Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm

Identifieur interne : 000711 ( Main/Exploration ); précédent : 000710; suivant : 000712

Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm

Auteurs : L. L. Taylor [Royaume-Uni] ; J. R. Leake [Royaume-Uni] ; J. Quirk [Royaume-Uni] ; K. Hardy [Royaume-Uni] ; S. A. Banwart [Royaume-Uni] ; D. J. Beerling [Royaume-Uni]

Source :

RBID : ISTEX:A51B361D42AA7AE2F3362AB9160B64F001FD8BA0

Abstract

The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0–359.2 Ma) and the gradual decline from the Cretaceous (145.5–65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF), while the Cenozoic (c. 65.5–0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon‐energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.

Url:
DOI: 10.1111/j.1472-4669.2009.00194.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm</title>
<author>
<name sortKey="Taylor, L L" sort="Taylor, L L" uniqKey="Taylor L" first="L. L." last="Taylor">L. L. Taylor</name>
</author>
<author>
<name sortKey="Leake, J R" sort="Leake, J R" uniqKey="Leake J" first="J. R." last="Leake">J. R. Leake</name>
</author>
<author>
<name sortKey="Quirk, J" sort="Quirk, J" uniqKey="Quirk J" first="J." last="Quirk">J. Quirk</name>
</author>
<author>
<name sortKey="Hardy, K" sort="Hardy, K" uniqKey="Hardy K" first="K." last="Hardy">K. Hardy</name>
</author>
<author>
<name sortKey="Banwart, S A" sort="Banwart, S A" uniqKey="Banwart S" first="S. A." last="Banwart">S. A. Banwart</name>
</author>
<author>
<name sortKey="Beerling, D J" sort="Beerling, D J" uniqKey="Beerling D" first="D. J." last="Beerling">D. J. Beerling</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A51B361D42AA7AE2F3362AB9160B64F001FD8BA0</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1111/j.1472-4669.2009.00194.x</idno>
<idno type="url">https://api.istex.fr/document/A51B361D42AA7AE2F3362AB9160B64F001FD8BA0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000527</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000527</idno>
<idno type="wicri:Area/Istex/Curation">000527</idno>
<idno type="wicri:Area/Istex/Checkpoint">000407</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000407</idno>
<idno type="wicri:doubleKey">1472-4677:2009:Taylor L:biological:weathering:and</idno>
<idno type="wicri:Area/Main/Merge">000713</idno>
<idno type="wicri:Area/Main/Curation">000711</idno>
<idno type="wicri:Area/Main/Exploration">000711</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm</title>
<author>
<name sortKey="Taylor, L L" sort="Taylor, L L" uniqKey="Taylor L" first="L. L." last="Taylor">L. L. Taylor</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN</wicri:regionArea>
<wicri:noRegion>Sheffield S10 2TN</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leake, J R" sort="Leake, J R" uniqKey="Leake J" first="J. R." last="Leake">J. R. Leake</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN</wicri:regionArea>
<wicri:noRegion>Sheffield S10 2TN</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quirk, J" sort="Quirk, J" uniqKey="Quirk J" first="J." last="Quirk">J. Quirk</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN</wicri:regionArea>
<wicri:noRegion>Sheffield S10 2TN</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hardy, K" sort="Hardy, K" uniqKey="Hardy K" first="K." last="Hardy">K. Hardy</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN</wicri:regionArea>
<wicri:noRegion>Sheffield S10 2TN</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Banwart, S A" sort="Banwart, S A" uniqKey="Banwart S" first="S. A." last="Banwart">S. A. Banwart</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell‐Mineral Research Centre, Kroto Institute, University of Sheffield, Sheffield S1 7HQ</wicri:regionArea>
<wicri:noRegion>Sheffield S1 7HQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beerling, D J" sort="Beerling, D J" uniqKey="Beerling D" first="D. J." last="Beerling">D. J. Beerling</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN</wicri:regionArea>
<wicri:noRegion>Sheffield S10 2TN</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geobiology</title>
<idno type="ISSN">1472-4677</idno>
<idno type="eISSN">1472-4669</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-03">2009-03</date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="171">171</biblScope>
<biblScope unit="page" to="191">191</biblScope>
</imprint>
<idno type="ISSN">1472-4677</idno>
</series>
<idno type="istex">A51B361D42AA7AE2F3362AB9160B64F001FD8BA0</idno>
<idno type="DOI">10.1111/j.1472-4669.2009.00194.x</idno>
<idno type="ArticleID">GBI194</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1472-4677</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0–359.2 Ma) and the gradual decline from the Cretaceous (145.5–65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF), while the Cenozoic (c. 65.5–0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon‐energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Taylor, L L" sort="Taylor, L L" uniqKey="Taylor L" first="L. L." last="Taylor">L. L. Taylor</name>
</noRegion>
<name sortKey="Banwart, S A" sort="Banwart, S A" uniqKey="Banwart S" first="S. A." last="Banwart">S. A. Banwart</name>
<name sortKey="Beerling, D J" sort="Beerling, D J" uniqKey="Beerling D" first="D. J." last="Beerling">D. J. Beerling</name>
<name sortKey="Hardy, K" sort="Hardy, K" uniqKey="Hardy K" first="K." last="Hardy">K. Hardy</name>
<name sortKey="Leake, J R" sort="Leake, J R" uniqKey="Leake J" first="J. R." last="Leake">J. R. Leake</name>
<name sortKey="Quirk, J" sort="Quirk, J" uniqKey="Quirk J" first="J." last="Quirk">J. Quirk</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000711 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000711 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A51B361D42AA7AE2F3362AB9160B64F001FD8BA0
   |texte=   Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024