Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool

Identifieur interne : 000795 ( Istex/Corpus ); précédent : 000794; suivant : 000796

Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool

Auteurs : Juliette Rimetz-Planchon ; Frederik Dhooghe ; Niels Schoon ; Frank Vanhaecke ; Crist Amelynck

Source :

RBID : ISTEX:03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162

Abstract

Existing on‐line Chemical Ionization Mass Spectrometry (CIMS) techniques for quantification of atmospheric trace gases, such as Biogenic Volatile Organic Compounds (BVOCs), suffer from difficulty in discriminating between isomeric (and more generally isobaric) compounds. Selective detection of these compounds, however, is important because they can affect atmospheric chemistry in different ways, depending on their chemical structure. In this work, Flowing Afterglow Tandem Mass Spectrometry (FATMS) was used to investigate the feasibility of the selective detection of a series of monoterpenes, an oxygenated monoterpene (linalool) and a sesquiterpene (β‐caryophyllene). Ions at m/z 137 from [H3O]+ chemical ionization of α‐pinene, linalool and β‐caryophyllene have been subjected to Collision‐Induced Dissociation (CID) with Ar in the collision cell of a tandem mass spectrometer at center‐of‐mass energies ranging between 0 and 8 eV. Similar fragmentation patterns were obtained, demonstrating that this method is not suited for the selective detection of these compounds. However, CID of the ions at m/z 136 produced via [NO]+ chemical ionization of a series of monoterpenes has revealed promising results. Some tracer‐product ions for individual compounds or groups of compounds were found, which can be considered as a step forward towards selective on‐line monitoring of BVOCs with CIMS techniques. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/rcm.4901

Links to Exploration step

ISTEX:03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
<author>
<name sortKey="Rimetz Lanchon, Juliette" sort="Rimetz Lanchon, Juliette" uniqKey="Rimetz Lanchon J" first="Juliette" last="Rimetz-Planchon">Juliette Rimetz-Planchon</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dhooghe, Frederik" sort="Dhooghe, Frederik" uniqKey="Dhooghe F" first="Frederik" last="Dhooghe">Frederik Dhooghe</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schoon, Niels" sort="Schoon, Niels" uniqKey="Schoon N" first="Niels" last="Schoon">Niels Schoon</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vanhaecke, Frank" sort="Vanhaecke, Frank" uniqKey="Vanhaecke F" first="Frank" last="Vanhaecke">Frank Vanhaecke</name>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amelynck, Crist" sort="Amelynck, Crist" uniqKey="Amelynck C" first="Crist" last="Amelynck">Crist Amelynck</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/rcm.4901</idno>
<idno type="url">https://api.istex.fr/document/03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000795</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000795</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
<author>
<name sortKey="Rimetz Lanchon, Juliette" sort="Rimetz Lanchon, Juliette" uniqKey="Rimetz Lanchon J" first="Juliette" last="Rimetz-Planchon">Juliette Rimetz-Planchon</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dhooghe, Frederik" sort="Dhooghe, Frederik" uniqKey="Dhooghe F" first="Frederik" last="Dhooghe">Frederik Dhooghe</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schoon, Niels" sort="Schoon, Niels" uniqKey="Schoon N" first="Niels" last="Schoon">Niels Schoon</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vanhaecke, Frank" sort="Vanhaecke, Frank" uniqKey="Vanhaecke F" first="Frank" last="Vanhaecke">Frank Vanhaecke</name>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amelynck, Crist" sort="Amelynck, Crist" uniqKey="Amelynck C" first="Crist" last="Amelynck">Crist Amelynck</name>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Rapid Communications in Mass Spectrometry</title>
<title level="j" type="abbrev">Rapid Commun. Mass Spectrom.</title>
<idno type="ISSN">0951-4198</idno>
<idno type="eISSN">1097-0231</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-03-15">2011-03-15</date>
<biblScope unit="volume">25</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="647">647</biblScope>
<biblScope unit="page" to="654">654</biblScope>
</imprint>
<idno type="ISSN">0951-4198</idno>
</series>
<idno type="istex">03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162</idno>
<idno type="DOI">10.1002/rcm.4901</idno>
<idno type="ArticleID">RCM4901</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0951-4198</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Existing on‐line Chemical Ionization Mass Spectrometry (CIMS) techniques for quantification of atmospheric trace gases, such as Biogenic Volatile Organic Compounds (BVOCs), suffer from difficulty in discriminating between isomeric (and more generally isobaric) compounds. Selective detection of these compounds, however, is important because they can affect atmospheric chemistry in different ways, depending on their chemical structure. In this work, Flowing Afterglow Tandem Mass Spectrometry (FATMS) was used to investigate the feasibility of the selective detection of a series of monoterpenes, an oxygenated monoterpene (linalool) and a sesquiterpene (β‐caryophyllene). Ions at m/z 137 from [H3O]+ chemical ionization of α‐pinene, linalool and β‐caryophyllene have been subjected to Collision‐Induced Dissociation (CID) with Ar in the collision cell of a tandem mass spectrometer at center‐of‐mass energies ranging between 0 and 8 eV. Similar fragmentation patterns were obtained, demonstrating that this method is not suited for the selective detection of these compounds. However, CID of the ions at m/z 136 produced via [NO]+ chemical ionization of a series of monoterpenes has revealed promising results. Some tracer‐product ions for individual compounds or groups of compounds were found, which can be considered as a step forward towards selective on‐line monitoring of BVOCs with CIMS techniques. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Juliette Rimetz‐Planchon</name>
