Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis

Identifieur interne : 000E53 ( Istex/Corpus ); précédent : 000E52; suivant : 000E54

Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis

Auteurs : Peter M. Atkinson ; Giles M. Foody ; Peter W. Gething ; Ajay Mathur ; Colleen K. Kelly

Source :

RBID : ISTEX:7AB6419A82192B02654D78F5C84ADD07D59C2085

Abstract

Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore Acer pseudoplatanus and ash Fraxinus excelsior from a 400 ha ancient semi‐natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter‐dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists.

Url:
DOI: 10.1111/j.0906-7590.2007.04726.x

Links to Exploration step

ISTEX:7AB6419A82192B02654D78F5C84ADD07D59C2085

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
<author>
<name sortKey="Atkinson, Peter M" sort="Atkinson, Peter M" uniqKey="Atkinson P" first="Peter M." last="Atkinson">Peter M. Atkinson</name>
</author>
<author>
<name sortKey="Foody, Giles M" sort="Foody, Giles M" uniqKey="Foody G" first="Giles M." last="Foody">Giles M. Foody</name>
</author>
<author>
<name sortKey="Gething, Peter W" sort="Gething, Peter W" uniqKey="Gething P" first="Peter W." last="Gething">Peter W. Gething</name>
</author>
<author>
<name sortKey="Mathur, Ajay" sort="Mathur, Ajay" uniqKey="Mathur A" first="Ajay" last="Mathur">Ajay Mathur</name>
</author>
<author>
<name sortKey="Kelly, Colleen K" sort="Kelly, Colleen K" uniqKey="Kelly C" first="Colleen K." last="Kelly">Colleen K. Kelly</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7AB6419A82192B02654D78F5C84ADD07D59C2085</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1111/j.0906-7590.2007.04726.x</idno>
<idno type="url">https://api.istex.fr/document/7AB6419A82192B02654D78F5C84ADD07D59C2085/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E53</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
<author>
<name sortKey="Atkinson, Peter M" sort="Atkinson, Peter M" uniqKey="Atkinson P" first="Peter M." last="Atkinson">Peter M. Atkinson</name>
</author>
<author>
<name sortKey="Foody, Giles M" sort="Foody, Giles M" uniqKey="Foody G" first="Giles M." last="Foody">Giles M. Foody</name>
</author>
<author>
<name sortKey="Gething, Peter W" sort="Gething, Peter W" uniqKey="Gething P" first="Peter W." last="Gething">Peter W. Gething</name>
</author>
<author>
<name sortKey="Mathur, Ajay" sort="Mathur, Ajay" uniqKey="Mathur A" first="Ajay" last="Mathur">Ajay Mathur</name>
</author>
<author>
<name sortKey="Kelly, Colleen K" sort="Kelly, Colleen K" uniqKey="Kelly C" first="Colleen K." last="Kelly">Colleen K. Kelly</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Ecography</title>
<title level="j" type="abbrev">Ecography</title>
<idno type="ISSN">0906-7590</idno>
<idno type="eISSN">1600-0587</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Copenhagen</pubPlace>
<date type="published" when="2007-02">2007-02</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="88">88</biblScope>
<biblScope unit="page" to="104">104</biblScope>
</imprint>
<idno type="ISSN">0906-7590</idno>
</series>
<idno type="istex">7AB6419A82192B02654D78F5C84ADD07D59C2085</idno>
<idno type="DOI">10.1111/j.0906-7590.2007.04726.x</idno>
<idno type="ArticleID">ECOG4726</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0906-7590</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore Acer pseudoplatanus and ash Fraxinus excelsior from a 400 ha ancient semi‐natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter‐dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Peter M. Atkinson</name>
</json:item>
<json:item>
<name>Giles M. Foody</name>
</json:item>
<json:item>
<name>Peter W. Gething</name>
</json:item>
<json:item>
<name>Ajay Mathur</name>
</json:item>
<json:item>
<name>Colleen K. Kelly</name>
</json:item>
</author>
<articleId>
<json:string>ECOG4726</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore Acer pseudoplatanus and ash Fraxinus excelsior from a 400 ha ancient semi‐natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter‐dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists.</abstract>
<qualityIndicators>
<score>7.94</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>539 x 751 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1664</abstractCharCount>
<pdfWordCount>9556</pdfWordCount>
<pdfCharCount>57093</pdfCharCount>
<pdfPageCount>17</pdfPageCount>
<abstractWordCount>245</abstractWordCount>
</qualityIndicators>
<title>Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
<refBibs>
<json:item>
<host>
<author></author>
<title>Anon., . 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P. M. Atkinson</name>
</json:item>
<json:item>
<name>P. Lewis</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>371</last>
<first>361</first>
</pages>
<author></author>
<title>Comput. Geosci.</title>
</host>
<title>Geostatistical classification for remote sensing: an introduction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. K. Augspurger</name>
</json:item>
<json:item>
<name>K. P. Hogan</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>1037</last>
<first>1031</first>
</pages>
<author></author>
<title>Am. J. Bot.</title>
</host>
<title>Wind dispersal of fruits with variable seed number in a tropical tree</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Baddeley</name>
</json:item>
<json:item>
<name>R. Turner</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>42</last>
<first>1</first>
</pages>
<author></author>
<title>J. Stat. Software</title>
</host>
