Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fundamental Differences Between two Fiber Types in Acer

Identifieur interne : 000708 ( Istex/Corpus ); précédent : 000707; suivant : 000709

Fundamental Differences Between two Fiber Types in Acer

Auteurs : Iris Vazquez-Cooz ; Robert W. Meyer

Source :

RBID : ISTEX:1D03631E967BF67AEE3B32D69382BE1C475C5DCF

Abstract

Our earlier studies on Acer have shown morphological and chemical differences between two fiber types. Our new research applies the soft-rot cavity method using the soft-rot fungus Chaetomium globosum to measure the microfibril angle (MFA) in these two fiber types in fifteen species of Acer (maple). Microfibril angles in fiber type 1 were significantly larger than those in fiber type 2. The greatest difference (11.6°) was noted in radial sections of Acer floridanum, in which the average MFA (n =100) obtained from soft-rot cavities for fiber type 1 was 23.3 degrees (95 % C.I. ±1.4°) and for fiber type 2 11.7 degrees (95 % C.I. ±1.2°). The second greatest difference (10.0°) was in Acer nigrum, where the average MFA for type 1 was 16.4 degrees (95 % C.I. ±1.07°) and for type 2 6.4 degrees (95 % C.I. ± 0.64°). When transverse sections were examined with polarized light, areas of fiber type 1 were darker (less birefringent) than those of type 2, which indicates that the MFA of the two cell types differs. After four weeks of exposure to C. globosum the fibers of type 1 were more intensely attacked by the fungus than were the fibers of type 2, suggesting a difference in cell wall chemistry. Fluorescence spectra of the two types of fibers support that observation. Differences in MFA supplement the differences in morphology and chemistry and demonstrate that for Acer species the two fiber types are fundamentally different. These two types of fiber differ in the distribution of their pits. In type 1 the pits are concentrated mainly toward the center of the fiber while in type 2 the pits are distributed along the fiber length.

Url:
DOI: 10.1163/22941932-90000174

Links to Exploration step

ISTEX:1D03631E967BF67AEE3B32D69382BE1C475C5DCF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Fundamental Differences Between two Fiber Types in Acer</title>
<author>
<name sortKey="Vazquez Cooz, Iris" sort="Vazquez Cooz, Iris" uniqKey="Vazquez Cooz I" first="Iris" last="Vazquez-Cooz">Iris Vazquez-Cooz</name>
</author>
<author>
<name sortKey="W Meyer, Robert" sort="W Meyer, Robert" uniqKey="W Meyer R" first="Robert" last="W. Meyer">Robert W. Meyer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1D03631E967BF67AEE3B32D69382BE1C475C5DCF</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1163/22941932-90000174</idno>
<idno type="url">https://api.istex.fr/document/1D03631E967BF67AEE3B32D69382BE1C475C5DCF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000708</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000708</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Fundamental Differences Between two Fiber Types in Acer</title>
<author>
<name sortKey="Vazquez Cooz, Iris" sort="Vazquez Cooz, Iris" uniqKey="Vazquez Cooz I" first="Iris" last="Vazquez-Cooz">Iris Vazquez-Cooz</name>
</author>
<author>
<name sortKey="W Meyer, Robert" sort="W Meyer, Robert" uniqKey="W Meyer R" first="Robert" last="W. Meyer">Robert W. Meyer</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">IAWA Journal</title>
<title level="j" type="abbrev">IAWA</title>
<idno type="ISSN">0928-1541</idno>
<idno type="eISSN">2294-1932</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>Netherlands</pubPlace>
<date type="published" when="2008">2008</date>
<biblScope unit="volume">29</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="129">129</biblScope>
<biblScope unit="page" to="141">141</biblScope>
</imprint>
<idno type="ISSN">0928-1541</idno>
</series>
<idno type="istex">1D03631E967BF67AEE3B32D69382BE1C475C5DCF</idno>
<idno type="DOI">10.1163/22941932-90000174</idno>
<idno type="href">22941932_029_02_S002_text.pdf</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0928-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Our earlier studies on Acer have shown morphological and chemical differences between two fiber types. Our new research applies the soft-rot cavity method using the soft-rot fungus Chaetomium globosum to measure the microfibril angle (MFA) in these two fiber types in fifteen species of Acer (maple). Microfibril angles in fiber type 1 were significantly larger than those in fiber type 2. The greatest difference (11.6°) was noted in radial sections of Acer floridanum, in which the average MFA (n =100) obtained from soft-rot cavities for fiber type 1 was 23.3 degrees (95 % C.I. ±1.4°) and for fiber type 2 11.7 degrees (95 % C.I. ±1.2°). The second greatest difference (10.0°) was in Acer nigrum, where the average MFA for type 1 was 16.4 degrees (95 % C.I. ±1.07°) and for type 