<affiliations>
<json:string>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frederik Dhooghe</name>
<affiliations>
<json:string>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</json:string>
<json:string>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Niels Schoon</name>
<affiliations>
<json:string>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frank Vanhaecke</name>
<affiliations>
<json:string>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Crist Amelynck</name>
<affiliations>
<json:string>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</json:string>
<json:string>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium.</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>RCM4901</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Existing on‐line Chemical Ionization Mass Spectrometry (CIMS) techniques for quantification of atmospheric trace gases, such as Biogenic Volatile Organic Compounds (BVOCs), suffer from difficulty in discriminating between isomeric (and more generally isobaric) compounds. Selective detection of these compounds, however, is important because they can affect atmospheric chemistry in different ways, depending on their chemical structure. In this work, Flowing Afterglow Tandem Mass Spectrometry (FATMS) was used to investigate the feasibility of the selective detection of a series of monoterpenes, an oxygenated monoterpene (linalool) and a sesquiterpene (β‐caryophyllene). Ions at m/z 137 from [H3O]+ chemical ionization of α‐pinene, linalool and β‐caryophyllene have been subjected to Collision‐Induced Dissociation (CID) with Ar in the collision cell of a tandem mass spectrometer at center‐of‐mass energies ranging between 0 and 8 eV. Similar fragmentation patterns were obtained, demonstrating that this method is not suited for the selective detection of these compounds. However, CID of the ions at m/z 136 produced via [NO]+ chemical ionization of a series of monoterpenes has revealed promising results. Some tracer‐product ions for individual compounds or groups of compounds were found, which can be considered as a step forward towards selective on‐line monitoring of BVOCs with CIMS techniques. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.448</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 791 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1449</abstractCharCount>
<pdfWordCount>5895</pdfWordCount>
<pdfCharCount>37441</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>204</abstractWordCount>
</qualityIndicators>
<title>Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>A. Arneth</name>
</json:item>
<json:item>
<name>R. K. Monson</name>
</json:item>
<json:item>
<name>G. Schurgers</name>
</json:item>
<json:item>
<name>U. Niinemets</name>
</json:item>
<json:item>
<name>P. I. Palmer.</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<first>4605</first>
</pages>
<author></author>
<title>Atmos. Chem. Phys.</title>
</host>
<title>Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Kesselmeir</name>
</json:item>
<json:item>
<name>M. Staudt.</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<first>23</first>
</pages>
<author></author>
<title>J. Atmos.Chem.</title>
</host>
<title>Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Geron</name>
</json:item>
<json:item>
<name>R. Rasmussen</name>
</json:item>
<json:item>
<name>R. R. Arnts</name>
</json:item>
<json:item>
<name>A. Guenther.</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<first>1761</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>A review and synthesis of monoterpene speciation from forests in the United States</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Fuentes</name>
</json:item>
<json:item>
<name>M. Lerdau</name>
</json:item>
<json:item>
<name>R. Atkinson</name>
</json:item>
<json:item>
<name>D. Baldocchi</name>
</json:item>
<json:item>
<name>J. Bottenheim</name>
</json:item>
<json:item>
<name>P. Ciccioli</name>
</json:item>
<json:item>
<name>B. Lamb</name>
</json:item>
<json:item>
<name>C. Geron</name>
</json:item>
<json:item>
<name>L. Gu</name>
</json:item>
<json:item>
<name>A. Guenther</name>
</json:item>
<json:item>
<name>T. D. Sharkey</name>
</json:item>
<json:item>
<name>W. Stockwell.</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<first>1537</first>
</pages>
<author></author>
<title>Bull. Am. Meteo. Soc.</title>
</host>
<title>Biogenic hydrocarbons in the atmospheric boundary layer: a review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U. Niinemets.</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<first>145</first>
</pages>
<author></author>
<title>Trends Plant Sci.</title>
</host>
<title>Mild versus severe stress and BVOCs: thresholds, priming and consequences</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Staudt</name>
</json:item>
<json:item>
<name>N. Bertin</name>
</json:item>
<json:item>
<name>U. Hansen</name>
</json:item>
<json:item>
<name>G. Seufert</name>
</json:item>
<json:item>
<name>P. Ciccioli</name>
</json:item>
<json:item>
<name>P. Foster</name>
</json:item>
<json:item>
<name>B. Frenzel</name>
</json:item>
<json:item>
<name>J. L. Fugit.</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<first>145</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. D. Geron</name>