<title>Spatstat: an R package for analyzing spatial point patterns</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Bailey, T. C. and Gatrell, A. C.. 1995. Interactive spatial data analysis. Longman Scientific and Technical, Harlow.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Patterns of invasion of sycamore (Acer pseudoplatanus L.) in relation to species and ecosystem attributes</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Binggeli</name>
</json:item>
</author>
<host>
<volume>87</volume>
<pages>
<last>146</last>
<first>143</first>
</pages>
<author></author>
<title>Quart. J. For.</title>
</host>
<title>Conservation value of sycamore</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Binggeli, P.. 1999. Which stage in the sycamore life cycle limits its spread?>http://members.lycos.co.uk/WoodyPlantEcology/sycamore/lifecycle.htm>.</title>
</host>
</json:item>
<json:item>
<host>
<volume>26</volume>
<author></author>
<title>Boots, B. N. and Getis, A.. 1988. Point pattern analysis. – Sage Scientific Geography Series. Vol. 8. Sage Publ.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Brandtberg</name>
</json:item>
</author>
<host>
<volume>132</volume>
<pages>
<last>387</last>
<first>371</first>
</pages>
<author></author>
<title>Fuzzy Sets and Systems</title>
</host>
<title>Individual tree‐based species classification in high spatial resolution aerial images of forests using fuzzy sets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Carleer</name>
</json:item>
<json:item>
<name>E. Wolff</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>140</last>
<first>135</first>
</pages>
<author></author>
<title>Photogr. Eng. Rem. Sens.</title>
</host>
<title>Exploitation of very high resolution satellite data for tree species identification</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Chiles, J. P. and Delfiner, P.. 1999. Geostatistics: modelling spatial uncertainty. Wiley.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. B. Clark</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>74</last>
<first>61</first>
</pages>
<author></author>
<title>Ecol. Appl.</title>
</host>
<title>Application of 1‐m and 4‐m resolution satellite data to ecological studies of tropical rain forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Condit</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>22</last>
<first>18</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>Research in large, long‐term tropical forest plots</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. H. Connell</name>
</json:item>
</author>
<host>
<pages>
<last>310</last>
<first>298</first>
</pages>
<author></author>
<title>Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen</title>
</host>
<title>On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. H. Connell</name>
</json:item>
</author>
<host>
<volume>199</volume>
<pages>
<last>1310</last>
<first>1302</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Diversity in tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non‐equilibrium state</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Dale, M. R. T.. 1999. Spatial pattern analysis in plant ecology. Cambridge Univ. Press.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Diggle, P. J.. 2003. Statistical analysis of spatial point patterns, 2nd ed. Academic Press.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G. M. Foody</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>478</last>
<first>469</first>
</pages>
<author></author>
<title>Comput. Geosci.</title>
</host>
<title>Estimation of sub‐pixel land cover composition in the presence of untrained classes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. M. Foody</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>201</last>
<first>185</first>
</pages>
<author></author>
<title>Rem. Sens. Environ.</title>
</host>
<title>Status of land cover classification accuracy assessment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. M. Foody</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>474</last>
<first>463</first>
</pages>
<author></author>
<title>Rem. Sens. Environ.</title>
</host>
<title>Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. M. Foody</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>1244</last>
<first>1233</first>
</pages>
<author></author>
<title>Ecol. Appl.</title>
</host>
<title>Identification of specific tree species in ancient semi‐natural woodland from digital aerial sensor imagery</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Franklin, S. E.. 2000. Remote sensing for sustainable forest management. Lewis Publ.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>E. A. Freeman</name>
</json:item>
<json:item>
<name>E. D. Ford</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>46</last>
<first>35</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Effects of data quality on analysis of ecological pattern using the statistical function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. A. Gatrell</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>274</last>
<first>256</first>
</pages>
<author></author>
<title>Trans. Inst. British Geogr.</title>
</host>
<title>Spatial point pattern analysis and its application in geographical epidemiology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Gong</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>200</last>
<first>189</first>
</pages>
<author></author>
<title>Rem. Sens. Environ.</title>
</host>
<title>Conifer species recognition: an exploratory analysis of in situ hyperspectral data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Goreaud</name>
</json:item>
<json:item>
<name>R. Pellisier</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>692</last>
<first>681</first>
</pages>
<author></author>
<title>J. Veg. Sci.</title>
</host>
<title>Avoiding misinterpretation of biotic interactions with the intertype K‐12‐function: population independence vs. random labelling hypotheses</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Haara</name>