2 6.4 degrees (95 % C.I. ± 0.64°). When transverse sections were examined with polarized light, areas of fiber type 1 were darker (less birefringent) than those of type 2, which indicates that the MFA of the two cell types differs. After four weeks of exposure to C. globosum the fibers of type 1 were more intensely attacked by the fungus than were the fibers of type 2, suggesting a difference in cell wall chemistry. Fluorescence spectra of the two types of fibers support that observation. Differences in MFA supplement the differences in morphology and chemistry and demonstrate that for Acer species the two fiber types are fundamentally different. These two types of fiber differ in the distribution of their pits. In type 1 the pits are concentrated mainly toward the center of the fiber while in type 2 the pits are distributed along the fiber length.</div>
</front>
</TEI>
<istex>
<corpusName>brill-journals</corpusName>
<keywords>
<teeft>
<json:string>acer</json:string>
<json:string>microfibril</json:string>
<json:string>libriform</json:string>
<json:string>libriform fibers</json:string>
<json:string>fiber types</json:string>
<json:string>iawa</json:string>
<json:string>anagnost</json:string>
<json:string>microfibril angle</json:string>
<json:string>lignin</json:string>
<json:string>saccharum</json:string>
<json:string>globosum</json:string>
<json:string>fluorescence spectra</json:string>
<json:string>chaetomium</json:string>
<json:string>fiber type</json:string>
<json:string>dimorphism</json:string>
<json:string>nigrum</json:string>
<json:string>acer species</json:string>
<json:string>iawa journal</json:string>
<json:string>microfibril angles</json:string>
<json:string>fluorescence intensity</json:string>
<json:string>meyer fiber dimorphism</json:string>
<json:string>chaetomium globosum</json:string>
<json:string>cell wall</json:string>
<json:string>mechanical properties</json:string>
<json:string>maximum number</json:string>
<json:string>sugar maple</json:string>
<json:string>longitudinal axis</json:string>
<json:string>average microfibril angle</json:string>
<json:string>transverse sections</json:string>
<json:string>acer rubrum</json:string>
<json:string>acer saccharum</json:string>
<json:string>state university</json:string>
<json:string>environmental science</json:string>
<json:string>ultraviolet light</json:string>
<json:string>peak positions</json:string>
<json:string>morphological differences</json:string>
<json:string>fiber</json:string>
<json:string>acer floridanum</json:string>
<json:string>chemical differences</json:string>
<json:string>cellulose microfibrils</json:string>
<json:string>standard deviation</json:string>
<json:string>fiber length</json:string>
<json:string>acer platanoides</json:string>
<json:string>vazquezcooz meyer</json:string>
<json:string>sample size</json:string>
<json:string>preliminary measurements</json:string>
<json:string>paper strength</json:string>
<json:string>pinus taeda</json:string>
<json:string>ceriporiopsis subvermispora fungus</json:string>
<json:string>cell axis</json:string>
<json:string>standard deviations</json:string>
<json:string>fibers meyer</json:string>
<json:string>acer nigrum</json:string>
<json:string>radial sections</json:string>
<json:string>fundamental differences</json:string>
<json:string>acer barbatum</json:string>
<json:string>fiber dimorphism</json:string>
<json:string>section fluorescence intensity counts</json:string>
<json:string>wavelength figure</json:string>
<json:string>transverse section</json:string>
<json:string>less fluorescence</json:string>
<json:string>black squares</json:string>
<json:string>vertical arrow</json:string>
<json:string>distribution patterns</json:string>
<json:string>horizontal arrow</json:string>
<json:string>same wavelength</json:string>
<json:string>chemical composition</json:string>
<json:string>personal communication</json:string>
<json:string>report differences</json:string>
<json:string>lignin chemistry</json:string>
<json:string>wood quality</json:string>
<json:string>mark hanna</json:string>
<json:string>iawa bull</json:string>
<json:string>cellulose microfibril angle</json:string>
<json:string>tension wood</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Iris Vazquez-Cooz</name>
</json:item>
<json:item>
