Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall.

Identifieur interne : 000536 ( Main/Exploration ); précédent : 000535; suivant : 000537

An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall.

Auteurs : Oksana Fursova [États-Unis] ; Gennady Pogorelko ; Olga A. Zabotina

Source :

RBID : pubmed:22589326

Descripteurs français

English descriptors

Abstract

BACKGROUND

Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants.

METHODS

Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests.

KEY RESULTS

An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3-4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass.

CONCLUSIONS

This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production.


DOI: 10.1093/aob/mcs103
PubMed: 22589326
PubMed Central: PMC3380599


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall.</title>
<author>
<name sortKey="Fursova, Oksana" sort="Fursova, Oksana" uniqKey="Fursova O" first="Oksana" last="Fursova">Oksana Fursova</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pogorelko, Gennady" sort="Pogorelko, Gennady" uniqKey="Pogorelko G" first="Gennady" last="Pogorelko">Gennady Pogorelko</name>
</author>
<author>
<name sortKey="Zabotina, Olga A" sort="Zabotina, Olga A" uniqKey="Zabotina O" first="Olga A" last="Zabotina">Olga A. Zabotina</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22589326</idno>
<idno type="pmid">22589326</idno>
<idno type="doi">10.1093/aob/mcs103</idno>
<idno type="pmc">PMC3380599</idno>
<idno type="wicri:Area/Main/Corpus">000511</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000511</idno>
<idno type="wicri:Area/Main/Curation">000511</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000511</idno>
<idno type="wicri:Area/Main/Exploration">000511</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall.</title>
<author>
<name sortKey="Fursova, Oksana" sort="Fursova, Oksana" uniqKey="Fursova O" first="Oksana" last="Fursova">Oksana Fursova</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pogorelko, Gennady" sort="Pogorelko, Gennady" uniqKey="Pogorelko G" first="Gennady" last="Pogorelko">Gennady Pogorelko</name>
</author>
<author>
<name sortKey="Zabotina, Olga A" sort="Zabotina, Olga A" uniqKey="Zabotina O" first="Olga A" last="Zabotina">Olga A. Zabotina</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>Blotting, Western (MeSH)</term>
<term>Brachypodium (genetics)</term>
<term>Brachypodium (metabolism)</term>
<term>Cell Wall (genetics)</term>
<term>Cell Wall (metabolism)</term>
<term>Hydrolases (genetics)</term>
<term>Hydrolases (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium (génétique)</term>
<term>Brachypodium (génétique)</term>
<term>Brachypodium (métabolisme)</term>
<term>Hydrolases (génétique)</term>
<term>Hydrolases (métabolisme)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Technique de Western (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hydrolases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Brachypodium</term>
<term>Cell Wall</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium</term>
<term>Brachypodium</term>
<term>Hydrolases</term>
<term>Paroi cellulaire</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brachypodium</term>
<term>Cell Wall</term>
<term>Hydrolases</term>
<term>Plant Proteins</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Brachypodium</term>
<term>Hydrolases</term>
<term>Paroi cellulaire</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Western</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3-4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22589326</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall.</ArticleTitle>
<Pagination>
<MedlinePgn>47-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcs103</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3-4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fursova</LastName>
<ForeName>Oksana</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pogorelko</LastName>
<ForeName>Gennady</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zabotina</LastName>
<ForeName>Olga A</ForeName>
<Initials>OA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.-</RegistryNumber>
<NameOfSubstance UI="D006867">Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058431" MajorTopicYN="N">Brachypodium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006867" MajorTopicYN="N">Hydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22589326</ArticleId>
<ArticleId IdType="pii">mcs103</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcs103</ArticleId>
<ArticleId IdType="pmc">PMC3380599</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Biotechnol. 2010 Apr;21(2):211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20362425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Mar;23(10-11):751-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15503032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Nov;77(4-5):433-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Apr;8(3):316-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20102533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet. 2008 Aug;87(2):133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18776641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jul;26(7):1651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010 May 07;3:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Jun;28(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19308413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1981-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1539-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Sep;101(18):7155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jul 1;5(4):267-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 Mar;10(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19707805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1972 May;47(1):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5031119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Nov;119(8):1397-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Aug;117(4):555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18528675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(3):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2005 Sep 05;1(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16270934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1993 May;14(5):748-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8512694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 Nov;1(6):977-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jan;46(1):14-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(5):650-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 2002 Dec;21(12):963-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12573053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 May;10(2):293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2006 Sep;102(3):162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046528</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Pogorelko, Gennady" sort="Pogorelko, Gennady" uniqKey="Pogorelko G" first="Gennady" last="Pogorelko">Gennady Pogorelko</name>
<name sortKey="Zabotina, Olga A" sort="Zabotina, Olga A" uniqKey="Zabotina O" first="Olga A" last="Zabotina">Olga A. Zabotina</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Fursova, Oksana" sort="Fursova, Oksana" uniqKey="Fursova O" first="Oksana" last="Fursova">Oksana Fursova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000536 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000536 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22589326
   |texte=   An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22589326" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024