Gs to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech Gs to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.
CC : 001E01N; 226A
FD : Densité; Arbre; Sécheresse; Ecoulement; Sol; Teneur eau; Profondeur; Réflectométrie domaine temporel; Modèle; Pression; Rayonnement solaire; Mixage; Air; Réglementation; Ressource; Hydraulique; Pluie; Fagus; Quercus
FG : Dicotyledoneae; Angiospermae; Spermatophyta; Plantae
ED : density; trees; drought; flow; soils; water content; depth; time domain reflectometry; models; pressure; solar radiation; mixing; air; regulations; resources; hydraulics; rainfall; Fagus; Quercus
EG : Dicotyledoneae; angiosperms; Spermatophyta; Plantae
SD : Densidad; Sequedad; Suelo; Contenido en agua; Profundidad; Modelo; Presión; Mezcla; Hidraúlica; Lluvia; Fagus; Quercus
LO : INIST-13239.354000507274950320
ID : 12-0078708

Links to Exploration step

Pascal:12-0078708

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003</title>
<author>
<name sortKey="Jonard, F" sort="Jonard, F" uniqKey="Jonard F" first="F." last="Jonard">F. Jonard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Andre, F" sort="Andre, F" uniqKey="Andre F" first="F." last="Andre">F. Andre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ponette, Q" sort="Ponette, Q" uniqKey="Ponette Q" first="Q." last="Ponette">Q. Ponette</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vincke, C" sort="Vincke, C" uniqKey="Vincke C" first="C." last="Vincke">C. Vincke</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jonard, M" sort="Jonard, M" uniqKey="Jonard M" first="M." last="Jonard">M. Jonard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0078708</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0078708 INIST</idno>
<idno type="RBID">Pascal:12-0078708</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000032</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003</title>
<author>
<name sortKey="Jonard, F" sort="Jonard, F" uniqKey="Jonard F" first="F." last="Jonard">F. Jonard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Andre, F" sort="Andre, F" uniqKey="Andre F" first="F." last="Andre">F. Andre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ponette, Q" sort="Ponette, Q" uniqKey="Ponette Q" first="Q." last="Ponette">Q. Ponette</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vincke, C" sort="Vincke, C" uniqKey="Vincke C" first="C." last="Vincke">C. Vincke</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jonard, M" sort="Jonard, M" uniqKey="Jonard M" first="M." last="Jonard">M. Jonard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of hydrology : (Amsterdam)</title>
<title level="j" type="abbreviated">J. hydrol. : (Amst.)</title>
<idno type="ISSN">0022-1694</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of hydrology : (Amsterdam)</title>
<title level="j" type="abbreviated">J. hydrol. : (Amst.)</title>
<idno type="ISSN">0022-1694</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fagus</term>
<term>Quercus</term>
<term>air</term>
<term>density</term>
<term>depth</term>
<term>drought</term>
<term>flow</term>
<term>hydraulics</term>
<term>mixing</term>
<term>models</term>
<term>pressure</term>
<term>rainfall</term>
<term>regulations</term>
<term>resources</term>
<term>soils</term>
<term>solar radiation</term>
<term>time domain reflectometry</term>
<term>trees</term>
<term>water content</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Densité</term>
<term>Arbre</term>
<term>Sécheresse</term>
<term>Ecoulement</term>
<term>Sol</term>
<term>Teneur eau</term>
<term>Profondeur</term>
<term>Réflectométrie domaine temporel</term>
<term>Modèle</term>
<term>Pression</term>
<term>Rayonnement solaire</term>
<term>Mixage</term>
<term>Air</term>
<term>Réglementation</term>
<term>Ressource</term>
<term>Hydraulique</term>
<term>Pluie</term>
<term>Fagus</term>
<term>Quercus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density (SFD) data, mean stomatal conductance of individual trees (G
<sub>s</sub>
) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G
<sub>s</sub>
and on their sensitivity to environmental variables (vapour pressure deficit (D), incoming solar radiation (R
<sub>G</sub>
), and relative extractable water (REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands (P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand (P < 0.0001). At reference conditions, G
<sub>s</sub>
was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of G
<sub>s</sub>
to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G
<sub>s</sub>
to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1694</s0>
</fA01>
<fA02 i1="01">
<s0>JHYDA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. hydrol. : (Amst.)</s0>
</fA03>
<fA05>
<s2>409</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JONARD (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDRE (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PONETTE (Q.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VINCKE (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JONARD (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>371-381</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13239</s2>
<s5>354000507274950320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0078708</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of hydrology : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density (SFD) data, mean stomatal conductance of individual trees (G
<sub>s</sub>
) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G
<sub>s</sub>
and on their sensitivity to environmental variables (vapour pressure deficit (D), incoming solar radiation (R
<sub>G</sub>
), and relative extractable water (REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands (P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand (P < 0.0001). At reference conditions, G
<sub>s</sub>
was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of G
<sub>s</sub>
to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G
<sub>s</sub>