<name>Robert W. Meyer</name>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Acer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>wood anatomy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>wood chemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chaetomium globosum</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fiber dimorphism</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>maple</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>microfibril angle</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soft-rot cavity</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Our earlier studies on Acer have shown morphological and chemical differences between two fiber types. Our new research applies the soft-rot cavity method using the soft-rot fungus Chaetomium globosum to measure the microfibril angle (MFA) in these two fiber types in fifteen species of Acer (maple). Microfibril angles in fiber type 1 were significantly larger than those in fiber type 2. The greatest difference (11.6°) was noted in radial sections of Acer floridanum, in which the average MFA (n =100) obtained from soft-rot cavities for fiber type 1 was 23.3 degrees (95 % C.I. ±1.4°) and for fiber type 2 11.7 degrees (95 % C.I. ±1.2°). The second greatest difference (10.0°) was in Acer nigrum, where the average MFA for type 1 was 16.4 degrees (95 % C.I. ±1.07°) and for type 2 6.4 degrees (95 % C.I. ± 0.64°). When transverse sections were examined with polarized light, areas of fiber type 1 were darker (less birefringent) than those of type 2, which indicates that the MFA of the two cell types differs. After four weeks of exposure to C. globosum the fibers of type 1 were more intensely attacked by the fungus than were the fibers of type 2, suggesting a difference in cell wall chemistry. Fluorescence spectra of the two types of fibers support that observation. Differences in MFA supplement the differences in morphology and chemistry and demonstrate that for Acer species the two fiber types are fundamentally different. These two types of fiber differ in the distribution of their pits. In type 1 the pits are concentrated mainly toward the center of the fiber while in type 2 the pits are distributed along the fiber length.</abstract>
<qualityIndicators>
<score>7.232</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>453.543 x 680.315 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>8</keywordCount>
<abstractCharCount>1643</abstractCharCount>
<pdfWordCount>4232</pdfWordCount>
<pdfCharCount>25270</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>279</abstractWordCount>
</qualityIndicators>
<title>Fundamental Differences Between two Fiber Types in Acer</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>T Addis</name>
</json:item>
<json:item>
<name>A,H Buchanan</name>
</json:item>
<json:item>
<name>&,J C F Walker</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>543</last>
<first>539</first>
</pages>
<author></author>
<title>J. Inst. Wood Sci</title>
<publicationDate>1995</publicationDate>
</host>
<title>A comparison of density and stiffness for predicting wood quality. Or Density: The lazy manʼs guide to wood quality</title>
<publicationDate>1995</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>S,E Anagnost</name>
</json:item>
<json:item>
<name>R,E Mark</name>
</json:item>
<json:item>
<name>& R,B Hanna</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>87</last>
<first>81</first>
</pages>
<author></author>
<title>Part I. Wood and Fiber Sci</title>
<publicationDate>2000</publicationDate>
</host>
<title>Utilization of soft-rot cavity orientation for the determination of microfibril angle</title>
<publicationDate>2000</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>S,E Anagnost</name>
</json:item>
<json:item>
<name>R,E Mark</name>
</json:item>
<json:item>
<name>& R,B Hanna</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>338</last>
<first>325</first>
</pages>
<author></author>
<title>IAWA J</title>
<publicationDate>2005</publicationDate>
</host>
<title>S 2 Orientation of microfibril in softwood tracheids and hardwood fibers</title>
<publicationDate>2005</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>S,E Anagnost</name>
</json:item>
<json:item>
<name>J,J Worrall</name>
</json:item>
<json:item>
<name>&,C J K Wang</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>208</last>
<first>199</first>
</pages>
<author></author>
<title>Wood Sci. and Technol</title>
<publicationDate>1994</publicationDate>
</host>
<title>Diffuse cavity formation in soft rot pine</title>
<publicationDate>1994</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>P Baas</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>86</last>
<first>82</first>
</pages>
<author></author>
<title>IAWA Bull. n.s</title>
<publicationDate>1986</publicationDate>
</host>
<title>Terminology of imperforate tracheary elements – In defense of libriform fibres with minutely bordered pits</title>
<publicationDate>1986</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>I,W M R Bailey</name>
</json:item>
<json:item>
<name> Vestal</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>205</last>
<first>196</first>
</pages>
<author></author>
<title>J. Arnold Arbor</title>
<publicationDate>1937</publicationDate>
</host>
<title>The significance of certain wood-destroying fungi in the study of enzymatic hydrolysis of cellulose</title>
<publicationDate>1937</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,R V A Barnett</name>
</json:item>