</json:item>
<json:item>
<name>R. R. Arnts.</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<first>4240</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Kesselmeier</name>
</json:item>
<json:item>
<name>K. Bode</name>
</json:item>
<json:item>
<name>U. Hofmann</name>
</json:item>
<json:item>
<name>H. Müller</name>
</json:item>
<json:item>
<name>L. Schäfer</name>
</json:item>
<json:item>
<name>A. Wolf</name>
</json:item>
<json:item>
<name>P. Ciccioli</name>
</json:item>
<json:item>
<name>E. Brancaleoni</name>
</json:item>
<json:item>
<name>A. Cecinato</name>
</json:item>
<json:item>
<name>M. Frattoni</name>
</json:item>
<json:item>
<name>P. Foster</name>
</json:item>
<json:item>
<name>C. Ferrari</name>
</json:item>
<json:item>
<name>V. Jacob</name>
</json:item>
<json:item>
<name>J. L. Fugit</name>
</json:item>
<json:item>
<name>L. Dutaur</name>
</json:item>
<json:item>
<name>V. Simon</name>
</json:item>
<json:item>
<name>L. Torres.</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<first>119</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>Emission of short chain organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Holzke</name>
</json:item>
<json:item>
<name>T. Dindorf</name>
</json:item>
<json:item>
<name>J. Kesselmeier</name>
</json:item>
<json:item>
<name>U. Kuhn</name>
</json:item>
<json:item>
<name>R. J. Koppmann.</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<first>81</first>
</pages>
<author></author>
<title>J. Atmos. Chem.</title>
</host>
<title>Terpene emissions from European beech (shape Fagus sylvatica L.): pattern and emission behaviour over two vegetation periods</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Demarcke</name>
</json:item>
<json:item>
<name>J.‐F. Müller</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>H. Van Langenhove</name>
</json:item>
<json:item>
<name>J. Dewulf</name>
</json:item>
<json:item>
<name>E. Joo</name>
</json:item>
<json:item>
<name>K. Steppe</name>
</json:item>
<json:item>
<name>M. Simpraga</name>
</json:item>
<json:item>
<name>B. Heinesch</name>
</json:item>
<json:item>
<name>M. Aubinet</name>
</json:item>
<json:item>
<name>C. Amelynck.</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<first>3261</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>History effect of light and temperature on monoterpenoid emissions from Fagus sylvatica L</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Staudt</name>
</json:item>
<json:item>
<name>N. Bertin.</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<first>385</first>
</pages>
<author></author>
<title>Plant Cell Environ.</title>
</host>
<title>Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Dindorf</name>
</json:item>
<json:item>
<name>U. Kuhn</name>
</json:item>
<json:item>
<name>L. Ganzeveld</name>
</json:item>
<json:item>
<name>G. Schebeske</name>
</json:item>
<json:item>
<name>P. Ciccioli</name>
</json:item>
<json:item>
<name>C. Holzke</name>
</json:item>
<json:item>
<name>R. Köble</name>
</json:item>
<json:item>
<name>G. Seufert</name>
</json:item>
<json:item>
<name>J. Kesselmeier.</name>
</json:item>
</author>
<host>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Guenther</name>
</json:item>
<json:item>
<name>P. R. Zimmerman</name>
</json:item>
<json:item>
<name>P. C. Harley</name>
</json:item>
<json:item>
<name>R. K. Monson</name>
</json:item>
<json:item>
<name>R. Fall.</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<first>12609</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Atkinson</name>
</json:item>
<json:item>
<name>J. Arey.</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<first>197</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>Gas‐phase tropospheric chemistry of biogenic volatile organic compounds: a review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Atkinson.</name>
</json:item>
</author>
<host>
<volume>24A</volume>
<pages>
<first>1</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>Gas‐phase tropospheric chemistry of organic compounds: a review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Lee</name>
</json:item>
<json:item>
<name>A. H. Goldstein</name>
</json:item>
<json:item>
<name>M. D. Keywood</name>
</json:item>
<json:item>
<name>S. Gao</name>
</json:item>
<json:item>
<name>V. Varutbangkul</name>
</json:item>
<json:item>
<name>R. Bahreini</name>
</json:item>
<json:item>
<name>N. L. Ng</name>
</json:item>
<json:item>
<name>R. C. Flagan</name>
</json:item>
<json:item>
<name>J. H. Seinfeld.</name>
</json:item>
</author>
<host>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Gas‐phase products and secondary aerosol yields from the ozonolysis of 16 different terpenes</title>
</json:item>
<json:item>
<host>
<volume>8</volume>
<pages>
<first>189</first>
</pages>
<author></author>
<title>J. Atmos. Chem.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Hallquist</name>
</json:item>
<json:item>
<name>J. C. Wenger</name>
</json:item>
<json:item>
<name>U. Baltensperger</name>
</json:item>
<json:item>
<name>Y. Rudich</name>
</json:item>
<json:item>
<name>D. Simpson</name>
</json:item>
<json:item>
<name>M. Claeys</name>
</json:item>
<json:item>
<name>J. Dommen</name>
</json:item>
<json:item>
<name>N. M. Donahue</name>
</json:item>
<json:item>
<name>C. George</name>
</json:item>
<json:item>
<name>A. H. Goldstein</name>
</json:item>
<json:item>
<name>J. F. Hamilton</name>
</json:item>
<json:item>
<name>H. Herrmann</name>
</json:item>
<json:item>
<name>T. Hoffmann</name>
</json:item>
<json:item>
<name>Y. Iinuma</name>
</json:item>
<json:item>
<name>M. Jang</name>
</json:item>
<json:item>
<name>M. E. Jimenez</name>
</json:item>
<json:item>
<name>A. Kiendler‐Scharr</name>