</json:item>
<json:item>
<name>M. Haarala</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>565</last>
<first>556</first>
</pages>
<author></author>
<title>Scand. J. For. Res.</title>
</host>
<title>Tree species classification using semi‐automatic delineation of trees on aerial images</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Holmgren</name>
</json:item>
<json:item>
<name>A. Persson</name>
</json:item>
</author>
<host>
<volume>90</volume>
<pages>
<last>423</last>
<first>415</first>
</pages>
<author></author>
<title>Rem. Sens. Environ.</title>
</host>
<title>Identifying species of individual trees using airborne laser scanner</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. P. Hubbell</name>
</json:item>
</author>
<host>
<volume>203</volume>
<pages>
<last>1309</last>
<first>1299</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Tree dispersion, abundance, and diversity in a tropical dry forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. H. Janzen</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>502</last>
<first>501</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>Herbivores and the number of tree species in tropical forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Kayitakire</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>640</last>
<first>629</first>
</pages>
<author></author>
<title>Can. J. Rem. Sens.</title>
</host>
<title>Automated delineation of the forest stands using digital color orthophotos: case study in Belgium</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. K. Kelly</name>
</json:item>
<json:item>
<name>M. G. Bowler</name>
</json:item>
</author>
<host>
<volume>417</volume>
<pages>
<last>440</last>
<first>437</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Coexistence and relative abundance in forest tree species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. K. Kelly</name>
</json:item>
<json:item>
<name>M. G. Bowler</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>1022</last>
<first>1012</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>A new application of storage dynamics: differential sensitivity, diffuse competition and temporal niches</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. T. Kerr</name>
</json:item>
<json:item>
<name>M. Ostrovsky</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>305</last>
<first>299</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>From space to species: ecological applications for remote sensing</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Koch</name>
</json:item>
</author>
<host>
<volume>173</volume>
<pages>
<last>140</last>
<first>131</first>
</pages>
<author></author>
<title>Allgemeine Forst und Jagdzeitung</title>
</host>
<title>Automatic tree species detection based on digitised CIR aerial photos</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Lancaster</name>
</json:item>
<json:item>
<name>B. J. Downes</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>110</last>
<first>94</first>
</pages>
<author></author>
<title>Ecography</title>
</host>
<title>Spatial point pattern analysis of available and exploited resources</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. M. Lark</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>1480</last>
<first>1461</first>
</pages>
<author></author>
<title>Int. J. Rem. Sens.</title>
</host>
<title>Components of accuracy of maps with special reference to discriminant analysis of remote sensor data</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Mather, P. M.. 2004. Computer processing of remotely‐sensed images: an introduction, 3rd ed. Wiley.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. M. McPherson</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>823</last>
<first>811</first>
</pages>
<author></author>
<title>J. Appl. Ecol.</title>
</host>
<title>The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Nagendra</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>2400</last>
<first>2377</first>
</pages>
<author></author>
<title>Int. J. Rem. Sens.</title>
</host>
<title>Using remote sensing to assess biodiversity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. U. U. Okali</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>141</last>
<first>129</first>
</pages>
<author></author>
<title>J. Ecol.</title>
</host>
<title>A comparative study of the ecologically related tree species Acer pseudoplatanus and Fraxinus excelsior. I. The analysis of seedling distributions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. U. U. Okali</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>425</last>
<first>419</first>
</pages>
<author></author>
<title>J. Ecol.</title>
</host>
<title>A comparative study of the ecologically related tree species Acer pseudoplatanus L and Fraxinus excelsior L. II. An analysis of adult tree distribution</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. V. Ollinger</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>355</last>
<first>339</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Regional variation in foliar chemistry and N cycling among forests of diverse history and composition</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. W. Pacala</name>
</json:item>
<json:item>
<name>D. J. Deutschman</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>365</last>
<first>357</first>
</pages>
<author></author>
<title>Oikos</title>
</host>
<title>Details that matter: the spatial structure of individual trees maintains forest ecosystem function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. W. Parmenter</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>703</last>