to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E01N</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>226A</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Densité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>density</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Densidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Arbre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>trees</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Sécheresse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>drought</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Sequedad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Ecoulement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>flow</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>soils</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Teneur eau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>water content</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Contenido en agua</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Profondeur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>depth</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Profundidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Réflectométrie domaine temporel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>time domain reflectometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>models</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Pression</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>pressure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Presión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Rayonnement solaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>solar radiation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Mixage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>mixing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Mezcla</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Air</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>air</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Réglementation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>regulations</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Ressource</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>resources</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Hydraulique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>hydraulics</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Hidraúlica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Pluie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>rainfall</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Lluvia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Fagus</s0>
<s2>NY</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>Fagus</s0>
<s2>NY</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Fagus</s0>
<s2>NY</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Quercus</s0>
<s2>NY</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Quercus</s0>
<s2>NY</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Quercus</s0>
<s2>NY</s2>
<s5>19</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Dicotyledoneae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Dicotyledoneae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Angiospermae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>angiosperms</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Angiospermae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Spermatophyta</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Spermatophyta</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Spermatophyta</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Plantae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Plantae</s0>
<s2>NY</s2>
</fC07>
<fN21>
<s1>058</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0078708 INIST</NO>
<ET>Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003</ET>
<AU>JONARD (F.); ANDRE (F.); PONETTE (Q.); VINCKE (C.); JONARD (M.)</AU>
<AF>Université catholique de Louvain, Earth and Life Institute, Environmental Sciences, Croix du Sud 2/1348 Louvain-la-Neuve/Belgique (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>Journal of hydrology : (Amsterdam); ISSN 0022-1694; Coden JHYDA7; Royaume-Uni; Da. 2011; Vol. 409; No. 1-2; Pp. 371-381; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Sap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density (SFD) data, mean stomatal conductance of individual trees (G
<sub>s</sub>
) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G
<sub>s</sub>
and on their sensitivity to environmental variables (vapour pressure deficit (D), incoming solar radiation (R
<sub>G</sub>
), and relative extractable water (REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands (P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand (P < 0.0001). At reference conditions, G
<sub>s</sub>
was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of G
<sub>s</sub>
to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G
<sub>s</sub>
to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.</EA>
<CC>001E01N; 226A</CC>
<FD>Densité; Arbre; Sécheresse; Ecoulement; Sol; Teneur eau; Profondeur; Réflectométrie domaine temporel; Modèle; Pression; Rayonnement solaire; Mixage; Air; Réglementation; Ressource; Hydraulique; Pluie; Fagus; Quercus</FD>
<FG>Dicotyledoneae; Angiospermae; Spermatophyta; Plantae</FG>
<ED>density; trees; drought; flow; soils; water content; depth; time domain reflectometry; models; pressure; solar radiation; mixing; air; regulations; resources; hydraulics; rainfall; Fagus; Quercus</ED>
<EG>Dicotyledoneae; angiosperms; Spermatophyta; Plantae</EG>
<SD>Densidad; Sequedad; Suelo; Contenido en agua; Profundidad; Modelo; Presión; Mezcla; Hidraúlica; Lluvia; Fagus; Quercus</SD>
<LO>INIST-13239.354000507274950320</LO>
<ID>12-0078708</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000032 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000032 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0078708
   |texte=   Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024