</json:item>
<json:item>
<name>W. Maenhaut</name>
</json:item>
<json:item>
<name>G. McFiggans</name>
</json:item>
<json:item>
<name>Th. F. Mentel</name>
</json:item>
<json:item>
<name>A. Monod</name>
</json:item>
<json:item>
<name>A. S. H. Prevot</name>
</json:item>
<json:item>
<name>J. D. Surratt</name>
</json:item>
<json:item>
<name>R. Szmigielski</name>
</json:item>
<json:item>
<name>J. Wildt.</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<first>5155</first>
</pages>
<author></author>
<title>J. Atmos. Chem. Phys.</title>
</host>
<title>The formation, properties and impact of secondary organic aerosol: current and emerging issues</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. J. Griffin</name>
</json:item>
<json:item>
<name>D. R. Cocker III</name>
</json:item>
<json:item>
<name>R. C. Flagan</name>
</json:item>
<json:item>
<name>J. H. Seinfeld.</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<first>3555</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Organic aerosol formation from the oxidation of biogenic hydrocarbons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Ortega</name>
</json:item>
<json:item>
<name>D. Helmig.</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<first>343</first>
</pages>
<author></author>
<title>Chemosphere</title>
</host>
<title>Approaches for quantifying reactive and low‐volatility biogenic organic compound emissions by vegetation enclosure techniques – Part A</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. de Gouw</name>
</json:item>
<json:item>
<name>C. Warneke.</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<first>223</first>
</pages>
<author></author>
<title>Mass Spectrom. Rev.</title>
</host>
<title>Measurements of volatile organic compounds in the earth's atmosphere using proton‐transfer‐reaction mass spectrometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. de Gouw</name>
</json:item>
<json:item>
<name>P. D. Goldan</name>
</json:item>
<json:item>
<name>C. Warneke</name>
</json:item>
<json:item>
<name>W. C. Kuster</name>
</json:item>
<json:item>
<name>J. M. Roberts</name>
</json:item>
<json:item>
<name>M. Marchewka</name>
</json:item>
<json:item>
<name>S. B. Bertman</name>
</json:item>
<json:item>
<name>A. A. P. Pszenny</name>
</json:item>
<json:item>
<name>W. C. Keene.</name>
</json:item>
</author>
<host>
<volume>108</volume>
<pages>
<first>4682</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Validation of proton transfer reaction‐mass spectrometry (PTR‐MS) measurements of gas‐phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Kato</name>
</json:item>
<json:item>
<name>Y. Miyakawa</name>
</json:item>
<json:item>
<name>T. Kaneko</name>
</json:item>
<json:item>
<name>Y. Kajii.</name>
</json:item>
</author>
<host>
<volume>235</volume>
<pages>
<first>103</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Urban air measurements using PTR‐MS in Tokyo area and comparison with GC‐FID measurements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Lee</name>
</json:item>
<json:item>
<name>G. W. Schade</name>
</json:item>
<json:item>
<name>R. Holzinger</name>
</json:item>
<json:item>
<name>A. H. Goldstein.</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<first>505</first>
</pages>
<author></author>
<title>Atmos. Chem. Phys.</title>
</host>
<title>A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Tani</name>
</json:item>
<json:item>
<name>S. Hayward</name>
</json:item>
<json:item>
<name>C. N. Hewitt.</name>
</json:item>
</author>
<host>
<volume>223‐224</volume>
<pages>
<first>561</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Measurement of monoterpenes and related compounds by proton transfer reaction‐mass spectrometry (PTR‐MS)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Joo</name>
</json:item>
<json:item>
<name>J. Dewulf</name>
</json:item>
<json:item>
<name>M. Demarcke</name>
</json:item>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>J.‐F. Müller</name>
</json:item>
<json:item>
<name>M. Simpraga</name>
</json:item>
<json:item>
<name>K. Steppe</name>
</json:item>
<json:item>
<name>H. Van Langenhove.</name>
</json:item>
</author>
<host>
<volume>291</volume>
<pages>
<first>90</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Quantification of interferences in PTR‐MS measurements of monoterpene emissions from Fagus sylvatica L. using simultaneous TD‐GC‐MS measurements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Kim</name>
</json:item>
<json:item>
<name>T. Karl</name>
</json:item>
<json:item>
<name>D. Helmig</name>
</json:item>
<json:item>
<name>R. Rasmussen</name>
</json:item>
<json:item>
<name>A. Guenther.</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<first>99</first>
</pages>
<author></author>
<title>Atmos. Meas. Tech.</title>
</host>
<title>Measurement of atmospheric sesquiterpenes by proton transfer reaction‐mass spectrometry (PTR‐MS)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Demarcke</name>
</json:item>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>F. Dhooghe</name>
</json:item>
<json:item>
<name>H. Van Langenhove</name>
</json:item>
<json:item>
<name>J. Dewulf.</name>
</json:item>
</author>
<host>
<volume>279</volume>
<pages>
<first>156</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Laboratory studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction‐mass spectrometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Dhooghe</name>
</json:item>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>E. Debie</name>
</json:item>
<json:item>
<name>P. Bultinck</name>
</json:item>
<json:item>
<name>F. Vanhaecke.</name>
</json:item>
</author>
<host>
<volume>272</volume>
<pages>