<first>687</first>
</pages>
<author></author>
<title>Ecol. Appl.</title>
</host>
<title>Land use and land cover change in the Greater Yellowstone ecosystem: 1975–1995</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Perrins</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>9</last>
<first>5</first>
</pages>
<author></author>
<title>Biologist</title>
</host>
<title>Classic sites: Wytham Wood</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. N. Perry</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>600</last>
<first>578</first>
</pages>
<author></author>
<title>Ecography</title>
</host>
<title>Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Pickett, S. T. A. and White, P. S.. 1985. The ecology of natural disturbance and patch dynamics. Academic Press.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. B. Plotkin</name>
</json:item>
</author>
<host>
<volume>207</volume>
<pages>
<last>99</last>
<first>81</first>
</pages>
<author></author>
<title>J. Theor. Biol.</title>
</host>
<title>Species‐area curves, spatial aggregation, and habitat specialization in tropical forests</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. D. Ripley</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>266</last>
<first>255</first>
</pages>
<author></author>
<title>J. Appl. Probab.</title>
</host>
<title>The second‐order analysis of stationary point processes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. D. Ripley</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>212</last>
<first>172</first>
</pages>
<author></author>
<title>J. Roy. Stat. Soc. B</title>
</host>
<title>Modeling spatial patterns</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. D. Ripley</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>374</last>
<first>368</first>
</pages>
<author></author>
<title>J. Roy. Stat. Soc. B</title>
</host>
<title>Tests of ‘randomness’ for spatial point patterns</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Ripley, B. D.. 1988. Statistical inference for spatial processes. Cambridge Univ. Press.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G. A. Sanchez‐Azofelfa</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>142</last>
<first>134</first>
</pages>
<author></author>
<title>Biotropica</title>
</host>
<title>Remote sensing research priorities in tropical dry forest environments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Turner</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>314</last>
<first>306</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>Remote sensing for biodiversity science and conservation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Wang</name>
</json:item>
</author>
<host>
<volume>91</volume>
<pages>
<last>440</last>
<first>432</first>
</pages>
<author></author>
<title>Rem. Sens. Environ.</title>
</host>
<title>Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. L. Waters</name>
</json:item>
<json:item>
<name>P. S. Savill</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>433</last>
<first>417</first>
</pages>
<author></author>
<title>Forestry</title>
</host>
<title>Ash and sycamore regeneration and the phenomenon of their alternation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Wiegand</name>
</json:item>
<json:item>
<name>K. A. Moloney</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>229</last>
<first>209</first>
</pages>
<author></author>
<title>Oikos</title>
</host>
<title>Rings, circles, and null‐models for point pattern analysis in ecology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. G. Wilkinson</name>
</json:item>
</author>
<host>
<pages>
<last>99</last>
<first>93</first>
</pages>
<author></author>
<title>Soft computing in remote sensing data analysis</title>
</host>
<title>Classification algorithms – where next?</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>30</volume>
<publisherId>
<json:string>ECOG</json:string>
</publisherId>
<pages>
<total>17</total>
<last>104</last>
<first>88</first>
</pages>
<issn>
<json:string>0906-7590</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1600-0587</json:string>
</eissn>
<title>Ecography</title>
<doi>
<json:string>10.1111/(ISSN)1600-0587</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>ecology</json:string>
<json:string>biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1111/j.0906-7590.2007.04726.x</json:string>
</doi>
<id>7AB6419A82192B02654D78F5C84ADD07D59C2085</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7AB6419A82192B02654D78F5C84ADD07D59C2085/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7AB6419A82192B02654D78F5C84ADD07D59C2085/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7AB6419A82192B02654D78F5C84ADD07D59C2085/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Copenhagen</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2007</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
<author xml:id="author-1">
<persName>
<forename type="first">Peter M.</forename>
<surname>Atkinson</surname>
</persName>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Giles M.</forename>
<surname>Foody</surname>
</persName>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Peter W.</forename>
<surname>Gething</surname>
</persName>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Ajay</forename>
<surname>Mathur</surname>
</persName>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Colleen K.</forename>
<surname>Kelly</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Ecography</title>
<title level="j" type="abbrev">Ecography</title>
<idno type="pISSN">0906-7590</idno>
<idno type="eISSN">1600-0587</idno>
<idno type="DOI">10.1111/(ISSN)1600-0587</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Copenhagen</pubPlace>