<json:item>
<name> Bonham</name>
</json:item>
</author>
<host>
<volume>79</volume>
<pages>
<last>472</last>
<first>461</first>
</pages>
<author></author>
<title>Biological Reviews</title>
<publicationDate>2004</publicationDate>
</host>
<title>Cellulose microfibril angle in the cell wall of wood fibers</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<host>
<pages>
<last>120</last>
<first>112</first>
</pages>
<author>
<json:item>
<name>C,E Courchene</name>
</json:item>
<json:item>
<name>G,F Peter</name>
</json:item>
<json:item>
<name>&,J Litvay</name>
</json:item>
</author>
<title>Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood and Fiber Sci</title>
<publicationDate>2006</publicationDate>
</host>
</json:item>
<json:item>
<host>
<pages>
<last>135</last>
<first>129</first>
</pages>
<author>
<json:item>
<name>S Carlquist</name>
</json:item>
</author>
<title>Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood</title>
<publicationDate>2001</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J,M B A Harris</name>
</json:item>
<json:item>
<name> Meylan</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>153</last>
<first>144</first>
</pages>
<author></author>
<title>Holzforschung</title>
<publicationDate>1965</publicationDate>
</host>
<title>The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata</title>
<publicationDate>1965</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Iawa Committee</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>332</last>
<first>219</first>
</pages>
<author></author>
<title>IAWA Bull. n.s</title>
<publicationDate>1989</publicationDate>
</host>
<title>IAWA list of microscopic features for hardwood identification</title>
<publicationDate>1989</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Z,N Kreitzberg</name>
</json:item>
<json:item>
<name>N,N Sergeeva</name>
</json:item>
<json:item>
<name>&,N P Ozolinja</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>111</last>
<first>97</first>
</pages>
<author></author>
<title>Vestis</title>
<publicationDate>1976</publicationDate>
</host>
<title>Changes of microstructure of the cell wall of tracheids of spruce and libriform fibers of birch under action of fungi of brown rot (D. Pronin, Transl. for the USDA Forest Service) Latvijas Padomju Socialistikas Republikas Zinatnu Akademija</title>
<publicationDate>1976</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K Lundquist</name>
</json:item>
<json:item>
<name>B Josefsson</name>
</json:item>
<json:item>
<name>&,G Nyquist</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>32</last>
<first>27</first>
</pages>
<author></author>
<title>Holzforschung</title>
<publicationDate>1978</publicationDate>
</host>
<title>Analysis of lignin products by fluorescence spectroscopy</title>
<publicationDate>1978</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>R,A Megraw</name>
</json:item>
</author>
<title>Wood quality factors in loblolly pine: the influence of tree age, position in tree, and cultural practice on wood specific gravity, fiber length, and fibril angle</title>
<publicationDate>1985</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H Meier</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>338</last>
<first>323</first>
</pages>
<author></author>
<title>Holz Roh-Werkstoff</title>
<publicationDate>1955</publicationDate>
</host>
<title>Über den Zellwandabbau durch Holzvermorschungspilze und die submikroskopischen Strukturen von Fichtentracheiden und Birkenholzfasern</title>
<publicationDate>1955</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>R,D Preston</name>
</json:item>
</author>
<title>The physical biology of plant cell walls</title>
<publicationDate>1974</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>F,W Schwarze</name>
</json:item>
<json:item>
<name>S Baum</name>
</json:item>
<json:item>
<name>&,S Fink</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>852</last>
<first>846</first>
</pages>
<author></author>
<title>Mycology Research</title>
<publicationDate>2000</publicationDate>
</host>
<title>Dual modes of degradation by Fistulina hepatica in xylem cell walls of Quercus robur</title>
<publicationDate>2000</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>C Serena</name>
</json:item>
<json:item>
<name>M Ortoneda</name>
</json:item>
<json:item>
<name>J Capilla</name>
</json:item>
<json:item>
<name>F Pastor</name>
</json:item>
<json:item>
<name>D Sutton</name>
</json:item>
<json:item>
<name>M Rinaldi</name>
</json:item>
<json:item>
<name>&,J Guarro</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>3164</last>
<first>3161</first>
</pages>
<author></author>
<title>Antimicrob. Agents and Chemother</title>
<publicationDate>2003</publicationDate>
</host>
<title>In vitro activities of new antifungal agents against Chaetomium spp. and inoculum standardization</title>
<publicationDate>2003</publicationDate>
</json:item>
<json:item>