<first>137</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>A selected ion flow tube study of the reactions of H3O+, NO+ and O 2+ with a series of sesquiterpenes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>T. Kuppens</name>
</json:item>
<json:item>
<name>P. Bultinck</name>
</json:item>
<json:item>
<name>E. Arijs.</name>
</json:item>
</author>
<host>
<volume>247</volume>
<pages>
<first>1</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>A selected ion flow tube study of the reactions of H3O+, NO+ and O 2+ with some oxygenated biogenic volatile organic compounds</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Prazeller</name>
</json:item>
<json:item>
<name>P. Palmer</name>
</json:item>
<json:item>
<name>E. Boscaini</name>
</json:item>
<json:item>
<name>T. Jobson</name>
</json:item>
<json:item>
<name>M. Alexander.</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<first>1593</first>
</pages>
<author></author>
<title>Rapid. Commun. Mass Spectrom.</title>
</host>
<title>Proton transfer reaction ion trap mass spectrometer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Warneke</name>
</json:item>
<json:item>
<name>J. de Gouw</name>
</json:item>
<json:item>
<name>E. R. Lovejoy</name>
</json:item>
<json:item>
<name>P. C. Murphy</name>
</json:item>
<json:item>
<name>W. C. Kuster</name>
</json:item>
<json:item>
<name>R. Fall.</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<first>1316</first>
</pages>
<author></author>
<title>J. Am. Soc. Mass Spectrom.</title>
</host>
<title>Development of proton‐transfer ion trap‐mass spectrometry: on‐line detection and identification of volatile organic compounds in air</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. M. L. Steeghs</name>
</json:item>
<json:item>
<name>E. Crespo</name>
</json:item>
<json:item>
<name>F. J. M. Harren.</name>
</json:item>
</author>
<host>
<volume>263</volume>
<pages>
<first>204</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Collision induced dissociation study of 10 monoterpenes for identification in trace gas measurements using the newly developed proton‐transfer reaction ion trap mass spectrometer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Müller</name>
</json:item>
<json:item>
<name>L. H. Mielke</name>
</json:item>
<json:item>
<name>M. Breitenlechner</name>
</json:item>
<json:item>
<name>S. A. McLuckey</name>
</json:item>
<json:item>
<name>P. B. Shepson</name>
</json:item>
<json:item>
<name>A. Wisthaler</name>
</json:item>
<json:item>
<name>A. Hansel.</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<first>703</first>
</pages>
<author></author>
<title>Atmos. Meas. Tech.</title>
</host>
<title>MS/MS studies for selective detection of isomeric VOCs using a Townsend discharge triple quadrupole tandem MS and a PTR‐linear ion trap MS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Dhooghe</name>
</json:item>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>J. Rimetz‐Planchon</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>F. Vanhaecke.</name>
</json:item>
</author>
<host>
<volume>290</volume>
<pages>
<first>106</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>FA‐SIFT study of reactions of protonated water and ethanol clusters with [alpha]‐pinene and linalool in view of their selective detection by CIMS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Aznar</name>
</json:item>
<json:item>
<name>M. Tsachaki</name>
</json:item>
<json:item>
<name>R. S. T. Linforth</name>
</json:item>
<json:item>
<name>V. Ferreira</name>
</json:item>
<json:item>
<name>A. J. Taylor.</name>
</json:item>
</author>
<host>
<volume>239</volume>
<pages>
<first>17</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI‐MS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Spanel</name>
</json:item>
<json:item>
<name>D. Smith.</name>
</json:item>
</author>
<host>
<volume>167/168</volume>
<pages>
<first>375</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom. Ion Processes</title>
</host>
<title>SIFT studies of the reactions of H3O+, NO+ and O 2+ with a series of alcohols</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Spanel</name>
</json:item>
<json:item>
<name>Y. Ji</name>
</json:item>
<json:item>
<name>D. Smith.</name>
</json:item>
</author>
<host>
<volume>165/166</volume>
<pages>
<first>25</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom. Ion Processes</title>
</host>
<title>SIFT studies of the reactions of H3O+, NO+ and O 2+ with a series of aldehydes and ketones</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Spanel</name>
</json:item>
<json:item>
<name>D. Smith.</name>
</json:item>
</author>
<host>
<volume>181</volume>
<pages>
<first>1</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Selected ion flow tube studies of the reactions of H3O+, NO+, and O 2+ with several aromatic and aliphatic hydrocarbons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Smith</name>
</json:item>
<json:item>
<name>P. Spanel.</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<first>661</first>
</pages>
<author></author>
<title>Mass Spectrom. Rev.</title>
</host>
<title>Selected ion flow tube mass spectrometry (SIFT‐MS) for on‐line trace gas analysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. P. Wyche</name>
</json:item>
<json:item>
<name>R. S. Blake</name>
</json:item>
<json:item>
<name>K. A. Willis</name>
</json:item>
<json:item>
<name>P. S. Monks</name>
</json:item>
<json:item>
<name>A. M. Ellis.</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<first>3356</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. S. Blake</name>
</json:item>
<json:item>
<name>K. P. Wyche</name>
</json:item>
<json:item>
<name>A. M. Ellis</name>
</json:item>
<json:item>
<name>P. S. Monks.</name>
</json:item>
</author>
<host>
<volume>254</volume>
<pages>