<date type="published" when="2007-02"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="88">88</biblScope>
<biblScope unit="page" to="104">104</biblScope>
</imprint>
</monogr>
<idno type="istex">7AB6419A82192B02654D78F5C84ADD07D59C2085</idno>
<idno type="DOI">10.1111/j.0906-7590.2007.04726.x</idno>
<idno type="ArticleID">ECOG4726</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2007</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore Acer pseudoplatanus and ash Fraxinus excelsior from a 400 ha ancient semi‐natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter‐dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2007-02">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7AB6419A82192B02654D78F5C84ADD07D59C2085/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Copenhagen</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1600-0587</doi>
<issn type="print">0906-7590</issn>
<issn type="electronic">1600-0587</issn>
<idGroup>
<id type="product" value="ECOG"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="ECOGRAPHY">Ecography</title>
<title type="short">Ecography</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="02001">
<doi origin="wiley">10.1111/eco.2007.30.issue-1</doi>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="2007-02">February 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0008800" status="forIssue">
<doi origin="wiley">10.1111/j.0906-7590.2007.04726.x</doi>
<idGroup>
<id type="unit" value="ECOG4726"></id>
<id type="supplier" value="eco4726"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Research papers</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2007-11-06"></event>
<event type="publishedOnlineFinalForm" date="2007-11-06"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.4 mode:FullText source:FullText result:FullText" date="2010-03-29"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-19"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="88">88</numbering>
<numbering type="pageLast" number="104">104</numbering>
</numberingGroup>
<correspondenceTo>P. M. Atkinson (
<email>pma@soton.ac.uk</email>
), and P. W. Gething, School of Geography, Univ. of Southampton, Highfield, Southampton, SO17 1BJ, UK. – G. M. Foody, School of Geography, Univ. of Nottingham, Univ. Park, Nottingham, NG7 2RD, UK. – A. Mathur, Punjab Remote Sensing Centre, Ludhiana 141004, Punjab, India. – C. K. Kelly, Dept of Zoology, Univ. of Oxford, South Parks Road, Oxford OX1 3PS, UK.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:ECOG.ECOG4726.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Manuscript Accepted 26 October 2006</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="7"></count>
<count type="formulaTotal" number="17"></count>
<count type="referenceTotal" number="60"></count>
</countGroup>
<titleGroup>
<title type="main">Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1">
<personName>
<givenNames>Peter M.</givenNames>
<familyName>Atkinson</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2">
<personName>
<givenNames>Giles M.</givenNames>
<familyName>Foody</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3">
<personName>
<givenNames>Peter W.</givenNames>
<familyName>Gething</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4">
<personName>
<givenNames>Ajay</givenNames>
<familyName>Mathur</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5">
<personName>
<givenNames>Colleen K.</givenNames>
<familyName>Kelly</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore
<i>Acer pseudoplatanus</i>
and ash
<i>Fraxinus excelsior</i>
from a 400 ha ancient semi‐natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter‐dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter M.</namePart>
<namePart type="family">Atkinson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giles M.</namePart>
<namePart type="family">Foody</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter W.</namePart>
<namePart type="family">Gething</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ajay</namePart>
<namePart type="family">Mathur</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colleen K.</namePart>
<namePart type="family">Kelly</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Copenhagen</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2007-02</dateIssued>
<edition>Manuscript Accepted 26 October 2006</edition>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">8</extent>
<extent unit="tables">7</extent>
<extent unit="formulas">17</extent>
<extent unit="references">60</extent>
</physicalDescription>
<abstract lang="en">Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore Acer pseudoplatanus and ash Fraxinus excelsior from a 400 ha ancient semi‐natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter‐dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Ecography</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Ecography</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0906-7590</identifier>
<identifier type="eISSN">1600-0587</identifier>
<identifier type="DOI">10.1111/(ISSN)1600-0587</identifier>
<identifier type="PublisherID">ECOG</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>88</start>
<end>104</end>
<total>17</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">7AB6419A82192B02654D78F5C84ADD07D59C2085</identifier>
<identifier type="DOI">10.1111/j.0906-7590.2007.04726.x</identifier>
<identifier type="ArticleID">ECOG4726</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7AB6419A82192B02654D78F5C84ADD07D59C2085
   |texte=   Investigating spatial structure in specific tree species in ancient semi‐natural woodland using remote sensing and marked point pattern analysis
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024