<host>
<pages>
<last>26</last>
<first>6</first>
</pages>
<author>
<json:item>
<name>I Vazquez-Cooz</name>
</json:item>
</author>
<title>Fundamental study on the development of fuzzy grain and its relationship to tension wood</title>
<publicationDate>2003</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>I,R W Vazquez-Cooz</name>
</json:item>
<json:item>
<name> Meyer</name>
</json:item>
</author>
<host>
<volume>77</volume>
<pages>
<last>282</last>
<first>277</first>
</pages>
<author></author>
<title>Biotechnic & Histochemistry</title>
<publicationDate>2002</publicationDate>
</host>
<title>A differential staining method to identify lignified and unlignified tissues</title>
<publicationDate>2002</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>I,R W Vazquez-Cooz</name>
</json:item>
<json:item>
<name> Meyer</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>70</last>
<first>56</first>
</pages>
<author></author>
<title>Wood and Fiber Sci</title>
<publicationDate>2004</publicationDate>
</host>
<title>Occurrence and lignification of libriform fibers in normal and tension wood of red and sugar maple</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>I,R W Vazquez-Cooz</name>
</json:item>
<json:item>
<name> Meyer</name>
</json:item>
</author>
<title>Personal observation on Acer saccharum chip exposed to Ceriporiopsis subvermispora (white-rot fungus) for four weeks</title>
<publicationDate>2004</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>I,R W Vazquez-Cooz</name>
</json:item>
<json:item>
<name> Meyer</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>182</last>
<first>173</first>
</pages>
<author></author>
<title>IAWA J</title>
<publicationDate>2006</publicationDate>
</host>
<title>Distribution of libriform fibers and presence of spiral thickenings in fifteen species of Acer</title>
<publicationDate>2006</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>E,A Wheeler</name>
</json:item>
</author>
<publicationDate>2006</publicationDate>
</host>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>E,A Wheeler</name>
</json:item>
</author>
<publicationDate>2007</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J,J Worrall</name>
</json:item>
<json:item>
<name>S,E Anagnost</name>
</json:item>
<json:item>
<name>&,C J K Wang</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>874</last>
<first>869</first>
</pages>
<author></author>
<title>Can. J. Microbiol</title>
<publicationDate>1991</publicationDate>
</host>
<title>Conditions for soft rot of wood</title>
<publicationDate>1991</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>A Yoshinaga</name>
</json:item>
<json:item>
<name>M Fujita</name>
</json:item>
<json:item>
<name>&,H Saiki</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>390</last>
<first>384</first>
</pages>
<author></author>
<title>Mokuzai Gakkaishi</title>
<publicationDate>1997</publicationDate>
</host>
<title>Cellular distribution of guaiacyl and syringyl lignins within an annual ring in oak wood</title>
<publicationDate>1997</publicationDate>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>29</volume>
<pages>
<last>141</last>
<first>129</first>
</pages>
<issn>
<json:string>0928-1541</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2294-1932</json:string>
</eissn>
<title>IAWA Journal</title>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>forestry</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>forestry</json:string>
</scienceMetrix>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1163/22941932-90000174</json:string>
</doi>
<id>1D03631E967BF67AEE3B32D69382BE1C475C5DCF</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1D03631E967BF67AEE3B32D69382BE1C475C5DCF/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1D03631E967BF67AEE3B32D69382BE1C475C5DCF/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1D03631E967BF67AEE3B32D69382BE1C475C5DCF/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1D03631E967BF67AEE3B32D69382BE1C475C5DCF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Fundamental Differences Between two Fiber Types in Acer</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>BRILL</publisher>
<pubPlace>Netherlands</pubPlace>
<availability>
<p>Copyright 2008 by Koninklijke Brill NV, Leiden, The Netherlands</p>
</availability>
<date>2008</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Fundamental Differences Between two Fiber Types in Acer</title>
<author xml:id="author-1">
<persName>
<forename type="first">Iris</forename>
<surname>Vazquez-Cooz</surname>
</persName>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Robert</forename>
<surname>W. Meyer</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">IAWA Journal</title>
<title level="j" type="abbrev">IAWA</title>
<idno type="pISSN">0928-1541</idno>
<idno type="eISSN">2294-1932</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>Netherlands</pubPlace>