<first>85</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Chemical ionization reaction time‐of‐flight mass spectrometry: Multi‐reagent analysis for determination of trace gas composition</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Knighton</name>
</json:item>
<json:item>
<name>E. C. Fortner</name>
</json:item>
<json:item>
<name>S. C. Herndon</name>
</json:item>
<json:item>
<name>E. C. Wood</name>
</json:item>
<json:item>
<name>R. Miake‐Lye.</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<first>3301</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Adaptation of a proton transfer reaction mass spectrometer instrument to employ NO+ as reagent ion for the detection of 1,3‐butadiene in the ambient atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Jordan</name>
</json:item>
<json:item>
<name>S. Haidacher</name>
</json:item>
<json:item>
<name>G. Hanel</name>
</json:item>
<json:item>
<name>E. Hartungen</name>
</json:item>
<json:item>
<name>J. Herbig</name>
</json:item>
<json:item>
<name>L. Märk</name>
</json:item>
<json:item>
<name>R. Schottkowsky</name>
</json:item>
<json:item>
<name>H. Seehauser</name>
</json:item>
<json:item>
<name>P. Sulzer</name>
</json:item>
<json:item>
<name>T. D. Märk.</name>
</json:item>
</author>
<host>
<volume>286</volume>
<pages>
<first>32</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>An online ultra‐high sensitivity proton‐transfer‐reaction mass‐spectrometer combined with switchable reagent ion capability (PTR+SRI‐MS)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>L. Vereecken</name>
</json:item>
<json:item>
<name>E. Arijs.</name>
</json:item>
</author>
<host>
<volume>229</volume>
<pages>
<first>231</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>A selected ion flow tube study of the reactions of H3O+, NO+ and O 2+ with a series of monoterpenes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Rimetz‐Planchon</name>
</json:item>
<json:item>
<name>F. Dhooghe</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>F. Vanhaecke</name>
</json:item>
<json:item>
<name>C. Amelynck.</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<first>4313</first>
</pages>
<author></author>
<title>Atmos. Meas. Tech. Discuss.</title>
</host>
<title>MS/MS studies on the selective on‐line detection of sesquiterpenes using a flowing afterglow–tandem mass spectrometer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Rimetz‐Planchon</name>
</json:item>
<json:item>
<name>N. Schoon</name>
</json:item>
<json:item>
<name>C. Amelynck</name>
</json:item>
<json:item>
<name>F. Dhooghe.</name>
</json:item>
</author>
<host>
<volume>289</volume>
<pages>
<first>30</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Collision induced dissociation in a flowing afterglow‐tandem mass spectrometer for the selective detection of C5 unsaturated alcohols and isoprene</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. M. Ibrahim</name>
</json:item>
<json:item>
<name>D. C. Prior</name>
</json:item>
<json:item>
<name>E. S. Baker</name>
</json:item>
<json:item>
<name>R. D. Smith</name>
</json:item>
<json:item>
<name>M. E. Belov.</name>
</json:item>
</author>
<host>
<volume>293</volume>
<pages>
<first>34</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Characterization of an ion mobility‐multiplexed collision‐induced dissociation‐tandem time‐of‐flight mass spectrometry approach</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Smith</name>
</json:item>
<json:item>
<name>N. G. Adams.</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<first>1267</first>
</pages>
<author></author>
<title>Appl. Phys.</title>
</host>
<title>An ion/ion afterglow plasma as a source of simple and clustered positive and negative ions</title>
</json:item>
<json:item>
<host>
<author></author>
<title>F. McLafferty,F. Turecek.Interpretation of Mass Spectra,University Science Books, Sausalito,1993.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Wang</name>
</json:item>
<json:item>
<name>P. Spanel</name>
</json:item>
<json:item>
<name>D. Smith.</name>
</json:item>
</author>
<host>
<volume>228</volume>
<pages>
<first>117</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O 2+ with eleven C10H16 monoterpenes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. de Castilho</name>
</json:item>
<json:item>
<name>C. Nunez</name>
</json:item>
<json:item>
<name>L. Coutinho</name>
</json:item>
<json:item>
<name>A. Lago</name>
</json:item>
<json:item>
<name>R. Bernini</name>
</json:item>
<json:item>
<name>G. de Souza.</name>
</json:item>
</author>
<host>
<volume>155</volume>
<pages>
<first>77</first>
</pages>
<author></author>
<title>J. Elec. Spec. Rel. Phenom.</title>
</host>
<title>Ionic fragmentation of a natural product, limonene (C10H16), following core [C 1s] photoionization</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Garcia</name>
</json:item>
<json:item>
<name>L. Nahon</name>
</json:item>
<json:item>
<name>I. Powis.</name>
</json:item>
</author>
<host>
<volume>225</volume>
<pages>
<first>261</first>
</pages>
<author></author>
<title>Int. J. Mass Spectrom.</title>
</host>
<title>Near‐threshold photoionization spectroscopy of the mono‐terpenes limonene and carvone</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>25</volume>
<publisherId>
<json:string>RCM</json:string>
</publisherId>
<pages>
<total>8</total>
<last>654</last>
<first>647</first>
</pages>
<issn>
<json:string>0951-4198</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-0231</json:string>
</eissn>
<title>Rapid Communications in Mass Spectrometry</title>
<doi>
<json:string>10.1002/(ISSN)1097-0231</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>chemistry, analytical</json:string>