<date type="published" when="2008"></date>
<biblScope unit="volume">29</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="129">129</biblScope>
<biblScope unit="page" to="141">141</biblScope>
</imprint>
</monogr>
<idno type="istex">1D03631E967BF67AEE3B32D69382BE1C475C5DCF</idno>
<idno type="DOI">10.1163/22941932-90000174</idno>
<idno type="href">22941932_029_02_S002_text.pdf</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Our earlier studies on Acer have shown morphological and chemical differences between two fiber types. Our new research applies the soft-rot cavity method using the soft-rot fungus Chaetomium globosum to measure the microfibril angle (MFA) in these two fiber types in fifteen species of Acer (maple). Microfibril angles in fiber type 1 were significantly larger than those in fiber type 2. The greatest difference (11.6°) was noted in radial sections of Acer floridanum, in which the average MFA (n =100) obtained from soft-rot cavities for fiber type 1 was 23.3 degrees (95 % C.I. ±1.4°) and for fiber type 2 11.7 degrees (95 % C.I. ±1.2°). The second greatest difference (10.0°) was in Acer nigrum, where the average MFA for type 1 was 16.4 degrees (95 % C.I. ±1.07°) and for type 2 6.4 degrees (95 % C.I. ± 0.64°). When transverse sections were examined with polarized light, areas of fiber type 1 were darker (less birefringent) than those of type 2, which indicates that the MFA of the two cell types differs. After four weeks of exposure to C. globosum the fibers of type 1 were more intensely attacked by the fungus than were the fibers of type 2, suggesting a difference in cell wall chemistry. Fluorescence spectra of the two types of fibers support that observation. Differences in MFA supplement the differences in morphology and chemistry and demonstrate that for Acer species the two fiber types are fundamentally different. These two types of fiber differ in the distribution of their pits. In type 1 the pits are concentrated mainly toward the center of the fiber while in type 2 the pits are distributed along the fiber length.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Acer</term>
</item>
<item>
<term>wood anatomy</term>
</item>
<item>
<term>wood chemistry</term>
</item>
<item>
<term>Chaetomium globosum</term>
</item>
<item>
<term>fiber dimorphism</term>
</item>
<item>
<term>maple</term>
</item>
<item>
<term>microfibril angle</term>
</item>
<item>
<term>soft-rot cavity</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008">Created</change>
<change when="2008">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-10-10">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-17">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus brill-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="http://dtd.nlm.nih.gov/publishing/2.3/journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="e-issn">22941932</journal-id>
<journal-title>IAWA Journal</journal-title>
<abbrev-journal-title>IAWA</abbrev-journal-title>
<issn pub-type="ppub">0928-1541</issn>
<issn pub-type="epub">2294-1932</issn>
<publisher>
<publisher-name>BRILL</publisher-name>
<publisher-loc>Netherlands</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1163/22941932-90000174</article-id>
<title-group>
<article-title>Fundamental Differences Between two Fiber Types in
<italic>Acer</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name content-type="author">
<surname>Vazquez-Cooz</surname>
<given-names>Iris</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name content-type="author">
<surname>W. Meyer</surname>
<given-names>Robert</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<year>2008</year>
</pub-date>
<volume>29</volume>
<issue>2</issue>
<fpage>129</fpage>
<lpage>141</lpage>
<permissions>
<copyright-statement>Copyright 2008 by Koninklijke Brill NV, Leiden, The Netherlands</copyright-statement>
<copyright-year>2008</copyright-year>
<copyright-holder>Koninklijke Brill NV, Leiden, The Netherlands</copyright-holder>
</permissions>
<self-uri content-type="pdf" xlink:href="22941932_029_02_S002_text.pdf"></self-uri>
<abstract>
<p>Our earlier studies on Acer have shown morphological and chemical differences between two fiber types. Our new research applies the soft-rot cavity method using the soft-rot fungus
<italic>Chaetomium globosum</italic>
to measure the microfibril angle (MFA) in these two fiber types in fifteen species of
<italic>Acer</italic>
(maple). Microfibril angles in fiber type 1 were significantly larger than those in fiber type 2. The greatest difference (11.6°) was noted in radial sections of
<italic>Acer floridanum</italic>
, in which the average MFA (n =100) obtained from soft-rot cavities for fiber type 1 was 23.3 degrees (95 % C.I. ±1.4°) and for fiber type 2 11.7 degrees (95 % C.I. ±1.2°). The second greatest difference (10.0°) was in
<italic>Acer nigrum</italic>
, where the average MFA for type 1 was 16.4 degrees (95 % C.I. ±1.07°) and for type 2 6.4 degrees (95 % C.I. ± 0.64°). When transverse sections were examined with polarized light, areas of fiber type 1 were darker (less birefringent) than those of type 2, which indicates that the MFA of the two cell types differs. After four weeks of exposure to
<italic>C. globosum</italic>
the fibers of type 1 were more intensely attacked by the fungus than were the fibers of type 2, suggesting a difference in cell wall chemistry. Fluorescence spectra of the two types of fibers support that observation. Differences in MFA supplement the differences in morphology and chemistry and demonstrate that for
<italic>Acer</italic>
species the two fiber types are fundamentally different. These two types of fiber differ in the distribution of their pits. In type 1 the pits are concentrated mainly toward the center of the fiber while in type 2 the pits are distributed along the fiber length.</p>
</abstract>
<kwd-group>
<kwd>
<italic>Acer</italic>
</kwd>
<kwd>wood anatomy</kwd>
<kwd>wood chemistry</kwd>
<kwd>
<italic>Chaetomium globosum</italic>
</kwd>
<kwd>fiber dimorphism</kwd>
<kwd>maple</kwd>
<kwd>microfibril angle</kwd>
<kwd>soft-rot cavity</kwd>
</kwd-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Fundamental Differences Between two Fiber Types in Acer</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Fundamental Differences Between two Fiber Types in Acer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iris</namePart>
<namePart type="family">Vazquez-Cooz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">W. Meyer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>BRILL</publisher>
<place>
<placeTerm type="text">Netherlands</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008</dateIssued>
<dateCreated encoding="w3cdtf">2008</dateCreated>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Our earlier studies on Acer have shown morphological and chemical differences between two fiber types. Our new research applies the soft-rot cavity method using the soft-rot fungus Chaetomium globosum to measure the microfibril angle (MFA) in these two fiber types in fifteen species of Acer (maple). Microfibril angles in fiber type 1 were significantly larger than those in fiber type 2. The greatest difference (11.6°) was noted in radial sections of Acer floridanum, in which the average MFA (n =100) obtained from soft-rot cavities for fiber type 1 was 23.3 degrees (95 % C.I. ±1.4°) and for fiber type 2 11.7 degrees (95 % C.I. ±1.2°). The second greatest difference (10.0°) was in Acer nigrum, where the average MFA for type 1 was 16.4 degrees (95 % C.I. ±1.07°) and for type 2 6.4 degrees (95 % C.I. ± 0.64°). When transverse sections were examined with polarized light, areas of fiber type 1 were darker (less birefringent) than those of type 2, which indicates that the MFA of the two cell types differs. After four weeks of exposure to C. globosum the fibers of type 1 were more intensely attacked by the fungus than were the fibers of type 2, suggesting a difference in cell wall chemistry. Fluorescence spectra of the two types of fibers support that observation. Differences in MFA supplement the differences in morphology and chemistry and demonstrate that for Acer species the two fiber types are fundamentally different. These two types of fiber differ in the distribution of their pits. In type 1 the pits are concentrated mainly toward the center of the fiber while in type 2 the pits are distributed along the fiber length.</abstract>
<subject>
<genre>keywords</genre>
<topic>Acer</topic>
<topic>wood anatomy</topic>
<topic>wood chemistry</topic>
<topic>Chaetomium globosum</topic>
<topic>fiber dimorphism</topic>
<topic>maple</topic>
<topic>microfibril angle</topic>
<topic>soft-rot cavity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>IAWA Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>IAWA</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0928-1541</identifier>
<identifier type="eISSN">2294-1932</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>129</start>
<end>141</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">1D03631E967BF67AEE3B32D69382BE1C475C5DCF</identifier>
<identifier type="DOI">10.1163/22941932-90000174</identifier>
<identifier type="href">22941932_029_02_S002_text.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2008 by Koninklijke Brill NV, Leiden, The Netherlands</accessCondition>
<recordInfo>
<recordContentSource>BRILL Journals</recordContentSource>
<recordOrigin>Koninklijke Brill NV, Leiden, The Netherlands</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000708 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000708 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1D03631E967BF67AEE3B32D69382BE1C475C5DCF
   |texte=   Fundamental Differences Between two Fiber Types in Acer
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024