<json:string>biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>analytical chemistry</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/rcm.4901</json:string>
</doi>
<id>03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2011 John Wiley & Sons, Ltd.</p>
</availability>
<date>2011</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
<author xml:id="author-1">
<persName>
<forename type="first">Juliette</forename>
<surname>Rimetz‐Planchon</surname>
</persName>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Frederik</forename>
<surname>Dhooghe</surname>
</persName>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
<affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Niels</forename>
<surname>Schoon</surname>
</persName>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Frank</forename>
<surname>Vanhaecke</surname>
</persName>
<affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Crist</forename>
<surname>Amelynck</surname>
</persName>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Rapid Communications in Mass Spectrometry</title>
<title level="j" type="abbrev">Rapid Commun. Mass Spectrom.</title>
<idno type="pISSN">0951-4198</idno>
<idno type="eISSN">1097-0231</idno>
<idno type="DOI">10.1002/(ISSN)1097-0231</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-03-15"></date>
<biblScope unit="volume">25</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="647">647</biblScope>
<biblScope unit="page" to="654">654</biblScope>
</imprint>
</monogr>
<idno type="istex">03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162</idno>
<idno type="DOI">10.1002/rcm.4901</idno>
<idno type="ArticleID">RCM4901</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Existing on‐line Chemical Ionization Mass Spectrometry (CIMS) techniques for quantification of atmospheric trace gases, such as Biogenic Volatile Organic Compounds (BVOCs), suffer from difficulty in discriminating between isomeric (and more generally isobaric) compounds. Selective detection of these compounds, however, is important because they can affect atmospheric chemistry in different ways, depending on their chemical structure. In this work, Flowing Afterglow Tandem Mass Spectrometry (FATMS) was used to investigate the feasibility of the selective detection of a series of monoterpenes, an oxygenated monoterpene (linalool) and a sesquiterpene (β‐caryophyllene). Ions at m/z 137 from [H3O]+ chemical ionization of α‐pinene, linalool and β‐caryophyllene have been subjected to Collision‐Induced Dissociation (CID) with Ar in the collision cell of a tandem mass spectrometer at center‐of‐mass energies ranging between 0 and 8 eV. Similar fragmentation patterns were obtained, demonstrating that this method is not suited for the selective detection of these compounds. However, CID of the ions at m/z 136 produced via [NO]+ chemical ionization of a series of monoterpenes has revealed promising results. Some tracer‐product ions for individual compounds or groups of compounds were found, which can be considered as a step forward towards selective on‐line monitoring of BVOCs with CIMS techniques. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-10-13">Received</change>
<change when="2010-12-06">Registration</change>
<change when="2011-03-15">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0231</doi>
<issn type="print">0951-4198</issn>
<issn type="electronic">1097-0231</issn>
<idGroup>
<id type="product" value="RCM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="RAPID COMMUNICATIONS IN MASS SPECTROMETRY">Rapid Communications in Mass Spectrometry</title>
<title type="short">Rapid Commun. Mass Spectrom.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/rcm.v25.5</doi>
<numberingGroup>
<numbering type="journalVolume" number="25">25</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2011-03-15">15 March 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="110" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/rcm.4901</doi>
<idGroup>
<id type="unit" value="RCM4901"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-10-13"></event>
<event type="manuscriptRevised" date="2010-12-06"></event>
<event type="manuscriptAccepted" date="2010-12-06"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.4.6 mode:FullText mathml2tex" date="2011-02-21"></event>
<event type="publishedOnlineFinalForm" date="2011-02-04"></event>
<event type="firstOnline" date="2011-02-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-08"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">647</numbering>
<numbering type="pageLast">654</numbering>
</numberingGroup>
<correspondenceTo>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:RCM.RCM4901.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="53"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Chemical ionization by [NO]
<sup>+</sup>
and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
<title type="short" xml:lang="en">MS/MS studies of monoterpenes and linalool</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Juliette</givenNames>
<familyName>Rimetz‐Planchon</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Frederik</givenNames>
<familyName>Dhooghe</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Niels</givenNames>
<familyName>Schoon</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Frank</givenNames>
<familyName>Vanhaecke</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Crist</givenNames>
<familyName>Amelynck</familyName>
</personName>
<contactDetails>
<email>Crist.Amelynck@aeronomie.be</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="BE" type="organization">
<unparsedAffiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="BE" type="organization">
<unparsedAffiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<supportingInformation>
<p> Additional supporting information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:09514198:media:rcm4901:RCM_4901_sm_SuppInfo"></mediaResource>
<caption>Supplementary Information</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Existing on‐line Chemical Ionization Mass Spectrometry (CIMS) techniques for quantification of atmospheric trace gases, such as Biogenic Volatile Organic Compounds (BVOCs), suffer from difficulty in discriminating between isomeric (and more generally isobaric) compounds. Selective detection of these compounds, however, is important because they can affect atmospheric chemistry in different ways, depending on their chemical structure. In this work, Flowing Afterglow Tandem Mass Spectrometry (FATMS) was used to investigate the feasibility of the selective detection of a series of monoterpenes, an oxygenated monoterpene (linalool) and a sesquiterpene (β‐caryophyllene). Ions at
<i>m/z</i>
137 from [H
<sub>3</sub>
O]
<sup>+</sup>
chemical ionization of α‐pinene, linalool and β‐caryophyllene have been subjected to Collision‐Induced Dissociation (CID) with Ar in the collision cell of a tandem mass spectrometer at center‐of‐mass energies ranging between 0 and 8 eV. Similar fragmentation patterns were obtained, demonstrating that this method is not suited for the selective detection of these compounds. However, CID of the ions at
<i>m/z</i>
136 produced via [NO]
<sup>+</sup>
chemical ionization of a series of monoterpenes has revealed promising results. Some tracer‐product ions for individual compounds or groups of compounds were found, which can be considered as a step forward towards selective on‐line monitoring of BVOCs with CIMS techniques. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MS/MS studies of monoterpenes and linalool</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juliette</namePart>
<namePart type="family">Rimetz‐Planchon</namePart>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederik</namePart>
<namePart type="family">Dhooghe</namePart>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
<affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niels</namePart>
<namePart type="family">Schoon</namePart>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Vanhaecke</namePart>
<affiliation>Department of Analytical Chemistry, Ghent University, Krijgslaan 281 ‐ S12, B‐9000 Ghent, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Crist</namePart>
<namePart type="family">Amelynck</namePart>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium</affiliation>
<affiliation>Belgian Institute for Space Aeronomy, Ringlaan 3, B‐1180 Brussels, Belgium.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-03-15</dateIssued>
<dateCaptured encoding="w3cdtf">2010-10-13</dateCaptured>
<dateValid encoding="w3cdtf">2010-12-06</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">3</extent>
<extent unit="tables">3</extent>
<extent unit="references">53</extent>
</physicalDescription>
<abstract lang="en">Existing on‐line Chemical Ionization Mass Spectrometry (CIMS) techniques for quantification of atmospheric trace gases, such as Biogenic Volatile Organic Compounds (BVOCs), suffer from difficulty in discriminating between isomeric (and more generally isobaric) compounds. Selective detection of these compounds, however, is important because they can affect atmospheric chemistry in different ways, depending on their chemical structure. In this work, Flowing Afterglow Tandem Mass Spectrometry (FATMS) was used to investigate the feasibility of the selective detection of a series of monoterpenes, an oxygenated monoterpene (linalool) and a sesquiterpene (β‐caryophyllene). Ions at m/z 137 from [H3O]+ chemical ionization of α‐pinene, linalool and β‐caryophyllene have been subjected to Collision‐Induced Dissociation (CID) with Ar in the collision cell of a tandem mass spectrometer at center‐of‐mass energies ranging between 0 and 8 eV. Similar fragmentation patterns were obtained, demonstrating that this method is not suited for the selective detection of these compounds. However, CID of the ions at m/z 136 produced via [NO]+ chemical ionization of a series of monoterpenes has revealed promising results. Some tracer‐product ions for individual compounds or groups of compounds were found, which can be considered as a step forward towards selective on‐line monitoring of BVOCs with CIMS techniques. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Rapid Communications in Mass Spectrometry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Rapid Commun. Mass Spectrom.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Additional supporting information may be found in the online version of this article.Supporting Info Item: Supplementary Information - </note>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0951-4198</identifier>
<identifier type="eISSN">1097-0231</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0231</identifier>
<identifier type="PublisherID">RCM</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>647</start>
<end>654</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162</identifier>
<identifier type="DOI">10.1002/rcm.4901</identifier>
<identifier type="ArticleID">RCM4901</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000795 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000795 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:03EBA43B8BE6ABBCC6B6A9FBC7F9BF90B779B162
   |texte=   Chemical ionization by [NO]+ and subsequent collision‐induced dissociation for the selective on‐line detection of monoterpenes and linalool
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024